
MACHINE LEARNING BASED LOCALIZATION

Chapter in book “Localization Algorithms and Strategies for Wireless Sensor Networks” (Eds:

Guoqiang Mao and Baris Fidan, IGI Global)

Authors:

Duc A. Tran, Ph.D. (corresponding author)

Department of Computer Science

University of Massachusetts, Boston, MA 02125

Email: duc@cs.umb.edu

Tel: (617) 287-6452

Fax: (617) 287-6433

XuanLong Nguyen, Ph.D.

Statistical and Applied Mathematical Sciences Institute

and Department of Statistical Science

Duke University, Durham, NC 27708

Email: xuanlong.nguyen@stat.duke.edu

Tel: (919) 685-9339

Thinh Nguyen, Ph. D.

School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, OR 97331

Email: thinhq@eecs.oregonstate.edu

Tel: (541) 737-3470

MACHINE LEARNING BASED LOCALIZATION

Duc A. Tran, University of Massachusetts, Boston, MA 02125, USA

XuanLong Nguyen, Duke University, Durham, NC 27708, USA

Thinh Nguyen, Oregon State University, Corvallis, OR 97331, USA

Abstract – A vast majority of localization techniques proposed for sensor networks are based on

triangulation methods in Euclidean geometry. They utilize the geometrical properties of the

sensor network to infer the sensor locations. A fundamentally different approach is presented in

this chapter. This approach is based on machine learning, in which we work directly on the

natural (non-Euclidean) coordinate systems provided by the sensor devices. The known locations

of a few nodes in the network and the sensor readings can be exploited to construct signal-

strength or hop-count based function spaces that are useful for learning unknown sensor

locations, as well as other extrinsic quantities of interest. We discuss the applicability of two

learning methods: the classification method and the regression method. We show that these

methods are especially suitable for target tracking applications.

Keywords – Sensor networks, localization, kernel-based learning methods, regression,

classification, support vector machines, kernel canonical correlation analysis.

INTRODUCTION

A sensor node knows its location either via a built-in GPS-like device or a localization technique.

A straightforward localization approach is to gather the information (e.g., connectivity, pair-wise

distance measure) about the entire network into one place, where the collected information is

processed centrally to estimate the nodes’ locations using mathematical algorithms such as

Semidefinite Programming [Doherty et al. (2001)] and Multidimensional Scaling [Shang et al.

(2003)].

Many techniques attempt localization in a distributed manner. The relaxation-based techniques

[Savarese et al. (2001), Priyantha et al. (2003)] start with all the nodes in initially random

positions and keep refining their positions using algorithms such as local neighborhood

multilateration and convex optimization. The coordinate-system stitching techniques [Capkun et

al. (2001), Meertens & Fitzpatrick (2004), Moore et al. (2004)] divide the network into

overlapping regions, nodes in each region being positioned relatively to the region's local

coordinate system (a centralized algorithm may be used here). The local coordinate systems are

then merged, or “stitched”, together to form a global coordinate system. Localization accuracy

can be improved by using a set of nodes with known locations, called the beacon nodes, and

extrapolate unknown node locations from the beacon locations [Bulusu et al. (2002), Savvides et

al. (2001), Savvides et al. (2002), Niculescu & Nath (2003a), Nagpal et al. (2003), He et al.

(2003)].

Most current techniques assume that the distance between two neighbor nodes can be measured,

typically via a ranging procedure. In this procedure, various information can be used to help

estimate pair-wise distance, such as Received Signal Strength Indication (RSSI) [Whitehouse

(2002)], Time Difference of Arrival (TDoA) [Priyantha (2005), Kwon et al. (2004)], or Angle of

Arrival (AoA) [Priyantha et al. (2001), Niculescu & Nath (2003a)]. Other range measurement

methods can be found in [Priyantha (2001b), Savvides et al. (2001b), Priyantha (2005b), Lee &

Scholtz (2002), Gezici et al. (2005)].

To avoid the cost of ranging, range-free techniques have been proposed [Bulusu et al. (2002),

Meertens & Fitzpatrick (2004), He et al. (2003), Stoleru et al. (2005), Priyantha et al. (2005)].

APIT [He et al. (2003)] assumes that a node can hear from a large number of beacons. Spotlight

[Stoleru et al. (2005)] requires an aerial vehicle to generate light onto the sensor field. [Priyantha

et al. (2005)] uses a mobile node to assist pair-wise distance measurements until a “global rigid”

state can be reached where the sensor locations can be uniquely determined. DV-Hop [Niculescu

& Nath (2003b)] and Diffusion [Bulusu et al. (2002), Meertens & Fitzpatrick (2004)] are

localization techniques requiring neither ranging nor external assisting devices.

All the aforementioned techniques use Euclidean geometrical properties to infer the sensor

nodes’ locations. Recently, a number of techniques that employ the concepts from machine

learning have been proposed [Brunato & Battiti (2005), Nguyen et al. (2005), Pan et al. (2006),

Tran & Nguyen (2006), Tran & Nguyen (2008), Tran & Nguyen (2008b)]. The main insight of

these methods is that the topology implicit in sets of sensor readings and locations can be

exploited in the construction of possibly non-Euclidean function spaces that are useful for the

estimation of unknown sensor locations, as well as other extrinsic quantities of interest.

Specifically, one can assume a set of beacon nodes and use them as the training data for a

learning procedure. The result of this procedure is a prediction model that will be used to localize

the sensor nodes of previously unknown positions.

Consider a sensor node S whose true (unknown) location is (x, y) on a 2-D field. There are more

than one way we can learn the location of this node. For example, we can model the localization

problem as a classification problem [Nguyen et al. (2005), Tran & Nguyen (2006), Tran &

Nguyen (2008)]. Indeed, we can define a set of classes (e.g., A, B, and C as in Figure 1) that

represent geographic regions chosen appropriately in the sensor network area. We then run a

classification procedure to decide the membership of S in these classes. Based on these

memberships, we can localize S. For example, in Figure 1, if the output of the classification

procedure is that S is a member of class A, of B, and of C, then S must be in the intersectional

area A ∩ B ∩ C.

Figure 1 If we can define a set of classes that represent geographic regions, a sensor node’s location can be

estimated based on its memberships in these classes

(x, y)

A
B

C

We can also solve the localization problem as a regression problem [Pan et al. (2006), Tran &

Nguyen (2008b)]. We can use a regression tool to infer the Euclidean distances between S and

the beacon nodes based on the signal strengths that S receives from these nodes, or when S

cannot hear directly from them, based on the hop-count distances between S and these nodes.

After these distances are learned, trilateration can be used to estimate the location of S.

Alternatively, we can apply a regression tool that maps the signal strengths S receives from the

beacon nodes directly to a location. One such a tool was proposed by [Pan et al. (2006)], which

is based on Kernel Canonical Correlation Analysis [Hardoon et al. (2004)].

Compared to geometric-based localization techniques, the requirements for the learning-based

techniques to work are modest. Neither ranging measurements nor external assisting devices are

needed. The only assumption is the existence of a set of beacon nodes at known locations. The

information serving as input to the learning can be signal strengths [Nguyen et al. (2005), Pan et

al. (2006)] or hop-count information [Tran & Nguyen (2006), Tran & Nguyen (2008)], which

can be obtained easily at little cost.

The correlation between the signal-strength (and/or hop-count) space and the physical location

space is generally non-linear. It is also usually not possible to know a priori, given a sensor

node, the exact features that uniquely identify its location. A versatile and productive approach

for learning correlations of this kind is based on the kernel methods for statistical classification

and regression [Scholkopf & Smola (2002)]. Central to this methodology is the notion of a kernel

function, which provides a generalized measure of similarity for any pair of entities (e.g., sensor

locations, sensor signals, hop-counts). The functions that are produced by the kernel methods

(such as support vector machines and kernel canonical correlation analysis) are sums of kernel

functions, with the number of terms in the sum equal to the number of data points. Kernel

methods are examples of nonparametric statistical procedures – procedures that aim to capture

large, open-ended classes of functions.

Given that the raw signal readings in a sensor network implicitly capture topological relations

among sensor nodes, kernel methods would seem to be particularly natural in the sensor network

setting. In the simplest case, the signal strength/hop-count would itself be a kernel function.

More generally, and more realistically, derived kernels can be defined based on the signal

strength/hop-count matrix. In particular, inner products between vectors of received signal

strengths/hop-counts can be used in kernel methods. Alternatively, generalized inner products of

these vectors can be computed – this simply involves the use of higher-level kernels whose

arguments are transformations induced by lower-level kernels. In general, hierarchies of kernels

can be defined to convert the initial topology provided by the raw sensor readings into a topology

more appropriate for the classification or regression task at hand. This can be done with little or

no knowledge of the physical sensor model.

In this chapter, we describe localization techniques that build on kernel-based learning methods

for classification and regression/correlation analysis.

NOTATIONS AND ASSUMPTIONS

We consider a wireless sensor network of N nodes {S1, S2, …, SN} deployed in a 2-D geographic

area [0, D]
2
 (D > 0). (Here, we assume two dimensions for simplicity, though the techniques to

be presented can work with any dimensionality.) We assume the existence of k beacon nodes {S1,

S2, …, Sk} with known location (k < N). We will devise learning-based algorithms where an

estimate can be made for the location of each remaining node {Sk+1, Sk+2, …, SN}.

We assume that the network is connected and an underlying routing protocol exists to provide a

path path(Si, Sj) to navigate from any sensor node Si to any other Sj, whose hop-count distance

(or distance, in short) is denoted by hc(Si, Sj). If the routing protocol defines this path to be the

shortest path in hop-count from Si to Sj, the distance hc(Si, Sj) is the least number of hops

between them. The sensor coverage is not necessarily uniform; hence, path(Si, Sj) may not equal

path(Sj, Si) and hc(Si, Sj) may not equal hc(Sj, Si). Also, we denote by ss(Si, S) the signal strength

a sensor node S receives from each beacon Si.

If the network is small enough that any sensor node can hear directly from a majority of the

beacons, we can use signal-strength information to estimate the locations for sensor nodes. In

practice, however, there is a large class of sensor networks where a node may hear directly from

just a few beacons and there may be nodes that do not hear directly from any beacon node. For

this type of networks, we learn to estimate the locations based on hop-count information rather

than signal-strength information.

Before we present the details in the next sections, the localization procedure is summarized as

follows:

1. The beacon nodes communicate with each other so that for each beacon node Si we can

obtain the following k-dimensional distance vector

hi = (hc(S1, Si) hc(S2, Si) ... hc(Sk, Si))

or, for the case of a small network, the k-dimensional signal-strength vector

si = (ss(S1, Si) ss(S2, Si) ... ss(Sk, Si))

2. One beacon node is chosen, called the head beacon, to collect all these vectors from the

beacon nodes and run a learning procedure (regression or classification). After the

learning procedure, the prediction model is broadcasted to all the nodes in the network.

Furthermore, each beacon node broadcasts a HELLO message to the network also.

3. As a result of receiving the HELLO message from each beacon, each sensor node Sj ∈

{Sk+1, Sk+2, …, SN} computes the following k-dimensional distance vector

hj = (hc(S1, Sj) hc(S2, Sj) ... hc(Sk, Sj))

or, for the case of a small network, the k-dimensional signal-strength vector

sj = (ss(S1, Sj) ss(S2, Sj) ... ss(Sk, Sj))

The sensor node then applies the prediction model it has obtained previously to this

distance (or signal-strength) vector to estimate the node’s location.

LOCALIZATION BASED ON CLASSIFICATION

As we mentioned in the Introduction section, the localization problem can be modeled as a

classification problem. The idea was initiated in [Nguyen et al. (2005)]. Generally, the first two

steps are as follows:

• Class definition: Define a set of classes {C1, C2, …}, with each class Ci being a

geographical region in the sensor network area

• Training data: Because the beacon locations are known, the membership of each beacon

node in each class Ci is known. The distance (or signal-strength) vector of each beacon

node serves as its feature vector. The feature vector and membership information serves

as the training data for the classification procedure on class Ci

We then run the classification procedure to obtain a prediction model. This model is used to

estimate for each given sensor node S and class Ci the membership of S in class Ci. As a result,

we can determine the area in which S is located. To solve the classification problem, it is

proposed in [Nguyen et al. (2005), Tran & Nguyen (2006), Tran & Nguyen (2008)] that we use

Support Vector Machines (SVM), a popular and efficient machine learning method [Cortes &

Vapnik (1995)]. Specifically, these techniques use binary SVM classification methods – the

traditional form of SVM. A brief background on binary SVM classification is presented below

and then how it is used for sensor localization.

Binary SVM Classification

Consider the problem of classifying data in a data space U into a class G or not in class G.

Suppose that k data points u1, u2, ..., uk, are given, called the training points, for which the

corresponding memberships in class G are known. We need to predict whether a new data point

u is in G or not. This problem is called a binary classification problem.

Support Vector Machines (SVM) [Boser et al. (1992), Cortes & Vapnik (1995)] is an efficient

method to solve this problem. Central to this method is the notion of a kernel function K: U × U

→ R that provides a measure of similarity between two data points in U. For the case of finite

data space (e.g., location data of nodes in a sensor network), this function must be symmetric and

the k×k matrix [K(ui, uj)] (i, j ∈ {1, 2, …, k}) must be positive semi-definite (i.e., has non-

negative eigenvalues).

Given such a kernel function K, according to Mercer's theorem [cf., Scholkopf & Smola (2002)],

there must exist a feature space in which the kernel K acts as the inner product, i.e.,

)'(),()',(uuuuK ΦΦ= for some mapping Φ (u). Suppose that we associate with each training

data point ui a label li to represent that li = 1 if ui ∈ G and -1 otherwise. The idea is to find a

hyperplane in the feature space, that maximally separates the training points in class G from

those not in G. For this purpose, the SVM and related kernel-based algorithms find a linear

function buwuhK −Φ=)(,)(in the feature space, where the vector w and parameter b are

chosen to maximize the margin, or distance between the parallel hyperplanes that are as far apart

as possible while still separating the training data points. Thus, if the training data points are

linearly separable in the feature space, we need to minimize w subject to)(1 iKi uhl− ≤ 0 for all

1 ≤ i ≤ k.

Solving the above minimization problem requires the knowledge about the feature mapping

Φ (u). Fortunately, by the Representer Theorem [cf., Scholkopf & Smola (2002)], the function

hK can be expressed in terms of the kernel function K only

∑
=

+=
k

i

iiiK buuKluh
1

),()(α

for an optimizing choice of coefficients iα . Using this dual form, to find the function hK(u), we

solve the following maximization problem:

Maximize ∑∑
==

−=
k

ji

jijiji

k

i

i uuKllW
1,1

),(
2

1
)(αααα

 subject to ∑
=

=
k

i

iil
1

0α and 0 ≤ αi for i ∈ {1, 2, …, k}

Suppose that {α1
*
, α2

*
, ..., αk

*
} is the solution to this optimization problem. We choose b =

b
*
 such that lihK(ui) = 1 for all i with 0 < αi

*
. The training points corresponding to such (i,

αi
*
)'s are called the support vectors. The decision rule to classify a data point u is: u ∈ G iff

sign(hK(u)) = 1, where ∑
=

+=
k

i

iiiK buuKluh
1

**
),()(α .

Under standard assumptions in statistical learning, SVM is known to yield bounded (and small)

classification error when applied to the test data. The SVM method presented above is the 1-

norm soft margin version of SVM. There are several extensions to this method, whose details

can be found in [Boser et al. (1992), Cortes & Vapnik (1995)].

The main property of the SVM is that it only needs the definition for a kernel function K that

represents a similarity measure between two data points. This is a nice property because other

classifier tools usually require a known feature vector for every data point, which may not be

available or derivable in many applications. In our particular case of a sensor network, it is

impossible to find the features for each sensor node that uniquely and accurately identify its

location. However, we can provide a similarity measure between two sensor nodes based on their

relationships with the beacon nodes. Thus, SVM is highly suitable for the sensor localization

problem.

Class Definition

There are more than one way to define the classes {C1, C2, …}. For example, as illustrated in

[Nguyen et al. (2005)], each class Ci can be an equi-size disk in the sensor network area such that

any point in the sensor field must be covered by at least three such disks. Thus, after the learning

procedure, if a sensor node S is found to be a member of three classes Ci, Cj, and Ck, the location

of S is approximated as the centroid of the intersectional area Ci ∩ Cj ∩ Ck.

Using the above disk partitioning method, or any method requiring that any point in the sensor

network field be covered by two or more regions represented by classes, the number of classes in

the learning procedure is dependant on the field dimension and could be very high. Alternatively,

[Tran & Nguyen (2006), Tran & Nguyen (2008)] propose the LSVM technique which partitions

the sensor network field using a fixed number of classes, thus independent of the network field

dimension (LSVM is the abbreviation for Localization based on SVM). Hereafter, unless

otherwise mentioned, the technique we describe is LSVM. As illustrated in Figure 2, LSVM

defines (2M-2) classes as follows, where M = 2
m
 for some m determined later:

- M-1 classes for the X-dimension {cx1, cx2, ..., cxM-1}, each class cxi containing nodes

with the x-coordinate x < iD/M

- M-1 classes for the Y-dimension {cy1, cy2, ..., cyM-1}, each class cyi containing nodes

with the y-coordinate y < iD/M

We need to solve (2M-2) binary classification problems. Each solution, corresponding to a class

cxi (or cyi), results in a SVM prediction model that decides whether a sensor node belongs to this

class or not. If the SVM learning predicts that a node S is in class cxi+1 but not class cxi, and in

class cyj+1 but not class cyj, we conclude that S is inside the square cell [iD/M, (i+1)D/M] ×

[jD/M, (j+1)D/M]. We then simply use the cell's center point as the estimated position of node S

(see Figure 3). If the above prediction is indeed correct, the location error (i.e., Euclidean

distance between true location and estimated location) for node S is at most
2M

D
. However,

every SVM is subject to some classification error, and so a challenge is to maximize the

probability that S is classified into its true cell, and, to minimize the location error in the case that

S is classified into a wrong cell [Tran & Nguyen (2008)].

Figure 2 Definition of class cxi (i = 1, 2, …, 2
m

-1)

0 1 2 i 2
m

Class cxi

x < iD/2
m

D

Not in class cxi

Figure 3 Localization of a node based on its memberships in regions cxi and cyj

Kernel Function

The kernel function K(Si, Sj) provides a measure for similarity between two sensor nodes Si and

Sj. We define the kernel function as a Radial Basis Function because of its empirical

effectiveness [Chang & Lin (2008)]:

)exp(),(
2

jiji hhSSK −−= γ

where γ is a constant to be computed during the cross-validation phase of the training procedure,

and hi the k-dimensional distance vector of sensor node Si with the j-th entry of the vector

representing the hop-count distance from Si to beacon node Sj. More examples for the kernel

function are discussed in [Nguyen et al. (2005)].

Training Data

For each binary classification problem (for a class c ∈ {cx1, cx2, ..., cxM-1, cy1, cy2, ..., cyM-1}),

the training data is the set of beacon nodes with corresponding labels {l1, l2, ..., lk}, where li = 1

if beacon node Si belongs to class c and -1 otherwise.

Now that the training data and kernel function have been defined for each class c, we can solve

the SVM optimization problem aforementioned to obtain {α1
*
, α2

*
, ..., αk

*
} and b

*
. We then use

the decision function hK(.) to decide whether a given node S is in class c:

∑
=

+=
k

i

iiiK bSSKlSh
1

**
),()(α

cxi cxi+1

cyj

cyj+1

cx8

cx4

cx5cx3cx1 cx7

cx12

cx6cx2

cx13cx11cx9 cx15

cx14cx10

0

0

0 0 0 0

1

1

1

1

1 11

0

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

D/2 D0 D/2
2

D/2
3

D/M

Figure 4 Decision tree: m = 4

The training procedure is implemented as follows. The head beacon obtains the hop-count vector

and location of each beacon. Then, it runs the SVM training procedure (e.g., using a SVM

software tool like libsvm [Chang & Lin (2008)] on all (2M-2) classes cx1, cx2, ..., cxM-1, cy1, cy2,

..., cyM-1 and, for each class, computes the corresponding b
*
 and the information (i, liαi

*
). This

information is called the SVM model information. This model information is used to predict the

location of any sensor given its distance vector.

Location Estimation

Let us focus on the classification along the X-dimension. LSVM organizes the cx-classes into a

binary decision tree, illustrated in Figure 4. Each tree node is a cx-class and the two outgoing

links represent the outcomes (0: “not belong”, 1: “belong”) of classification on this class. The

classes are assigned to the tree nodes such that if the tree is traversed in the in-order order {left-

subtree→ parent→ right-subtree}, the result is the ordered list cx1→ cx2 → ... → cxM-1. Given

this decision tree, each sensor node S can estimate its x-coordinate using the following

algorithm:

Algorithm: X-dimension localization

Estimate the x-coordinate of sensor node S:

1. Initially, i = M/2 (start at root of the tree cxM/2)

2. IF (SVM predicts S not in class cxi)

- IF (cxi is a leaf node – i.e., having no child decision node)

RETURN x'(S) = (i - 1/2)D/M

- ELSE Move to left-child cxj and set i = j

3. ELSE

- IF (cxi is a leaf node) RETURN x'(S) = (i + 1/2)D/M

- ELSE Move to right-child cxt and set i = t

4. GOTO Step 2

5. END

Similarly, a decision tree is built for the Y-dimension classes and each sensor node S estimates

its y-coordinate y'(S) based on the Y-dimension localization algorithm (like the X-dimension

localization algorithm). The estimated location for node S, consequently, is (x'(S), y'(S)). Using

these algorithms, the localization of a node requires visiting log2M nodes of each decision tree,

after each visit the geographic range that contains node S downsizing by a half. The parameter M

(or m) controls the precision of the localization.

SVM is subject to error and so is LSVM. Let ε be the worst-case SVM classification error when

SVM is applied to solve the (2M-2) binary classification problems, each regarding one of the

classes {cx1, cx2, …, cxM-1, cy1, cy2, …, cyM-1}. For each class c, a misclassification occurs when

SVM predicts that a sensor node is in c but in fact the node is not, or when SVM predicts that the

node is not in c but the node actually is. The SVM classification error corresponding to class c is

the ratio between the number of sensor nodes for which SVM predicts correctly to the total

number of all sensor nodes. In [Tran & Nguyen (2008)], it is shown that for a uniformly

distributed sensor network field, the location error expected for any node is bounded by








 −
+

−
−

−
−+=

++ 321 2

)34(

2

)2(

2

)1(

8

7

2

1
2

m

m

m

m

m

m

m

u
DE

εεε

The location error expectation E
u
 decreases as the SVM error ε gets smaller. Figure 5 plots the

error expectation E
u
 for various values of ε. There exists a choice for m (no larger than 8) that

minimizes the error expectation. In a real-world implementation, it is recommended that we use

this optimal m. A nice property of SVM is that ε is typically upper-bounded and under certain

assumptions on the choice of the kernel function, the bound

Figure 5 Upper bound on the expectation of worst-case location error under various values of SVM

classification error (epsilon εεεε). A lower SVM error corresponds to a lower-appearing curve.

diminishes if the training size gets sufficiently large. In the evaluation study of [Tran & Nguyen

(2008)], when simulated on a network of 1000 sensors with non-uniform coverage, of which 5%

serves as beacon nodes, the error ε is no more than 0.1. This is one example showing that SVM

offers a high accuracy when used to classify the sensor nodes into their correct classes. Later in

this chapter more evaluation results are presented to demonstrate the localization accuracy of

LSVM.

LOCALIZATION BASED ON REGRESSION

Trilateration is a geometrical technique that can locate an object based on its Euclidean distances

from three or more other objects. In our case, to locate a sensor node we do not know its true

Euclidean distances from the k beacon nodes. We can use a regression tool (e.g., libsvm [Chang

& Lin (2008)]) to learn about these distances using hop-count information. The beacon leader

constructs a linear regression function f: N → R with the following training data

f(hc(Si, Sj)) = d(Si, Sj) for all i, j ∈ {1, 2, …, k}

where d(Si, Sj) is the Euclidean distance between Si and Sj. Once this regressor f is computed, it is

broadcast to all the sensor nodes. Since each node receives a HELLO message from each beacon,

the former can compute its distance vector and apply the regressor f to compute its location [Tran

& Nguyen (2008b)]. A similar approach, but applied on signal-strength data, was considered by

[Kuh & Zhu (2006), Zhu & Kuh (2007), Kuh & Zhu (2008)]. Kuh & Zhu uses least squares

SVM regression to solve the localization problem with beacon locations as training data. This

involves solving a system of linear equations. To achieve sparseness, a procedure is used to

choose the support vectors based on training data error.

If the network is sufficiently small, each sensor node can hear from all the beacon nodes. It is

observed that if two nodes Si and Sj receive similar signal strengths from the beacon nodes, and,

if the number of beacons is large enough (at least 3), these nodes should be near each other in the

physical space. Thus, one could be able to exploit directly the high correlation statistics

between the similarity of signal strengths and that of sensor locations. This insight was observed

by [Pan et al. (2006)], who proposed to use Kernel Canonical Correlation Analysis (KCCA)

[Akaho (2001), Hardoon et al. (2004)] for the regression that maps a vector in the signal-strength

space to a location in the physical space. We briefly present KCCA below and then how it is

used for the localization problem.

Kernel Canonical Correlation Analysis (KCCA)

KCCA is an efficient non-linear extension of Canonical Correlation Analysis (CCA) [Hotelling

(1936), Hardoon et al. (2004)]. Suppose that there are two sets of multidimensional variables, s =

(s1, s2, …, sk) and t = (t1, t2, …, tk). CCA finds two canonical vectors, ws and wt, one for each set

such that the correlation between these two sets under the projections,

()ksss swswswa ,,...,,,, 21= and ()kttt twtwtwb ,,...,,,, 21= is maximized (the

correlation is defined as
ba

ba
bacor

,
),(=).

While CCA only exploits linear relationship between s and t, its extension using kernels KCCA

can work with non-linear relationships. KCCA defines two kernels, Ks for the s space and Kt for

the t space. Each kernel Ks (or Kt) represents implicitly a feature vector space Φ s (or Φ t) for the

corresponding variable s (or t). Then, a mapping that maximizes the correlation between s and t

in the feature space is found using the kernel functions only (requiring no knowledge about Φ s

and Φ t).

KCCA for Localization

[Pan et al. (2006)] applies KCCA to find a correlation-maximizing mapping from the signal-

strength space to the physical location space (because the relationship is non-linear, KCCA is

more suitable than CCA). Firstly, two kernel functions are defined, a Gaussian kernel Ks for the

signal space

)exp(),(
2

jijis ssssK −−= γ

and a Matern kernel Kt for the location space

)2(
)(

)(2
),(jiv

v

ji

jit ttwvK
v

ttwv
ttK −

Γ

−
=

where v is a smoothness parameter, Γ(v) the gamma function, and Kv(.) the modified Bessel

function of the second kind. The signal strengths between the beacon nodes and their location

form the training data. In other words, the k instances (s1, t1), (s2, t2), …, (sk, tk), where (si, ti)

represents the signal-strength vector and the location of beacon node Si, serve as the training

data.

After the training is completed, suppose that q pairs of canonical vectors (ws1, wt1), (ws2, wt2),

…, (wsq, wtq) are found. The choice for q is flexible. Technically, more than one pair of canonical

vectors can be found recursively in such a way that a newly found pair must be orthogonal to the

previous pair and maximally correlate the canonical variates resulted from the previous pair.

Thus, q can be chosen as large as we can find a new pair of canonical vectors that improves the

correlation according to the previous pair by a significant margin (which can be defined by some

threshold).

A sensor node S ∈ {Sk+1, Sk+2, …, SN} is localized as follows:

- Compute the signal-strength vector s of sensor node S: s = (ss(S1, S), ss(S2, S), …,

ss(Sk, S)

- Compute the projection of ()swsswsswssP q ,,...,,,,)(21=

- Choose from the set of beacon nodes m nodes {Si} whose projections {P(si)} are

nearest to P(s). The distance metric used is a weighted Euclidean distance where the

weights are obtained from the KCCA training procedure and the canonical vectors

wt1, wt2, …, wtq

- Compute the location for S as the centroid position of these m neighbors

EVALUATION RESULTS

This section presents some evaluation results that demonstrate the effectiveness of the learning-

based approach to the sensor localization problem. The main overhead for this approach is the

training procedure. It involves communication among the beacon nodes to obtain their distance

(or signal-strength) vectors. Then, the head beacon collects this information to run the SVM,

resulting in a prediction model which is then broadcast to all the nodes in the network. The

location estimation procedure at each node consists of only a small number of comparisons and

simple computations. Thus, the approach is fast and simple.

In the following, we show the location error results for LSVM – the classification based

technique that uses the hop-count information to learn the sensor nodes’ locations. These results

are extracted from the evaluation study presented in [Tran & Nguyen (2008)]. The evaluation

results for the other learning-based techniques can be found in [Tran & Nguyen (2008b)]

(regression-based localization using hop-count information), [Nguyen et al. (2005)]

(classification-based localization using signal strength) and [Pan et al. (2006)] (regression-based

localization using signal strength).

In [Tran & Nguyen (2008)], LSVM is compared to Diffusion [Bulusu et al. (2002), Meertens &

Fitzpatrick (2004)]. Diffusion is an existing technique that does not require ranging

measurements and also uses beacon nodes with known locations. Unlike LSVM, Diffusion is not

based on machine learning. In Diffusion, each sensor node’s location is initially estimated as a

random location in the sensor network area. Each node, a sensor node or a beacon node, then

repeatedly exchanges its location estimate with its neighbors and uses the centroid of the

neighbors’ locations as the new location estimate. This procedure after a number of iterations

will converge to a state where each node does not improve its location estimate significantly.

Consider a network of 1000 sensor nodes located in a 100m by 100m 2-D area. The selection of

the beacon nodes among the sensor nodes is based on uniform distribution. The communication

radius for each node is 10m. Five different beacon populations are considered: 5% of the

network size (k = 50 beacons), 10% (k = 100 beacons), 15% (k = 150 beacons), 20% (k = 200

beacons), and 25% (k = 250 beacons). The algorithms in the libsvm software kit [Chang & Lin

(2008)] are used for SVM classification. The parameter m is set to 7 (i.e., M = 128).

Figure 6 shows that LSVM is more accurate than Diffusion. In this study, node locations are

uniformly distributed in the network area. Diffusion converges after 100 iterations (Diff-100). It

does not improve when more iterations are run, 1000 iterations (Diff-1000) or 10,000 iterations

(Diff-10000). The difference between the two techniques is the most noticeable when the number

of beacons is small (k = 50) and decreases as more beacon nodes are used. In any case, even

when k = 50 (only 5% of the network serve as beacon nodes), the location error for an average

node using LSVM is always less than 6m.

Another nice property of LSVM is that it distributes the error fairly across all the nodes. As an

example, Figure 7 shows the localization results for the case k = 50. In this figure, a line connects

the true location and the estimated location for each node. It can be observed that Diffusion

suffers severely from the border problem: nodes near the border of the network area are poorly

localized. LSVM does not incur this problem.

Figure 6 LSVM vs. Diffusion: Average location error with various choices for the number of beacons.

Figure 7 Diffusion (1000 iterations, left) vs. LSVM (right): A line connects the true location and the estimated

location of each sensor node (total 1000 nodes, 50 beacon nodes)

Many networking protocols such as routing and localization suffer from the existence of

coverage holes or obstacles in the sensor network area. [Tran & Nguyen (2008)] also shows that

even so, LSVM remains much better than Diffusion. For example, with the sensor network

placement shown in Figure 8, where there is a big hole of radius 25m centered at position (50,

50). Table 1 shows that LSVM improves the location error over Diffusion by at least 20% in all

measures (average, worst, standard deviation) under every beacon population size.

APPLICATION TO TARGET TRACKING

An appealing feature of the presented learning-based approach is that the localization of a sensor

node can be done independently from that of another sensor node. The training procedure

involves the beacon nodes only, whose result is a prediction model any sensor node can use to

localize itself without knowledge about other nodes. This feature is suitable for target tracking in

a sensor network where, to save cost, not every sensor node needs to run the localization

algorithm; only the target needs to be localized. For example, consider a target tracking system

Figure 8 A big coverage hole at the middle of the network area

 k = 50 100 150 200 250

Average-case 30.97% 31.30% 34.88% 33.91% 26.50%

Worst-case 27.35% 21.40% 34.35% 33.42% 23.83%

Std. deviation 35.74% 36.29% 37.66% 37.40% 28.34%

Table 1 Location-error improvement of LSVM over Diffusion for the network with a coverage hole shown in

Figure 8.

with k beacon nodes deployed at known locations. When a target T occurs in an area and is

detected by a sensor node ST, the detecting node reports the event to the k beacon nodes. The

distance vector [hc(ST, Si)] (i = 1, 2, …, k) is forwarded to the sink station who will use the

prediction model learned in the training procedure to estimate the location of target T.

An important issue in the learning-based approach is that its accuracy depends on the size of the

training data; in our case, the number of beacon nodes. However, in many situations, the beacon

nodes are deployed incrementally, starting with a few beacon nodes and gradually with more. In

other cases, the set of beacon nodes can also be dynamic. The beacon nodes that are made

available to a sensor node (or target) under localization may change depending on the location of

this node (or target). We need a solution that learns based on not only the current measurements

but also the past. For example, reconsider the target tracking system mentioned above. When a

target is detected, sending the event to all the beacon nodes can be very costly. Instead, the

detecting node reports the event to a few, possibly random, beacon nodes. Learning based on the

current measurements (signal strengths or hop-counts) may be inaccurate because of the sparse

training data, but as the target moves, by combining the past learned information with the

current, we can better localize the target. Sequential prediction techniques [Cesa-Bianchi &

Lugosi (2006)] can be helpful for this purpose.

[Letchner et al. (2005)] propose a localization technique aimed at such dynamism of the beacon

nodes. The technique is based on a hierarchical Bayesian model which learns from signal

strengths to estimate the target’s location. It is able to incorporate new beacon nodes as they

appear over time. Alternatively, [Oh et al. (2005)] consider a challenging problem of multiple-

target tracking by Markov chain Monte Carlo inference in a hierarchical Bayesian model.

Recently, [Pan et al. (2007)] address the problem of not only locating the mobile target but also

dynamically located beacon locations. The solution proposed in [Pan et al. (2007)] is based on

online and incremental manifold-learning techniques [Law & Jain (2006)] which can utilize both

labeled and unlabeled data that come sequentially.

Both [Letchner et al. (2005)] and [Pan et al. (2007)] learn from signal strength information, thus

suitable for small networks where measurements of direct signals from the beacons are possible.

The ideas could be applicable to a large network where hop-count information is used in the

learning procedure rather than signal strengths. The effectiveness, however, has not been

evaluated. Investigation in this direction would be an interesting problem for future research.

SUMMARY

This chapter provides a nonconventional perspective to the sensor localization problem. In this

perspective, sensor localization can be seen as a classification problem or a regression problem,

two popular subjects of Machine Learning. In particular, the presented localization techniques

borrow the ideas from kernel methods.

The learning-based approach is favored for its simplicity and modest requirements. The

localization of a node is independent from that of others. Also, past information is useful in the

learning procedure and, therefore, this approach is highly suitable for target tracking applications

where the information about the target at each time instant is partial or sparse, insufficient for

geometry-based techniques to work effectively.

Although the localization accuracy can improve as more training data is available, collecting

large training data or having many beacon nodes results in significant processing and

communication overhead. A challenge for future research is to reduce this overhead. Also, it

would be interesting to make one or more beacon nodes mobile and study how learning can be

helpful in such an environment.

REFERENCES

Akaho, S. (2001). A kernel method for canonical correlation analysis. In Proceedings of the

International Meeting of the Psychometric Society (IMPS 2001).

Boser, B. E., Guyon, I. M., & Vapnik V. N. (1992). A training algorithm for optimal margin

classifiers. In 5th Annual ACM Workshop on COLT, 144-152. ACM Press.

Brunato, M. & Battiti, R. (2005). Statistical learning theory for location fingerprinting in wireless

LANs. Computer Networks, 47(6): 825-845, 2005.

Bulusu, N., Bychkovskiy, V., Estrin, D., & Heidemann, J. (2002). Scalable ad hoc deployable

rf-based localization. In 2002 Grace Hopper Celebration of Women in Computing Conference.

Vancouver, Canada.

Capkun, S., Hamdi, M., & Hubauz, J.-P. (2001). Gps-free positioning in mobile ad hoc

networks. In 2001 Hawai International Conference on System Sciences, pp. 9008-.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, Learning, and Games. Cambridge University

Press. ISBN-10 0-521-84108-9, 2006

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273-297,

1995

Chang, C.-C., & Lin, C.-J. (2008). LIBSVM – A library for Support Vector Machines. National

Taiwan University. URL http://www.csie.ntu.edu.tw/ cjlin/libsvm

Doherty, L., Ghaoui, L. E., & Pister, K. S. J. (2001). Convex position estimation in wireless

sensor networks. In IEEE INFOCOM, 2001.

Gezici, S., Giannakis, G., Kobayashi, H., Molisch, A., Poor, H., & Sahinoglu, Z. (2005).

Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks.

IEEE Signal Processing Magazine, 22(4): 70-84, 2005.

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis; an

overview with application to learning methods. Neural Computation, 16:2639–2664, 2004.

He, T., Huang, C., Blum, B., Stankovic, J., & Abdelzaher, T. (2003). Range-free localization

schemes in large scale sensor networks. In ACM Conference on Mobile Computing and

Networking, pp. 81-95, 2003.

Hotelling, H. (1936). Relations between two sets of variants. Biometrika, 28: 321-377, 1936.

Kwon, Y., Mechitov, K., Sundresh, S., Kim, W., & Agha, G. (2004). Resilient localization for

sensor networks in outdoor environments. Tech. rep., University of Illinois at Urbana-

Champaign, 2004.

Kuh, A., Zhu, C., & Mandic, D. P. (2006). Sensor network localization using least squares kernel

regression. In Knowledge-Based Intelligent Information and Engineering Systems, pp. 1280-

1287, 2006

Kuh, A., & Zhu, C. (2008). Sensor network localization using least squares kernel regression.

Signal Processing Techniques for Knowledge Extraction and Information Fusion. Mandic D. et

al., Editors, 77-96, Springer, April 2008.

Law, M. H. C., & Jain, A. K. (2006). Incremental nonlinear dimensionality reduction by

manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3):377–

391, 2006

Lee, J. –Y., & Scholtz, R. Ranging in a dense multipath environment using an UWB radio link.

IEEE Journal on Selected Areas in Communications, 20(9): 1677-1683, 2002.

Letchner, J., Fox, D., & LaMarca, A (2005). Large-Scale Localization from Wireless Signal

Strength. In Proc. of the National Conference on Artificial Intelligence (AAAI), pp. 15-20, 2005.

Meertens, L., & Fitzpatrick, S. (2004). The distributed construction of a global coordinate

system in a network of static computational nodes from inter-node didstances. Tech. rep., Kestrel

Institute, 2004.

Moore, D., Leonard, J., Rus, D., & Teller, S. (2004). Robust distributed network localization

with noisy range measurements. In ACM Sensys, pp. 50-61. Baltimore, MA, 2004.

Nagpal, R., Shrobe, H., & Bachrach, J. (2003). Organizing a global coordinate system from

local information on an ad hoc sensor network. In International Symposium on Information

Processing in Sensor Networks, pp. 333-348, 2003.

Nguyen, X., Jordan, M. I., & Sinopoli, B. (2005). A kernel-based learning approach to ad hoc

sensor network localization. ACM Transactions on Sensor Networks, 1: 134-152, 2005.

Niculescu, D., & Nath, B. (2003a). Ad hoc positioning system (aps) using aoa. In IEEE

INFOCOM, 2003.

Niculescu, D., & Nath, B. (2003b). Dv based positioning in ad hoc networks.

Telecommunication Systems, 22(1-4), 267–280, 2003.

Oh, S., Sastry, S., & Schenato, L. (2005). A Hierarchical Multiple-Target Tracking Algorithm

for Sensor Networks. In Proc. International Conference on Robotics and Automation, 2005.

Pan, J. J., Kwok, J. T., & Chen, Y. (2006). Multidimensional Vector Regression for Accurate and

Low-Cost Location Estimation in Pervasive Computing. IEEE Transactions on Knowledge and

Data Engineering, 18(9): 1181-1193, 2006.

Pan, J. J., Yang, Q., & Pan, J. (2007). Online Co-Localization in Indoor Wireless Networks by

Dimension Reduction. In Proceedings of the 22nd National Conference on Artificial Intelligence

(AAAI-07), pp. 1102-1107, 2007.

Priyantha, N., Chakraborty, A., & Balakrishnan, H. (2000). The cricket location-support system.

In ACM International Conference on Mobile Computing and Networking (MOBICOM), pp. 32-

43.

Priyantha, N., Miu, A., Balakrishnan, H., & Teller, S. (2001). The cricket compass for context-

aware mobile applications. In ACM conference on mobile computing and networking

(MOBICOM), pp. 1-14, 2001.

Priyantha, N. B., Balakrishnan, H., Demaine, E., & Teller, S. (2003). Anchor-free distributed

localization in sensor networks. In ACM Sensys, pp. 340-341, 2003.

Priyantha, N. B., Balakrishnan, H., Demaine, E., & Teller, S. (2005). Mobile-Assisted

Localization in Wireless Sensor Networks. In IEEE INFOCOM. Miami, FL.

Priyantha, N. B. (2005b). The Cricket Indoor Location System. Ph.D. thesis, Massachussette

Institute of Technology, 2005.

Savarese, C., Rabaey, J., & Beutel, J. (2001). Locationing in distributed ad-hoc wireless sensor

networks. In IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.

2037-2040. Salt Lake city, UT, 2001.

Savvides, A., Han, C.-C., & Strivastava, M. B. (2001b). Dynamic fine-grained localization in ad

hoc networks of sensors. In ACM International Conference on Mobile Computing and

Networking (Mobicom), pp. 166–179. Rome, Italy, 2001.

Savvides, A., Park, H., & Srivastava, M. (2002). The bits and flops of the n-hop multilateration

primitive for node localization problems. In Workshop on Wireless Networks and Applications

(in conjunction with Mobicom 2002), pp. 112-121. Atlanta, GA, 2002.

Shang, Juml, Zhang, & Fromherz (2003). Localization from mere connectivity. In ACM

Mobihoc, pp. 201-212, 2003.

Scholkopf, B., & Smola, A. (2002). Learning with kernels. MIT Press, Cambridge, MA, 2002.

Stoleru, R., Stankovic, J. A., & Luebke, D. (2005). A high-accuracy, low-cost localization

system for wireless sensor networks. In ACM Sensys, pp. 13-26. San Diego, CA, 2005.

Tran, D. A., & Nguyen, T. (2006). Support vector classification strategies for localization in

sensor networks. In IEEE Int’l Conference on Communications and Electronics, 2006.

Tran, D. A., & Nguyen, T. (2008). Localization in Wireless Sensor Networks based on Support

Vector Machines. IEEE Transactions on Parallel and Distributed Systems, 19(7): 981-994, July

2008.

Tran, D. A., & Nguyen, T. (2008b). Hop-count based learning techniques for passive target

tracking in sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, submitted,

2008.

Whitehouse, C. (2002). The design of calamari: an ad hoc localization system for sensor

networks. Master’s thesis, University of California at Berkeley, 2002.

Zhu, C., & Kuh, A. (2007). Ad hoc sensor network localization using distributed kernel

regression algorithms. In Int’l Conference on Acoustics, Speech, and Signal Processing, 2: 497-

500, 2007.

Duc A. Tran is an Assistant Professor in the Department of Computer Science at the University

of Massachusetts at Boston, where he leads the Network Information Systems Laboratory

(NISLab). He received a PhD degree in Computer Science from the University of Central Florida

(Orlando, Florida) in 2003. Dr. Tran's interests are in the areas of computer networks and

distributed systems, particularly in support of information systems that can scale with both

network size and data size. The results of his work have led to research grants from the US

National Science Foundation, a Best Paper Award at ICCCN 2008, and a Best Paper Recognition

at DaWak 1999. Dr. Tran has engaged in many professional activities. He has been a Guest-

Editor for two international journals, a Workshop Chair, a Program Vice-Chair for AINA 2007, a

PC member for 20+ international conferences, and a referee and session chair for numerous

journals/conferences.

XuanLong Nguyen is a postdoctoral researcher at Duke University's Department of Statistical

Science. He received his Master's degree in statistics and PhD degree in computer science from

the University of California, Berkeley in 2007. Dr. Nguyen is interested in learning with large-

scale spatial and nonparametric models with applications to distributed and adaptive systems in

computer science, and modeling in the environmental sciences. He is a recipient of the 2007

Leon O. Chua Award from UC Berkeley for his PhD research, the 2007 IEEE Signal Processing

Society's Young Author best paper award, an outstanding paper award from the ICML-2004

conference.

Thinh Nguyen is an Assistant Professor at the School of Electrical Engineering and Computer

Science of the Oregon State University. He received his Ph.D from the University of California,

Berkeley in 2003 and his B.S. degree from the University of Washington in 1995. He has many

years of experience working as an engineer for a variety of high tech companies. He has served

in many technical program committees. He is an associate editor of the IEEE Transactions on

Circuits and Systems for Video Technology, the IEEE Transactions on Multimedia, the Peer-to-

Peer Networking and Applications. His research interests include Network Coding, Multimedia

Networking and Processing, Wireless and Sensor Networks.

