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Abstract—Location fingerprinting is a common approach to
indoor localization. For good accuracy, the training set of sample
fingerprints should be sufficiently large to be well-representative
of the environment in terms of both spatial coverage and temporal
coverage. As such, the computation required during the position-
ing phase can be expensive because we have to evaluate each
new fingerprint against the training data repeatedly over time.
It is desirable, therefore, to optimize computational efficiency,
not just localization accuracy. Existing techniques are far from
this goal due to their polarization toward one criterion but not
both. We propose a substantially better technique based on the
novel approach of modeling indoor localization as a classification
learning problem where classes form a spatial hierarchy. Its
performance is substantiated in our evaluation study.

I. INTRODUCTION

Location information is valuable to a myriad of indoor
applications of wireless networks. In a surveillance sensor
network deployed in a building, it is crucial to know the
location of an incident such as a fire or machine malfunction
that has been caught by a sensor. There is an increasing
demand for mobile apps providing navigation and other
location-based services in hospitals, shopping malls, airport
terminals, and campus buildings, to name a few. GPS is the
most popular way to get location information but does not
work indoors. Consequently, numerous efforts have been made
towards alternative localization solutions.

An approach, sans GPS, is to leverage the correlation
between received signal strength (RSS) and distance [1]. The
distance between a transmitter and a receiver can be estimated
based on how strong the received signal is observed; this pro-
cedure is called “ranging”. If we have a number of reference
points (RPs), e.g., Wi-Fi access points [2], FM broadcasting
towers [3], or cellular towers [4], we can locate a device by
estimating the distances between this device to the RPs based
on RSS ranging and then using multilateration to compute the
location. RSS ranging, however, is highly inaccurate due to
noise interference [1]. Radio propagates differently in different
directions due to obstacles such as walls, people, and furniture.

Hence arises the fingerprint approach, which is range-
free. This approach consists of two phases: training (offline)
and positioning (online). In the offline phase, the area is
surveyed to build a map of sample “fingerprints” serving as
training data. This map corresponds each surveyed location
to a fingerprint which is a vector of RSS values received at

this location from a set of RPs. In the online phase, when we
need to compute a location in real time, the RSS vector of
the device is evaluated against the fingerprint map to find the
best location match. Recently, different efforts have suggested
the use of other feature modalities, such as signal strength
difference [5], sound [6] and geomagnetic field [7], in the
fingerprint information. By combining these features where
they apply, we can obtain a rich set of discriminative features
for the fingerprint.

Having quality training data is crucial to good localization
accuracy. For a large area, we should survey many locations
to ensure good spatial coverage and at each location collect
many fingerprint readings to ensure good temporal coverage
(due to the dynamics of the environment over time). If possible
and necessary, we can also augment the training data by
using techniques such as compressive sensing [8] and semi-
supervised learning [9] to utilize fingerprints that are available
without location information.

As the training data size can be large, it is as important to
improve the efficiency of the positioning phase, not just accu-
racy. Consider a location service offered to many mobile users
in a large indoor environment, where a server has to compute
the location for each user. The server can become congested
because not only it has to receive fingerprint readings from
every user (communication bottleneck) and evaluate this infor-
mation against the fingerprint map (computation bottleneck),
but also the server has to repeat these two tasks almost
continuously as fingerprint information changes each time a
user moves. Consequently, our focus in this paper is to devise
a positioning algorithm that is not only accurate, but fast. This
is also highly desirable even in the scenario where the location
is computed locally on the user device without sending any
data to the server. In this case, suitable for applications that
protect user location privacy, the resource limitation of the
mobile device precludes expensive computation.

Many fingerprint techniques rely on nearest-neighbor search
(kNN) for estimating the location of the device given a new
fingerprint [2], [10], [11]. Unfortunately, kNN search remains
one of the most expensive operations in high-dimensional
databases and so the positioning algorithm based on kNN
is too slow due to the large quantities of fingerprint features
and fingerprint samples. Therefore, an alternative fingerprint
approach is to employ model-based supervised learning to



compute a functional dependence between a fingerprint and a
location. This dependence can be learned during the training
phase using a generative classification model (e.g., Bayesian
classifiers [12], [13]) or a discriminative classification model
(e.g., Artificial Neural Networks (ANN) [14] and Support
Vector Machines (SVM) [15]–[17]). The model-based classifi-
cation approach is computationally more efficient because only
a compact learning model of the fingerprint map is evaluated
during the positioning phase. Today’s techniques adopting this
approach, however, have limited localization accuracy when
compared to kNN [15], [18].

Our contribution in this paper is a classification-based
fingerprint framework that can offer both improved localiza-
tion accuracy and computational efficiency. Specifically, we
model the localization problem as a classification problem
where the classes form a spatial hierarchy. This is funda-
mentally different from the conventional classification-based
fingerprint techniques which define classes as (quasi-)disjoint
subdivisions resulted from a flat partitioning of the area.
In the positioning phase, whereas the conventional approach
queries membership on every class, the proposed approach
requires asking only a logarithmic fraction of the number of
classes thanks to their spatial hierarchy; hence, more efficient.
We achieve this efficiency gain with even better localization
accuracy, which is substantiated in an evaluation study we
have conducted with two datasets, representing a case with
rich training samples and the other case with much simpler
training samples. In comparison to kNN, this study also finds
our approach competitive in terms of accuracy and, especially,
many times faster during the positioning phase.

The rest of the paper is organized as follows. §II provides
a brief survey of the related work. §III describes our proposed
technique in detail. Experimental results are discussed in §IV.
The paper is concluded in §V with pointers to our future work.

II. RELATED WORK

GPS-free localization in wireless networks has been a long-
studied problem. There exist many techniques to date, which
differ in the type of network environment (e.g., RFID [19],
sensor networks [20], wireless LANs [13], vehicular ad hoc
networks [21]), the modality of information used to infer
location (e.g., infrared [22], radio [2], sound [6], geo-magnetic
[7], light [23]), or the type of algorithmic method (e.g., range-
based [24], range-free [25]). As our work is focused on
range-free location fingerprinting, we here discuss techniques
representative of this category. A broader survey of wireless
localization techniques is presented in [26].

Radar [2] is the world’s first Wi-Fi RSS-based indoor
positioning system, which demonstrates the viability of using
RSS information to locate a wireless device. This system
works using a radio map, a lookup table that maps building
locations to the corresponding RSS fingerprints empirically
observed at these locations. The reference points are the Wi-Fi
access points within the user’s Wi-Fi range. The radio map is
searched to find the closest RSS reading and the corresponding
location will be used as the estimate for the user’s location.

MoteTrack [10] is a location fingerprint technique largely
similar to Radar, but aimed at improving the robustness of
the system through a decentralized approach to estimating the
location. Instead of location computation’s being performed at
a central back-end server, this task is distributed among the
reference nodes. Given a fingerprint at an unknown location,
the location can be computed as the centroid of a number
of nearest fingerprints in the radio map, using the Manhattan
distance for similarity measure (heavier weight may be given
to a training fingerprint that is nearer).

Radar and MoteTrack represent the fingerprint approach
where kNN is used to determine the location. We can also
employ an indirect learning approach to relate a fingerprint to
a location. This approach is motivated by the stochastic nature
of fingerprint information: fingerprints at the same location
may vary over time and due to presence of physical obstacles
they may have identical values even at two distant locations.
Consequently, it is argued that location estimation may be
more accurate if an intrinsic functional dependence between
a fingerprint and a location exists and is utilized. A model
for this dependence can be represented probabilistically using
Bayesian inference [12], [13] or non-probabilistically using
Artificial Neural Networks (ANN) [14] or Support Vector
Machines (SVM) [15]–[17].

Bayesian-based techniques [12], [27] associate with each
location fingerprint a conditional probability, p(location |
fingerprint). This probability is computed based on knowl-
edge about the signal propagation model, p(fingerprint |
location), using Bayesian inference. A limitation of these
techniques is that the signal propagation model must be given
a priori, or the training set must be substantially large for
a precise estimation of the fingerprint distribution at each
surveyed location.

ANN-based techniques [14] compute a function mapping a
fingerprint to a location in the form of a multi-layer perceptron
network with a hidden layer. The synapses store parameters
called “weights”, initially unknown, that manipulate the data
during the calculations. For training, the fingerprint values
and surveyed locations in the training set serve as input and
output of this network. After the training phase, appropriate
values are obtained for the weights. Given a new fingerprint,
it goes through linear calculations in the neural network
with the obtained weights to finally result in a corresponding
location at the output. ANN is computationally more efficient
than Bayesian because of these simple calculations, whereas
Bayesian requires expensive evaluation of the conditional
probability distribution over all the surveyed locations.

SVM is a de facto standard classification tool in Machine
Learning preferable to ANN for several reasons: (1) while
ANN can suffer from multiple local minima, SVM provides a
global and unique solution; (2) unlike ANN, the computational
complexity of SVM is independent of the dimensionality of
the input space (in our case, the number of reference points);
and (3) SVM is less prone to overfitting than ANN is. When
it comes to location fingerprinting, SVM has been shown to
outperform both the Bayesian- and ANN- classifiers [15], [18],



hence recommended as the closest alternative to kNN when
applied to location fingerprinting.

In setting up the localization problem as a classification
problem, the conventional way is to pre-partition the local-
ization area into a set of regions (e.g., a grid of cells),
each serving as a class and a classification tool is used to
assign a given fingerprint to one of these classes. If these
classes are not chosen properly, both accuracy and efficiency
may suffer, explaining why existing efforts applying SVM
for fingerprinting offer limited accuracy compared to kNN;
the latter is even faster during the positioning phase in the
indoor experiment discussed in [15]. A recent study [17]
attempts to boost the accuracy of SVM fingerprinting by
incorporating a priori information such as an autocorrelation
kernel or a complex output. This improvement comes with
larger complexity, hence, at the cost of efficiency. We want
to devise a more efficient classification-based fingerprint tech-
nique without sacrificing its localization accuracy.

III. PROPOSED TECHNIQUE

We assume that location fingerprinting is needed for a
2D area, D = (0, 1] × (0, 1] (our technique can easily be
tuned to work with 3D). At each location P ∈ D, its x-
and y-coordinates are denoted by (xP , yP ). A fingerprint
is represented as a vector ~f = (f1, f2, ..., fn) where fi is
a value corresponding to a feature of the fingerprint, e.g.,
RSSI from different Wi-Fi APs or RFID readers, readings
from inertial measurement units (accelerometer, gyroscope,
magnetometer), and any location-discriminative feature that is
available with the device, etc. The sample fingerprint collec-
tion, F = {(xi, yi, ~fi)}ti=1, obtained during the training phase
consists of t fingerprints sampled at locations in D with known
coordinates. It is possible that more than one fingerprint may
be collected for the same location. In the positioning phase,
given a new fingerprint ~f , we need to predict the corresponding
location. We adopt the model-based classification approach
for localization. Our central contribution is in the way we
define classes for the classification and how we determine a
fingerprint’s location based on classification learning on these
classes. Any classification tool, SVM, ANN, or Bayesian, can
work with our technique.

A. Conventional Classification for Location Fingerprinting

The common way of applying model-based classification to
location fingerprinting is to partition the area into a number
of regions, each representing a class to feed into a multi-class
classifier. Typically, grid partitioning is used and a class is a
unit cell of this partition. If the area is partitioned as a nX×nY
grid, there are nXnY classes, C1,1, ..., Ci,j , ..., CnX ,nY

, each
being a cell of size 1/nX × 1/nY :

Ci,j =

{
P ∈ D | xP ∈

[
i− 1

nX
,
i

nX

]
∧ yP ∈

[
j − 1

nY
,
j

nY

]}
.

Using a multi-class classifier, a fingerprint can be classified
into one of these classes and the center of the correspond-
ing cell is the location estimate. Alternatively, instead of

estimating both x- and y-coordinates simultaneously, we can
estimate them independently. For the x-dimension, the area is
partitioned into nX equally-sized column stripes, each serving
as a class; hence, nX classes, {CX1 , CX2 , ..., CXnX

}:

CXi =

{
P ∈ D | xP ∈

[
i− 1

nX
,
i

nX

]}
.

Using a multi-class classifier, we can classify the x-coordinate
into one of these stripes. Similarly, to estimate the y-
coordinate, we apply a separate classification procedure where
nY classes are obtained by partitioning the area into equally-
sized row stripes, {CY1 , CY2 , ..., CYnY

},

CYj =

{
P ∈ D | YP ∈

[
j − 1

nY
,
j

nY

]}
.

For the same quantization resolution (nX , nY ) (the smallest
area a location can be estimated in is of size 1/nX × 1/nY ),
this method uses only (nX+nY ) classes, compared to nXnY
of the grid method. We refer to these two methods as STRIPE
and GRID, respectively.

Both STRIPE and GRID rely on a flat partitioning of the
area; the classes represent regions that are disjoint. As such,
comes the following dilemma. On the one hand, since each
region in the partition is the unit of quantization to locate
a new fingerprint, we want a high partition resolution to
reduce the quantization error. On the other hand, with these
techniques, a high resolution results in not only a large number
of classes to be evaluated (negatively affecting efficiency) but
also overwhelmingly more negative samples in each class
than positive samples (negatively affecting training quality).
Although different techniques may differ in how they define
the class regions, which are not precisely disjoint squares or
stripes (e.g., circles used in [28]), they all are based on flat
partitioning and incur the same drawback as just mentioned.

B. Spatially Hierarchical Classification

We propose that classes are formed by a spatial hierarchy of
regions, instead of a flat partitioning of regions. For the same
quantization resolution (nX , nY ), our classes are defined as
follows:
• mX = nX − 1 classes for the x-dimension,
{CX1 , CX2 , ..., CXmX

}, where

CXi =

{
P ∈ D | xP ∈

[
i

nX
, 1

]}
• mY = nY − 1 classes for the y-dimension,
{CY1 , CY2 , ..., CYmY

}, where

CYj =

{
P ∈ D | yP ∈

[
j

nY
, 1

]}
Visually speaking, each x-class CXi represents the region
formed by all the locations that lie to the right of the vertical
line x = i

nX
, while each y-class CYi represents all the locations

that lie above the horizontal line y = i
nY

.



Our classes are not disjoint. Specifically, they form the
following ordered lists,

CX1 ⊃ CX2 ⊃ ... ⊃ CXmX

CY1 ⊃ CY2 ⊃ ... ⊃ CYmY

and, consequently, we can apply a binary search like algorithm
to find the best classification for each fingerprint (to be
discussed later).

Compared to STRIPE and GRID, given the same quantiza-
tion granularity, say if each region to approximate a location
is a cell of the nX×nY grid, our technique requires (nX−1)
classes for the x-dimension and (nY − 1) classes for the y-
dimension, for a total of (nX + nY − 2) classes. Also, since
each class represents a larger region (a range of columns
instead of a single column or a range of rows instead of a
single row), the distribution of positive and negative samples
in the training for each class is more balanced than that in
STRIPE and GRID.

1) Training: Given the sample fingerprint collection F and
using a binary classification tool (e.g., SVM, native Bayes,
decision trees, etc.), each of the (nX + nY − 2) classes
described above is trained separately. As a result, we obtain
a learning model that predicts whether an arbitrary fingerprint
~f = (f1, f2, ..., fn) belongs to a given class C,

isMember(~f, C)
def
=

{
1 if ~f is predicted to be in C
0 otherwise

For example, if SVM is used, this model contains for each
class a set of support vectors and their corresponding coeffi-
cients, which is used to compute the function isMember().
The details of this are omitted due to limited space and we
assume that isMember() is given as a result of the training
phase.

2) Positioning: Suppose that we need to compute the
coordinates, (xP , yP ), of a device at an unknown location P ,
for which a fingerprint ~f has been obtained. For this purpose,
we compute each coordinate separately as follows:
• To compute xP , we find the smallest class CXi∗ such that
P ∈ CXi∗ ; i.e.,

i∗ = max {i | isMember(~f, CXi ) = 1}.

• To compute yP , we find the smallest class CYj∗ such that
P ∈ CYj∗ ; i.e.,

j∗ = max {j | isMember(~f, CYj ) = 1}.

Because P ∈ CXi∗ and P 6∈ CXi∗+1, we have xP ∈
[
i∗

nX
, i

∗+1
nX

]
.

Similarly, we have yP ∈
[
j∗

nY
, j

∗+1
nY

]
. Our coordinate estimate

for the location P will be

xP ≈
i∗ + 0.5

nX
, yP ≈

j∗ + 0.5

nY
.

In the case that CXi∗ is not found (i.e., no x-dimension class
contains P ), then xP is estimated as 0.5

nX
. Similarly, in the case

CYj∗ is not found (i.e., no y-dimension class contains P ), then
yP is estimated as 0.5

nY
.

To find the smallest class CXi∗ we apply binary search on
the ordered list CX1 ⊃ CX2 ⊃ ... ⊃ CXmX

. If it is known that
P ∈ CXmX/2

, the class in the middle of this ordered list, we
only need to search for i∗ in the range [mX

2 ,mX ]; otherwise,
we search the range [1, mX

2 −1]. The search repeats recursively
for the resultant range, in which the first query is always
evaluated with the class in the middle of this range. Conse-
quently, the number of x-dimension classes we need to query is
logmX . Similarly, the number of y-dimension classes we need
to query to find CYj∗ is logmY . The total number of queries,
therefore, is logmX+logmY = log (nX − 1)+log (nY − 1).
In contrast, the corresponding cost for STRIPE and GRID is
nX + nY and nXnY , respectively, if the same quantization
granularity is used.

If the prediction isMember() in our positioning algorithm
is correct for each query, the location error for the x-coordinate
is at most 1/2

nX
and for the y-coordinate at most 1/2

nY
. However,

there is a prediction error associated with each class and so
the prediction for a class C may state that P ∈ C whereas the
ground truth is P 6∈ C. Consequently, the location error should
be larger. A theoretical analysis of this error is presented
below.

C. Error Analysis

Let us focus on one dimension, say x-dimension, and
analyze the location error along this dimension. For ease of
presentation, assume that nX is of the form nX = 2m and
so mX = 2m − 1. The decision sequence is represented
by a m-bit binary number b1b2...bm, where bi = 0 if P is
predicted not belonging to the class evaluated in the ith query
and bi = 1 otherwise. For example, if m = 3 (mX = 7
classes) and b1b2b3 = 010, our positioning algorithm predicts
that P 6∈ CX4 , P ∈ CX2 , and P 6∈ CX3 , resulting in
class CX2 being returned as the smallest class containing P .
Let ε be the maximum individual location prediction error
probability among all x-dimension classes. In other words, ε
is the maximum error probability for the prediction function
isMember() among all classes, when applied to an arbitrary
(training or non-training) fingerprint. Note that this ε is not
the training accuracy during the training phase.

First, consider the special case that the ground-truth location
is in class CXmX

. That means the correct decision sequence is
11...1︸ ︷︷ ︸
m

. However, the actual decision sequence is b1b2...bm and

so the corresponding location error is at most

1

2m

11...1︸ ︷︷ ︸
m

− b1b2...bm +
1

2

 = 1− b1b2...bm
2m

− 1

2m+1

where b1b2...bm represents the decimal value of the binary
number b1b2...bm. If there are i errors made in the decision
sequence b1b2...bm, then i bits in this sequence must be ‘0’
and the other m− i bits must be ‘1’. The probability for this
case to happen is

(
m
i

)
εi(1 − ε)m−i. The expected value of



b1b2...bm over all possible choices for b1b2...bm that has i ‘0’
bits is (1− i

m )(2m − 1). Consequently, the expected value of
b1b2...bm over all possible choices of b1b2...bm is

B =

m∑
i=0

(
m

i

)
εi(1− ε)m−i(1− i

m
)(2m − 1)

= (2m − 1)

[
1−

m∑
i=0

(
m

i

)
i

m
εi(1− ε)m−i

]

= (2m − 1)

[
1−

m∑
i=1

(
m

i

)
i

m
εi(1− ε)m−i

]

= (2m − 1)

[
1−

m∑
i=1

(
m− 1

i− 1

)
εi(1− ε)m−i

]

= (2m − 1)

[
1−

m−1∑
i=0

(
m− 1

i

)
εi+1(1− ε)m−i−1

]

= (2m − 1)

[
1− ε

m−1∑
i=0

(
m− 1

i

)
εi(1− ε)m−i−1

]
= (2m − 1)(1− ε).

The expected location error is therefore bounded by

f(m) = 1− B

2m
− 1

2m+1
=

1

2m+1
+ ε

(
1− 1

2m

)
.

Note that this bound is for the special case where the ground-
truth location of P is in class CXmX

. Now we consider
the general case, where the ground-truth location may be
anywhere in D with equal probability. We represent our upper
bound for the expected location error as a function g(m)
of parameter m. Without loss of generality, we assume that
xP ≥ 1/2.

When m = 1, g(1) = ε × 3/4 + (1 − ε) × 1/4 = (1 +
2ε)/4. For m ≥ 2, given a decision sequence, there are two
possibilities:
• The first bit is 1: In the first membership query, the

classifier for CXmX/2
correctly predicts that P is in this

class. In this case, which happens with probability 1− ε,
the expected error is

A1 =
1

2
g(m− 1).

• The first bit is 0: In the first membership query, the
classifier for CXmX/2

incorrectly predicts that P is not
in this class. In this case, which happens with probability
ε, the expected error is

A0 =
1

2m


100...0︸ ︷︷ ︸
m−1

+ 11...1︸ ︷︷ ︸
m

2
− 0 11...1︸ ︷︷ ︸

m−1

+
1

2
f(m− 1)

=
1

4
+

1

2m+1
+

1

2
f(m− 1)

=
1

4
+

1

2m+1
+

1

2

[
1

2m
+ ε

(
1− 1

2m−1

)]
=

1

4
+

1

2m
+ ε

(
1

2
− 1

2m

)
.

We have the following recurrence relation for function g:

g(m) = (1− ε)A1 + εA0

=
1− ε
2

g(m− 1) + ε

[
1

4
+

1

2m
+ ε

(
1

2
− 1

2m

)]
=

1− ε
2

g(m− 1) +
ε+ 2ε2

4
+
ε− ε2

2m

Let a = 1−ε
2 , b = ε+2ε2

4 , and c = ε− ε2. We have

g(m) = ag(m− 1) + b+
c

2m
= ...

= am−1g(1) +
b(1− am−1)

1− a
+ c

m−2∑
i=0

ai

2m−i

= am−1g(1) +
b(1− am−1)

1− a
+

c

2m

m−2∑
i=0

(2a)i

= am−1g(1) +
b(1− am−1)

1− a
+
c(1− (2a)m−1)

2m(1− 2a)
.

Since g(1) = (1+2ε)/4, we obtain the following closed form
for g:

g(m) =
ε(1 + 2ε)

2(1 + ε)
+

1− ε
2m

− (1− ε)m−1(1− ε)
2m+1(1 + ε)

. (1)

Hence, the result below.

Proposition III.1 (Bound on 1-D Location Error). Assuming
the uniform distribution for the user location, the expected
location error along a single dimension (e.g., x-dimension or
y-dimension) is bounded by

E =
ε(1 + 2ε)

2(1 + ε)
+

1− ε
2m

− (1− ε)m−1(1− ε)
2m+1(1 + ε)

. (2)

Here, (2m − 1) classes are defined for this dimension and ε
is the maximal individual prediction error of these classes.

As a corollary, the corresponding bound for the overall 2-D
location error is E2D =

√
E2
X + E2

Y where EX and EY are
the bounds for the x-dimension and y-dimension, respectively.

The bound E is a strictly decreasing function of the number
of classes and a strictly increasing function of the ε prediction
error. Specifically,

lim
ε→0

E =
1

2m+1
, lim
m→∞

E =
ε(1 + 2ε)

2(1 + ε)
.

However, m and ε are not independent of each other. Indeed,
for the same training set, if m increases, there are fewer
training samples in each class, thus reducing the prediction
error ε. It is also noted that we do not have a constructive
method to compute ε. That said, the significance of this
proposition is its asymptotical guarantee; the location error
can be made small by choosing a sufficiently large m and
given this choice of m, having a sufficiently small ε (which
can be achieved by training on a sufficiently large number of
fingerprint samples).
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(a) Trento dataset’s map: 30m×20m (courtesy of [15]) (b) Colorado dataset’s map: 75m×50m (courtesy of [18]).

Fig. 1. Indoor maps of the datasets

IV. EVALUATION STUDY

We evaluate with two datasets:
• Colorado dataset: This dataset is from an indoor ex-

periment used in [18] (University of Colorado). RSSI
fingerprints are collected at 179 sample locations in a
WLAN with five 802.11 reference points, called “mon-
itors” in their study (Figure 1(b)). An omni-directional
transmitter serves as the transmitter and the five mon-
itors as the receivers. Although the signal transmis-
sion is omni-directional, fingerprints are collected for
four different heading orientations of the transmitter
(east/west/south/north). We use a 1% subset of the orig-
inal dataset as the training collection. There are 8.8
training fingerprints for an average sample location (2.2
on average for each orientation); hence, a total of 1,576
training fingerprints. We test the prediction using a test
file containing 77,516 fingerprints.

• Trento dataset: This dataset is from an indoor experiment
used in [15] (University of Trento), containing a collec-
tion of 257 RSSI fingerprints at 257 sample locations in
a WLAN with six Wi-Fi access points (Figure 1(a)). The
sample locations are regular-grid points of the floor. Each
fingerprint is measured at a sample location by a person
carrying a PDA, as a receiver receiving signals from the
access points. The PDA always points north. A random
half of this collection (128 samples) is used for training
and the other half (129 samples) for testing purposes. We
use this dataset, which is much smaller than the Colorado
dataset, because we want to evaluate the case where there
are very few samples (only one per surveyed location).

It is noted that both of these datasets are obtained from
areas with signal barriers (walls, obstacles) and holes (non-
accessible rooms). Using these datasets, we compare the
hierarchical classification based fingerprint approach to the
conventional approaches, STRIPE and GRID, and the kNN
fingerprint approach. Since SVM is arguably the best practice
as a binary classification tool, we use it in this evaluation.
For ease of presentation, we name the classification-based

techniques in comparison by SH-SVM (our technique, SH
= Spatially Hierarchical), Grid-SVM, and Stripe-SVM. The
parameters for kNN are k and distance type, where k (1 or 5)
represents the number of nearest-neighbor fingerprints used to
predict the unknown location and distance type (“E” or “M”)
represents the type of distance used (Euclidean or Manhattan).
The parameters for the SVM-based techniques are nX and nY ,
which represent the quantization region, a cell in the nX×nY
grid. Hence, with SH-SVM, mX = (nX − 1) and mY =
(nY − 1). In the results reported here, the range for these two
parameters is nX × nY ∈ {10 × 10, 20 × 20, ..., 100 × 100}.
For ease of presentation, a notation such as Grid-SVM(20,
20) represents the version of Grid-SVM if the grid is 20×20.
Similar notations are also used for Stripe-SVM and SH-SVM.

The metrics for comparison are location error (“error” in
short), measured as the distance between the predicted location
and the ground-truth location, and computational efficiency
(“time” in short), measured as the time it takes to make predic-
tion on the given test file. In our evaluation, we use the libsvm
software package (http://www.csie.ntu.edu.tw/∼cjlin/libsvm)
for SVM training. The programs (training and testing) run
on a MacBook Pro laptop running OS X 10.8.1 with
8GB/1600MHz of DDR3 and 2.3 GHz Intel Quadcore i7
processor.

A. Results on the Colorado Dataset

1) SH-SVM vs. Grid-SVM and Stripe-SVM: For this com-
parison, we compute the error and time metrics of each
technique given the same location quantization granularity, i.e.,
same grid size. The results are shown in Figure 2.

As the quantization resolution increases from 10 × 10 to
100×100, all three techniques (SH-, Grid-, and Stripe-SVM)
improve their location error (Figure 2(a)). On the other hand,
the computation time (Figure 2(b)) worsens, which is under-
standable because the number of classes in each technique
increases with the quantization resolution. With resolutions
richer than 30×30, this time increase stops for Grid-SVM and
Stripe-SVM, which is possibly because the classes become so
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Fig. 2. SH-SVM vs. Grid-SVM vs. Stripe-SVM: Colorado dataset

small that the prediction model is very fast to evaluate.
Grid-SVM and Stripe-SVM are comparable to each other,

the former slightly better in terms of time but the latter slightly
better in terms of error. They, however, cannot compete with
SH-SVM in both metrics. The case (nX , nY ) = (100, 100)
results in the best error for all the three techniques. In this
case, while the average error of Grid-SVM and Stripe-SVM
exceeds 3.8m, SH-SVM offers a slightly better error of 3.5m
(7+% better); the CDF plot of the error is given in Figure
2(c). Also in the case (nX , nY ) = (100, 100), in terms of
computation time, it takes more than 35sec time for Grid-SVM
and Stripe-SVM to localize all the test fingerprints, whereas
it takes 24sec for SH-SVM, which is 30+% faster. Clearly,
SH-SVM is the best technique.

2) SH-SVM vs. kNN: To compare to SH-SVM to kNN,
first, we analyze kNN in four cases of k and distance type:
1NN(E), 5NN(E), 1NN(M), and 5NN(M). Here, “E” is for
Euclidean and “M” for Manhattan. The average error and
time are plotted in Figure 3. It is observed that the Euclidean
distance and Manhattan distance provide similar results, time-
or error- wise. In either case, a larger k will incur smaller
error (Figure 3(a)) and longer time (Figure 3(b)), which is not
surprising. The best error (3.5m) is achieved by 5NN(E) and
the best time (400sec) is achieved by 1NN(M).

We now compare SH-SVM to the above best-case versions
of kNN. In the training phase we have found that the 100×100
quantization resolution should give the best error for SH-SVM,
which is indeed substantiated in Figure 2(a). We thus use this
resolution for SH-SVM in comparison with kNN. As seen
in Figure 3, SH-SVM is clearly better. Compared to 5NN(E)
(best-error version of kNN), SH-SVM offers a slightly smaller
error (less than 3.5m), yet 76× faster. Compared to 1NN(M)
(best-time version of kNN), SH-SVM is 12% more accurate
and 16× faster.

This study strongly indicates that, for the Colorado dataset,
our proposed technique is substantially better than Grid-SVM
and Stripe-SVM and kNN-based techniques. Comparing the
others, Grid-SVM and Stripe-SVM are also faster than kNN
(albeit to a lesser extent) but slightly less accurate.

B. Results on the Trento Dataset

1) SH-SVM vs. Grid-SVM and Stripe-SVM: For the Trento
dataset, the results are plotted in Figure 4, which shows that
SH-SVM is better than both Grid- and Stripe-SVM in terms
of accuracy and, especially in terms of computation time, SH-
SVM is more than 3× faster than the others.

We observe that the performance of these techniques do not
seem to improve when the quantization granularity is dense
enough; specifically, denser than 20×20 as shown in Figure
4(a) and Figure 4(b). It is noted that the error of Grid-SVM
gets worse much more quickly than the others. This supports
our argument that having too small a class affects negatively
the quality of training, which occurs with Grid-SVM, and
that SH-SVM by having larger classes should result in better
error. Figure 4(c) plots the CDF of the error in the best sce-
nario for each technique, namely Grid-SVM(10, 10), Stripe-
SVM(100,100), and SH-SVM(100, 100), clearly illustrating
that SH-SVM is the most accurate. As an example, 80% of
the tests has error less than 5m, whereas this percentage is
70% for Stripe-SVM and 60% for Grid-SVM.

2) SH-SVM vs. kNN: We use SH-SVM(100, 100) for this
comparison. Similar to the results of the Colorado dataset,
SH-SVM outperforms kNN in both error and time metrics,
albeit to a lesser extent. The error CDF plotted in Figure 5(c)
shows that SH-SVM is more accurate than the best of kNN,
which is 5NN(M). On average, 5NN(M) offers a 3.5m error
whereas SH-SVM offers 3.2m (Figure 5(a)). It is noted that
the Trento floor plan is about 4× smaller than the Colorado
floor plan and so this error gap is more significant compared
to the gap with the Colorado dataset. In terms of time (Figure
5(b)), SH-SVM is 1.4× faster than the fastest version of kNN
(“1NN(M)”) and more than 6× faster than the most accurate
version of kNN (“5NN(M)”).

C. Remarks

Our study with the two different datasets, small and large,
has shown that (1) Grid-SVM and Stripe-SVM are comparable
with each other; the former is slightly faster but slightly less
accurate; (2) they are substantially less accurate than kNN and
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Fig. 3. SH-SVM vs. kNN: Colorado dataset
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Fig. 4. SH-SVM vs. Grid-SVM vs. Stripe-SVM: Trento dataset

worse than SH-SVM in both criteria; (3) kNN is the slowest,
extremely slow with large training data; (4) SH-SVM is many
times faster than kNN, more accurate with small training data
and as accurate with large training data.

V. CONCLUSIONS

State-of-the-art solutions to indoor fingerprint-based local-
ization remain either too slow or inaccurate, thus ineffective
for large-scale deployments. One can improve accuracy by
obtaining more training samples with richer fingerprint fea-
tures. This, however, does not help mitigate the computation
time in the positioning phase; it could even be worse. We
pursue an orthogonal approach, whose goal is to make the
positioning algorithm faster and more accurate given any
fingerprint training set already obtained. Our contribution is
essentially modeling of the localization problem as a spatially
hierarchical classification problem, where classes represent
regions that are spatially hierarchically formed. Our evaluation
study has shown that the proposed approach outperforms
the conventional classification-based fingerprint approaches in
terms of both localization accuracy and computational effi-
ciency. Although this comparison is based on specific datasets,
it is strong enough to suggest that using a spatially hierarchical
classification approach for fingerprint localization will likely

lead to the best result in practice. In the future work, we would
like to extend this promising framework to target tracking,
specifically how we can apply Hidden Markov Models in a
spatially hierarchical way to determine the best trajectory for
a moving target in real time.
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