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ABSTRACT
Location fingerprinting is a common approach to indoor lo-
calization. For good accuracy, the training set of sample fin-
gerprints, each mapping a fingerprint to a location, should
be sufficiently large to be well-representative of the envi-
ronment in terms of both spatial coverage and temporal
coverage. Unfortunately, the task of collecting these sam-
ples can be tedious and labor-intensive because one must
label each location that is being surveyed. On the other
hand, fingerprints without location information are abun-
dant and can easily be collected and so recent studies have
tried to capitalize on these unlabeled fingerprints to improve
the training set. The paper investigates how this goal can be
achieved via graph regularization based on Total Variation
(TV). TV is highly effective for semi-supervised learning in
image processing but it is not clear whether its success can
be transferred to indoor location fingerprinting.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles
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1. INTRODUCTION
Location information is valuable to a myriad of indoor ap-

plications of wireless networks. GPS is the most popular way
to get location information but does not work indoors. Sans
GPS, an alternative approach is to leverage the correlation
between received signal strength (RSS) and distance[21]. If
we have a number of reference points (RPs), e.g., Wi-Fi ac-
cess points [1], FM broadcasting towers [6], or cellular towers
[20], we can locate a device by estimating the distances be-
tween this device to the RPs based on RSS ranging and then
using multi-lateration to compute the location. RSS rang-
ing, however, is highly inaccurate due to noise interference
[21].
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Arises the fingerprint approach, which is range-free. This
approach consists of two phases: training (offline) and po-
sitioning (online). In the offline phase, a number of sample
locations are surveyed to build a map of “fingerprints”, each
corresponding a surveyed location to a vector of RSS values
received at this location from a set of RPs. In the online
phase, when we need to compute a location in real time,
the RSS vector of the device is evaluated against the finger-
print map to find the best location match. Most often, as
employed in [1, 13, 23], the centroid of the locations corre-
sponding to one or more nearest fingerprints in the finger-
print space is used as the estimate for the device’s location.
While this kNN-based method compares RSS values directly,
one can use a model-based learning method, e.g., [17, 4], to
compute a functional dependence between a fingerprint and
a location.

Despite its simplicity, the fingerprint approach is limited
by the quality of the training data. The training data should
be sufficiently large to be well-representative of the environ-
ment, both spatially and temporally. For a large area, many
locations need to be surveyed to ensure good spatial cover-
age and many fingerprint readings need to be measured at
each sample location to ensure good temporal coverage (due
to the dynamics of the environment over time).

As the calibration task is tedious and labor-extensive, it is
often the main bottleneck to localization accuracy. Conse-
quently, various efforts [15, 14, 16, 10] aim to reduce the cal-
ibration cost by a semi-supervised learning approach [5], uti-
lizing unlabeled fingerprints to supplement a given (small)
training set of labeled fingerprints. A labeled fingerprint is
one that is measured at a known location. Unlabeled finger-
prints are abundant because they can easily be obtained for
a mobile device without manual location labeling.

Our research is in the same sprit with the aforementioned
works, with the exception that we use Total Variation (TV)
regularization for semi-supervised learning of the unlabeled
fingerprints. TV permits sharper edges near the decision
boundaries whereas other regularization methods such as
Laplacian used in manifold regularization [2] penalize too
much gradients on edges. Therefore, TV is highly success-
ful to image de-noising and restoration tasks as it does not
smoothen edges unnecessarily in the picture. Our rationale
for exploring TV in indoor localization is because (1) it
is observed that the fingerprint space exhibits a degree of
smoothness (nearby locations should correspond to similar
fingerprints), hence the rationale for using a regularization
method, and (2) whether the success of TV in image pro-
cessing may apply to indoor localization is not clear as they



are in different signal spaces; this paper is an effort to inves-
tigate this question. We explore the applicability of TV to
improving the training quality of a Wi-Fi fingerprint dataset
obtained from an indoor testbed.

The rest of the paper is organized as follows. §2 provides
a brief survey of the related work. §3 describes how we
apply Total Variation to our semi-supervised learning prob-
lem. Evaluation results are discussed in §4. The paper is
concluded in §5 with pointers to our future work.

2. RELATED WORK
Radar [1] is the world’s first Wi-Fi RSS-based indoor po-

sitioning system, which demonstrates the viability of using
RSS information to locate a wireless device. This system
works using a radio map, a lookup table that maps building
locations to the corresponding RSS fingerprints empirically
observed at these locations. The reference points are the
Wi-Fi access points within the user’s Wi-Fi range. The ra-
dio map is searched to find the closest RSS reading and the
corresponding location will be used as the estimate for the
user’s location. MoteTrack [13] is a location fingerprint tech-
nique largely similar to Radar, but aimed at improving the
robustness of the system through a decentralized approach
to estimating the location. Instead of location computation’s
being performed at a central back-end server, this task is
distributed among the reference nodes. Given a fingerprint
at an unknown location, the location can be computed as
the centroid of a number of nearest fingerprints in the radio
map, using the Manhattan distance for similarity measure.
More weight is given to a training fingerprint that is nearer.

Radar and MoteTrack represent the fingerprint approach
where kNN is used to determine the location. One can
also employ a model-based learning approach to relate a
fingerprint to a location. This approach is motivated by the
stochastic nature of fingerprint information: Fingerprints
at the same location may vary over time and, due to pres-
ence of physical obstacles, they may have identical values
even at two distant locations. Consequently, it is argued
that location estimation may be more accurate if an intrinsic
functional dependence between a fingerprint and a location
exists and is utilized. This dependence can be represented
probabilistically using Bayesian inference [17, 24] or non-
probabilistically using an Artificial Neural Network (ANN)
[11] or a Support Vector Machine (SVM) [4, 22, 9].

To improve training quality especially when there are only
a small number of sample fingerprints, a viable approach is
to harness unlabeled fingerprints as a supplement to the orig-
inal ones, by using a semi-supervised learning tool to propa-
gate the labels for the unlabeled fingerprints based on their
similarity with the labeled. This is possible because of the
smoothness in the fingerprint space, as empirically demon-
strated in [15]. Pan et al. [15, 14] apply manifold regular-
ization originally proposed in [2], where the semi-supervised
learning problem is formulated as a minimization problem
on a regularized risk functional with a regularization term
reflecting the intrinsic manifold structure of the fingerprints.
Pulkkinen et al. [16] employs the Isomap algorithm [19] to
project the fingerprints onto a low-dimension manifold rep-
resentation with minimal Euclidean distance distortion, and
then, based on the manifold topology and the locations of
labeled fingerprints, propose a calibration method to map a
manifold coordinate to a geographical coordinate. In both of
these works, the learning is applied on a k-nearest-neighbor

or ε-ball neighborhood graph of fingerprints (labeled and
unlabeled). The recent work by Zhu et al. [10] introduces a
regularization term based on the l1-graph [7].

Our research in this paper also applies a graph regular-
ization framework for learning the location labels for the
unlabeled fingerprints, but our regularization term is based
on the Total Variation (TV) norm. TV is on of the most
successful tool for image restoration tasks such as denois-
ing and inpainting [18] and recently been extended to the
supervised learning settings on high dimensional data [12].

3. TV FRAMEWORK
Suppose that we have obtained a collection of n = l+u fin-

gerprints {x1, x2, ..., xl, xl+1, ..., xl+u}, l of which are labeled,
{x1, x2, ..., xl}, and u unlabeled, {xl+1, ..., xl+u}. Each fin-
gerprint is a m-dimensional point, xi ∈ Rm, where m is the
dimensionality of the fingerprint space (e.g,. the number
of Wi-Fi access points whose signal strengths are used for
fingerprinting). We denote by yi ∈ Rd the location corre-
sponding to xi, where d is the dimensionality of the loca-
tion space. The labeled fingerprints are those in the original
training set (fingerprint map) obtained during the location
survey; hence, {y1, y2, ..., yl} are known. We need to predict
the values for {yl+1, yl+2, ..., yl+u} for the unlabeled finger-
prints. Once this task is completed, the extended fingerprint
map of size l + u will be used instead of the original map
of size l. For example, if kNN is used during the position-
ing phase, the extended map will be evaluated to find the
nearest locations corresponding to the test fingerprint.

Without loss of generality, we assume that the coordinate
range for xi and yi is [0, 1]; that is, xi ∈ Ω = [0, 1]m,
yi ∈ [0, 1]d. Also, for ease of presentation, we assume for
now that d = 1 and so yi is a real number. We will extend
our framework to the case d > 1 later.

3.1 Manifold Regularization
Supervised learning can be formulated as a Tikhonov reg-

ularization problem. We need to estimate an unknown real-
valued function f : Ω→ R that relates a point xi (fingerprint
in our case) to a value fi = f(xi) (location in our case) such
that

min
f

n∑
i=1

L(fi, yi) + λ‖f‖2K ,

where L denotes a loss function, e.g., hinge loss max (0, 1− yifi)
used in Support Vector Machines (SVM) or squared loss
(fi − yi)2 in Regularized Least Squares (RLS). The second
term represents the smoothness penalty with respect to a
standard kernel K (note that f must belong to a RKHS
family of functions associated with kernel K).

Extending this framework to semi-supervised learning, Belkin
et al. [2] propose the Manifold Regularization method, which
includes an extra Laplacian smoothing term reflecting the
smoothness with respect to an intrinsic manifold, as follows

min
f

1

l

l∑
i=1

(fi − yi)2 + λ‖f‖2K + γ

n∑
i,j=1

wij |fi − fj |2︸ ︷︷ ︸
fTLf

.

Here, a nearest-neighbor undirected self-loop-less graph W
needs be constructed first, where each vertex represents a
sample and weight wij the similarity between samples i and



j (non-zero if i and j are connected by an edge and zero
otherwise). The Laplacian, L, of this graph provides a nat-
ural intrinsic measure of smoothness (the Dirichlet’s energy
fTLf shown in the last term).

3.2 TV Regularization
Our goal is to explore how effective TV can be to semi-

supervised learning with our fingerprint collection. Manifold
regularization has been applied in [15]. Our work, which is
the first that explores TV, is inspired by the success of TV in
image processing tasks [12] and recent evidences showing its
promise in semi-supervised classification [3]. Our problem is
to predict the locations directly not based on classification.

In the TV framework for semi-supervised learning, the
minimization problem is

min
f

1

l

l∑
i=1

(fi − yi)2 + λ‖f‖2K + γTVW (1)

where TVW is the total variation of function f on graph W .
By definition, the TV of a continuous function f : Ω→ R is

TV [f ] =

∫
Ω

‖∇f‖ dx.

Here, ∇f is the gradient of function f and dx the area el-
ement of the continuous domain Ω. We can extend this
concept to weighted graphs as follows. Given a graph W ,
the total variation of a real-valued scalar function f defined
on its vertices is the sum of local total variation at each and
every vertex,

TVW =

n∑
i=1

‖∇f(i)‖Lp(w)

where the local total variation at vertex i is the weighted Lp-
norm of the gradient at this vertex. The gradient of function
f at vertex i is

∇f(i) =


f1 − fi
f2 − fi
...

fj − fi
...

fn − fi


and so,

‖∇f(i)‖Lp(w) =

(
n∑
j=1

wij |fj − fi|p
)1/p

.

The graph TV above is a generalization of that defined in
[3] and [8]. The case p = 1 corresponds to the graph TV
used by Bresson and Zhang [3],

TVW =

n∑
i,j=1

wij |fj − fi|, (2)

and the case p = 2 corresponds to the graph TV used by
Elmoataz et al. [8],

TVW =

n∑
i=1

√√√√ n∑
j=1

wij(fj − fi)2. (3)

3.3 Graph Construction
The formation of the Manifold Regularization and TV

Regularization frameworks requires the construction of a
similarity graph W connecting the samples xi. This graph
is usually built as a kNN-graph or a ε-ball-graph.

• kNN-graph: A vertex is connected to the k nearest
vertices based on a pairwise distance measure (e.g.,
Euclidean or Manhattan). The weight wij is non-zero
only for adjacent vertices xi and xj . A Gaussian RBF
of the distance is often used for this weight.

• ε-ball-graph: A vertex is connected to those among the
other vertices whose Euclidean distance is bounded by
threshold ε. The weight is assigned to an edge as in
kNN-graph.

3.4 TV Training in Our Study
To semi-train our fingerprint collection, in this paper, we

build graph W as a (Euclidean) kNN neighborhood graph
where value of k is chosen to be the minimum one that re-
sults in a connected graph. The edge weight wij between
neighbor fingerprints xi and xj is assigned the following
value

wij = exp
(
−|xi − xj |2

)
Furthermore, for the minimization problem (1) we use the
TV defined according to Formulae (3) and use the algorithm
as proposed in [8] to solve this problem. Our purpose is
to learn the locations for the unlabeled fingerprints and as
such we do not change the locations already labeled for the
labeled fingerprints; hence, the loss term is dismissed. Also,
since we limit our interest in this paper to investigating the
significance of TV in enriching the training data, we focus
only on minimizing this term.

Our algorithm to estimate the locations for the unlabeled
fingerprints works iteratively as follows:

1. Initial step: for i, j ∈ [1, n]

f
(0)
i =

{
yi if i ≤ l
1/2 otherwise

(4)

γ
(0)
ij = wij (5)

2. Iterative step: for i, j ∈ [1, n]

f
(t+1)
i =


yi if i ≤ l∑n

j=1 γ
(t)
ij f

(t)
j∑n

j=1 γ
(t)
ij

otherwise
(6)

γ
(t+1)
ij =

wij
‖∇f (t)(i)‖L2(w)

+
wij

‖∇f (t)(j)‖L2(w)

(7)

3. Stop when |f (t+1)−f (t)| is less than some small thresh-

old τ (predetermined). The value of f
(t)
i (i > l) will

be used as the estimated location for each unlabeled
fingerprint xi.

The above algorithm assumes that yi is 1D. For 2D or a
higher dimension (d > 1) of the location space, this algo-
rithm is applied separately for learning each coordinate.

4. EVALUATION
We evaluate with a dataset obtained from an indoor ex-

periment used in [4] (University of Trento), containing a
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Figure 1: Trento dataset’s map: 30m×20m (cour-
tesy of [4])

collection of 257 RSSI fingerprints at 257 sample locations
in a WLAN with six Wi-Fi access points (Figure 1). The
sample locations are regular-grid points of the floor. Each
fingerprint is measured at a sample location by a person
carrying a PDA, as a receiver receiving signals from the ac-
cess points. The PDA always points north. A random half
Train of this collection (128 samples) is used for training
and the other half Test (129 samples) for testing purposes.
Out of the training samples, we randomly create two groups
of samples: the labeled group L (with the location labels
intact) and the unlabeled group U (with the location labels
removed). It is noted that L,U ⊂ Train and L ∩ U = ∅.
The size of L is set to be 10%, 20%, ..., or 90% of |Train|
and, given L, the size of U is set to be 10%, 20%, ..., or
100% of |Train − L|. For each combination of these sizes,
the average location when tested with Test is averaged over
10 times running the simulation (with random generations of
U and L). 1-NN is used for testing; that is, given a test fin-
gerprint, its estimated location is the location of the nearest
fingerprint in the fingerprint map.

The performance metrics are location error average and
max. We compare TV with (1) “Original”: the original la-
beled set L is used as the fingerprint map; (2) “Combine”:
the set L ∪ U where the original label is known for every
fingerprint, as the fingerprint map; and (3) “Manifold”: the
Manifold Regularization method where the Dirichlet’s en-
ergy is minimized instead of TV.

Figure 2 plots the average error for various cases of |L|
and |U |. We observe the following patterns:

• Regardless of the size of the labeled set, manifold and
TV regularization frameworks tend to be increasingly
effective as the size of the unlabeled set increases.

• When the labeled set is small (e.g., 10%), regulariza-
tion does not help. Only when the labeled set gets
sufficiently large (e.g., 60%), we start to see its ef-
fectiveness. This finding is understandable because a
small labeled set offers too little information to be use-
ful for the training.

• When the labeled set gets sufficiently large for the reg-
ularization to be effective, both TV and Manifold can
approach the accuracy of Combine as the size of the
unlabeled set gets larger (e.g., > 80%). In other words,
these regularization methods do have an excellent pre-
diction accuracy close to being perfect.

• Manifold is consistently more accurate than TV. This
is different from the observation in the area of image
processing where TV is known to be better. This sug-
gests that, unlike images which often have edges, the
fingerprint space may not exhibit “edges” of finger-
prints (i.e., a path in the fingerprint graph) located
at a small cluster of locations isolated from the rest of
locations. This could be due to the penetrable-ness of
the Wi-Fi signal in the indoor area.

Similar findings are observed for the max error, as seen in
Figure 3. Both Manifold and TV can improve the accuracy
of the fingerprint map in terms of average and max error.

5. CONCLUSIONS
We have investigated the use of TV regularization as a

semi-supervised learning tool for improving the quality of
the training set used in indoor location fingerprinting. We
have shown that while TV can be effective for this purpose,
it is not as good as the widely used Manifold Regularization.
However, this finding is meant to be suggestive rather than
conclusive as our work in this paper remains preliminary.
Our evaluation has been done with only a small dataset
and as the next step we will extend our work to investigate
with other datasets, different weight functions, and more
comprehensive evaluation configurations.
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I. Mora-Jiménez, and A. J. Caamaño. Advanced
support vector machines for 802.11 indoor location.
Signal Process., 92(9):2126–2136, Sept. 2012.

[10] Y. jia Zhu, Z. liang Deng, and H. Ji. Indoor
localization via l1-graph regularized semi-supervised
manifold learning. The Journal of China Universities
of Posts and Telecommunications, 19(5):39 – 91, 2012.

[11] C. Laoudias, D. G. Eliades, P. Kemppi, C. G.
Panayiotou, and M. M. Polycarpou. Indoor
localization using neural networks with location
fingerprints. In Proceedings of the 19th International
Conference on Artificial Neural Networks: Part II,
ICANN ’09, pages 954–963, Berlin, Heidelberg, 2009.
Springer-Verlag.

[12] T. Lin, H. Xue, L. Wang, and H. Zha. Total variation
and euler’s elastica for supervised learning. In ICML,
2012.

[13] K. Lorincz and M. Welsh. Motetrack: a robust,
decentralized approach to rf-based location tracking.
Personal Ubiquitous Comput., 11(6):489–503, Aug.
2007.

[14] J. J. Pan and Q. Yang. Co-localization from labeled
and unlabeled data using graph laplacian. In
Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, pages 2166–2171,
Hyderabad, India, 2007.

[15] J. J. Pan, Q. Yang, H. Chang, and D. Y. Yeung. A
manifold regularization approach to calibration
reduction for sensor-network based tracking. In
Proceedings of the Twenty-First National Conference
on Artificial Intelligence, pages 988–993, Boston,
United States, 2006.

[16] T. Pulkkinen, T. Roos, and P. Myllymäki.
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(d) |L| = 40%

 10%  20%  30%  40%  50%  60%  70%  80%  90% 100%
118

120

122

124

126

128

130

132

134

136
Labeled set: 50%

Size of unlabeled set

M
a
x
im

u
m

 E
rr

o
r

 

 

Original

Manifold

TV

Combine

(e) |L| = 50%
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(f) |L| = 60%
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(g) |L| = 70%
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(h) |L| = 80%
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(i) |L| = 90%

Figure 3: Max Location Error
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