
ZIGZAG: An Efficient Peer-to-Peer Scheme for
Media Streaming

Duc A. Tran
School of Electrical Engineering

and Computer Science
University of Central Florida

Orlando, FL 32816–2362
Email: dtran@cs.ucf.edu

Kien A. Hua
School of Electrical Engineering

and Computer Science
University of Central Florida

Orlando, FL 32816-2362
Email: kienhua@cs.ucf.edu

Tai Do
School of Electrical Engineering

and Computer Science
University of Central Florida

Orlando, FL 32816-2362
Email: tdo@cs.ucf.edu

Abstract— We design a peer-to-peer technique called ZIGZAG
for single-source media streaming. ZIGZAG allows the media
server to distribute content to many clients by organizing them
into an appropriate tree rooted at the server. This application-
layer multicast tree has a height logarithmic with the number
of clients and a node degree bounded by a constant. This helps
reduce the number of processing hops on the delivery path to
a client while avoiding network bottleneck. Consequently, the
end-to-end delay is kept small. Although one could build a tree
satisfying such properties easily, an efficient control protocol
between the nodes must be in place to maintain the tree under the
effects of network dynamics and unpredictable client behaviors.
ZIGZAG handles such situations gracefully requiring a constant
amortized control overhead. Especially, failure recovery can be
done regionally with little impact on the existing clients and
mostly no burden on the server.

I. INTRODUCTION

We are interested in the problem of streaming live
bandwidth-intensive media from a single source to a large
quantity of receivers on the Internet. The simplest solution
dedicates an individual connection to stream the content to
each receiver. This method consumes a tremendous amount
of costly bandwidth and leads to an inferior quality stream
for the receiver, making it nearly impossible for a service
provider to serve quality streaming to large audiences while
generating profits. IP Multicast [1], [2] could be the best way
to overcome this drawback since it was designed for group-
oriented applications. However, its deployment on the Internet
is still limited due to several fundamental concerns [3], [4].
Therefore, we seek a solution that employs IP unicast only
but offers considerably better performance efficiency than the
dedicated-connection approach.

We presented in [14] a technique called Chaining. To the
best of our knowledge, Chaining is the first peer-to-peer (P2P)
streaming technique. In such a communication paradigm, the
delivery tree is built rooted at the source and including all and
only the receivers. A subset of receivers get the content directly
from the source and the others get it from the receivers in the
upstream. P2P consumes the source’s bandwidth efficiently
by capitalizing a receiver’s bandwidth to provide services to
other receivers. More recent P2P streaming techniques were
introduced in [3], [5–7], [15], [16]. We will discuss them in

Section IV.
The following issues are important in designing an efficient

P2P technique:

• The end-to-end delay from the source to a receiver
may be excessive because the content may have to go
through a number of intermediate receivers. To shorten
this delay (whereby, increasing the liveness of the media
content), the tree height should be kept small and the
join procedure should finish fast. The end-to-end delay
may also be long due to an occurrence of bottleneck at a
tree node. The worst bottleneck happens if the tree is a
star rooted at the source. The bottleneck is most reduced
if the tree is a chain, however in this case the leaf node
experiences a long delay. Therefore, apart from enforcing
the tree to be short, it is desirable to have the node degree
bounded.

• The behavior of receivers is unpredictable; they are free to
join and leave the service at any time, thus abandoning
their descendant peers. To prevent service interruption,
a robust technique has to provide a quick and graceful
recovery should a failure occur.

• For efficient use of network resources and due to the
resource limitation at each receiver, the control overhead
at each receiver should be small. This is important to the
scalability of a system with a large number of receivers.

In this paper, we propose a new P2P streaming technique,
called ZIGZAG, to address all of the above issues. ZIGZAG
organizes receivers into a hierarchy of bounded-size clusters
and builds the multicast tree based on that. The connectivity
of this tree is enforced by a set of rules, which guarantees
that the tree always has a height O(logkN) and a node
degree O(k2), where N is the number of receivers and k a
constant. Furthermore, the effects of network dynamics such
as unpredictable receiver behaviors are handled gracefully
without violating the rules. This is achieved requiring a worst-
case control overhead of O(logkN) for the worst receiver and
O(k) for an average receiver. Especially, failure recovery can
be done regionally with only impact on a constant number
of existing receivers and no burden on the source. This is an
important benefit because the source is usually overwhelmed

LH-1

LH-2

LH-3

L0

1 2 43 5 6 7

4

S

S

non-head head S: server

2 S

Fig. 1. Administrative organization of peers

by huge requests from the network. Previous solutions such
as [5–7] provide some of the above features, but none can
provide all.

Besides theoretical analyses that prove the correctness of our
scheme, a simulation-based study was carried out to evaluate
its performance under various scenarios. In this study, we also
compared ZIGZAG to the technique proposed in [5], a recent
scheme for P2P streaming.

The remainder of this paper is organized as follows. Section
II presents the protocol details of the ZIGZAG scheme.
Section III reports the results from our performance evaluation
study. Section IV discusses related work with comparisons to
ZIGZAG. Finally, Section V concludes this paper with brief
remarks.

II. PROPOSED SOLUTION

For the ease of exposition, we refer to the media source
as the server and receivers as clients. They all are referred to
as “peers”. In this section, we propose the ZIGZAG scheme
which consists of two important entities: the administrative
organization representing the logical relationships among the
peers, and the multicast tree representing the physical rela-
tionships among them (i.e., how peers get connected). Firstly,
we describe the administrative organization when the system
is in the stable state. Secondly, we propose how the multicast
tree is built based on this organization, and then the control
protocol in which peers exchange state information. Finally,
we propose policies to adjust the tree as well as the adminis-
trative organization upon a client join/departure, and discuss
performance optimization issues.

A. Administrative Organization

An administrative organization is used to manage the peers
currently in the system and illustrated in Fig. 1. Peers are
organized in a multi-layer hierarchy of clusters recursively
defined as follows (where H is the number of layers, k >
3 is a constant):

• Layer 0 contains all peers.
• Peers in layer j < H − 1 are partitioned into clusters of

sizes in [k, 3k]. Layer H − 1 has only one cluster which
has a size in [2, 3k].

• A peer in a cluster at layer j < H is selected to be the
head of that cluster. This head becomes a member of

L2

L1

L0

1 2 3 4 5 6 7

4

S

S

non-head head S: server

Fig. 2. The multicast tree of peers (H = 3, k = 4)

layer j + 1 if j < H − 1. The server S is the head of
any cluster it belongs to.

Initially, when the number of peers is small, the administra-
tive organization has only one layer containing one cluster. As
clients join or leave, this organization will be augmented or
shrunk. The cluster size is upper bounded by 3k because we
might have to split a cluster later when it becomes oversize.
If the cluster size was upper bounded by 2k and the current
size was 2k + 1, after the split, the two new clusters would
have sizes k and k + 1 and be prone to be undersize as peers
leave.

The above structure implies H = Θ(logkN) where N is
the number of peers. Additionally, any peer at a layer j > 0
must be the head of the cluster it belongs to at every lower
layer. We note that this hierarchy definition is not new. It was
indeed presented in a similar form in [5]. How to map peers
into the administrative organization, to build the multicast tree
based on it, and to update these two structures under network
dynamics are our main contribution.

We use the following terms for the rest of the paper:

• Subordinate: Non-head peers of a cluster headed by a
peer X are called “subordinate” of X .

• Foreign head: A non-head (or server) clustermate of a
peer X at layer j > 0 is called a “foreign head” of layer-
(j-1) subordinates of X .

• Foreign subordinate: Layer-(j-1) subordinates of X are
called “foreign subordinates” of any layer-j clustermate
of X .

• Foreign cluster: The layer-(j-1) cluster of X is called a
“foreign cluster” any layer-j clustermate of X .

B. Multicast Tree

Unlike in [5], the administrative organization in ZIGZAG
does not infer a data delivery topology. For instance, we
will see shortly that the head of a cluster at a layer j <
H − 1 does not forward the content to any of its members
as we might think of. In this section, we propose the rules
to which the multicast tree must be confined and explain the
motivation behind that. The join, departure, and optimization
policies must follow these rules. The rules are listed below
(demonstrated by Fig. 2):

• A peer, when not at its highest layer, cannot have any
link to or from any other peer. E.g., peer 4 at layer 1 has
neither outgoing nor incoming links.

• A peer, when at its highest layer, can only link to its
foreign subordinates. E.g., peer 4 at layer 2 only links to
peers 5, 6, and 7 at layer 1, which are foreign subordinates
of 4. The only exception is the server; at the highest layer,
the server links to each of its subordinates.

• At layer j < H −1: since non-head members of a cluster
cannot get the content from their head, they must get
it somehow. In our multicast tree, they get the content
directly from a foreign head. E.g., non-head peers in
layer-0 cluster of peer 1 have a link from their foreign
head 2; peers 1, 2 and 3 have a link from their foreign
head S.

It is trivial to prove the above rules guarantee a tree
structure including all the peers. Hereafter, the terms “parent”,
“children”, “descendant” are used with the same meanings
as applied to conventional trees. The term “node” is used
interchangeably with “peer” and “client”.

Theorem 1: The worst-case node degree of the multicast
tree is O(k2).

Proof: A node has at most (3k - 1) foreign clusters, thus
having at most (3k - 1) × (3k - 1) foreign subordinates. Since
a non-server node X can only have outgoing links when X is
at its highest layer and since these links only point to a subset
of its foreign subordinates, the degree of X is no more than
the number of its foreign subordinates, which is at most (3k
- 1) × (3k - 1). The server also has links to its subordinates
at the highest layer, therefore the server degree is at most (3k
- 1) × (3k - 1) + (3k - 1) = 9k2 - 3k. Theorem 1 has been
proved.

Theorem 2: The height of the multicast tree is O(logkN)
where N is the number of peers.

Proof: The longest path from the server to a node must
be the path from the server to some layer-0 node. The path
from the server to any layer-0 node goes through each layer
only once, and does not contain horizontal links (i.e., links
between layer mates) except at the highest layer. Therefore,
the number of nodes on the path is at most the number of
layers H plus one. Since H = O(logkN), the path length is
at most O(logkN) + 1. Theorem 2 has been proved.

The motivation behind not using the head as the parent
for its subordinates in the ZIGZAG scheme is as follows1.
Suppose the members of a cluster always get the content from
their head. If the highest layer of a node X is j, X would have
links to its subordinates at each layer, j-1, j-2, ..., 0, that it
belongs to. Since j can be H - 1, the worst-case node degree
would be H × (3k - 1) = Ω(logkN). Furthermore, the closer
to the source, the larger degree a node would have. In other
words, the bottleneck would occur very early in the delivery
path. This might not be acceptable for bandwidth-intensive
media streaming.

Our using a foreign head as the parent has another nice
property. Indeed, when the parent peer fails, the head of its

1Since a peer gets the content from a foreign head, but not its head, and can
only forward the content to its foreign subordinates, but not its subordinates,
we named our technique ZIGZAG.

children is still working, thus helping reconnect the children
to a new parent quickly and easily. We will discuss this in
more detail shortly.

C. Control protocol

To maintain its position and connections in the multicast
tree and the administrative organization, each node X in
a layer-j cluster periodically communicates with its layer-j
clustermates, its children and parent on the multicast tree. For
peers within a cluster, the exchanged information is just the
peer degree. If the recipient is the cluster head, X also sends
a list L = {[X1, d1], [X2, d2], ..}, where [Xi, di] represents
that X is currently forwarding the content to di peers in the
foreign cluster whose head is Xi. E.g., in Fig. 2, at layer 1,
peer 5 needs to send a list {[S, 3], [6, 3]} to the head S.
If the recipient is the parent, X instead sends the following
information:

• A Boolean flag Reachable(X): true iff there exists a path
in the multicast tree from X to a layer-0 peer. E.g., in
Fig. 2, Reachable(7) = false, Reachable(4) = true.

• A Boolean flag Addable(X): true iff there exists a path
in the multicast tree from X to a layer-0 peer whose
cluster’s size is in [k, 3k - 1].

The values of Reachable and Addable at a peer X are
updated based on the information received from its children.
For instances, if all children send “Reachable = false” to this
peer, then Reachable(X) is set to false; Addable(X) is set to
true if X receives “Addable = true” from at least a child peer.

The theorem below tells that the control overhead for
an average member is a constant. The worst node has to
communicate with O(logkN) other nodes, this is however
acceptable since the information exchanged is just soft state
refreshes.

Theorem 3: Although the worst-case control overhead of a
node is O(k × logkN), the amortized worst-case overhead is
O(k).

Proof: Consider a node X whose highest layer is j. X
belongs to (j + 1) clusters at layers 0, 1, .., j, thus having at
most (j + 1) × (3k - 1) subordinates. The number of children
of X is its degree, hence no more than 9k2 - 3k. Consequently,
the worst-case control overhead at X is upper bounded by (j
+ 1) × (3k - 1) + 9k2 - 3k = j × (3k - 1) + 9k2 - 1. Since
j can be H - 1, the worst-case control overhead is O(k ×
logkN).

However, the probability that a node has its highest layer to
be j is at most (N/kj) / N = 1/kj . Thus, the amortized worst-
case overhead at an average node is at most ΣH−1

j=0 (1/kj ×(j×
(3k − 1) + 9k2 − 1) → O(k) with asymptotically increasing
N . Theorem 3 has been proved.

D. Client Join

The multicast tree is augmented whenever a new client joins.
The new tree must not violate the rules specified in Section
II-B. We propose the join algorithm below.

A new client P submits a request to the server. If the
administrative organization currently has one layer, P simply

connects to the server. Otherwise, the join request is redirected
along the multicast tree downward until finding a proper peer
to join. The below steps are pursued by a peer X on receipt of
a join request (in this algorithm, D(Y) denotes the currently
end-to-end delay from the server observed by a peer Y , and
d(Y , P) is the delay from Y to P measured during the contact
between Y and P):

1. If X is a leaf
2. Add P to the only cluster of X
3. Make P a new child of the parent of X
4. Else
5. If Addable(X)
6. Select a child Y :

Addable(Y) and D(Y)+d(Y , P) is min
7. Forward the join request to Y
8. Else
9. Select a child Y :

Reachable(Y) and D(Y)+d(Y , P) is min
10. Forward the join request to Y

The goal of this procedure is to add P to a layer-0 cluster C
and force P to get the content from the parent of non-head
members of C. The size of C should be in [k, 3k) to avoid
being oversize. The end-to-end delay is attempted to be better
after each node contact. In Step 5 or 8, P has to contact with
at most dX peers where dX is the degree of X . Since the
tree height is O(logkN) and the maximum degree is O(k2),
the number of nodes that P has to contact is only O(k2 ×
logkN). This proves Theorem 4 true.

Theorem 4: The join overhead is O(logkN) in terms of
number of nodes to contact.

The join procedure terminates at step 3 at some leaf X ,
which will tell P about other members of the cluster. P then
follows the control protocol as discussed earlier. If the new
size of the joined cluster is still in [k, 3k], no further work
is needed. Otherwise, this cluster has to be split so that the
newly created clusters must have sizes in [k, 3k]. To avoid the
overhead of splitting, we propose to do so periodically, not
right after a cluster size becomes 3k+1. Suppose we decide
to split a layer-j (j ∈ [1, H-2]) cluster2 with a head X and
non-head peers X1, .., Xn. The non-head currently get the
content from a peer X ′ and X currently gets the content from
X ′′. Let xil be the number of peers that are both children of
Xi and layer-(j-1) subordinates of Xl. Clearly, xii = 0 for all
i because of the ZIGZAG tree rules. The split takes several
steps (illustrated in Fig. 3):

1) Partition {X , X1, .., Xn} into two sets U and V such
that the condition |U |, |V | ∈ [k, 3k] is satisfied first, and
then ΣXi∈U,Xl∈V (xil+xli) is minimized. This condition
is to effortfully reduce the number of peer reconnections
affected by the split. Suppose X ∈ U .

2) For each node Xi ∈ U and each node Xl ∈ V such
that xil > 0, remove all the links from Xi to layer-(j-

2The cases where j = 0 or j = H-1 are even easier and can be handled
similarly.

X X'

X''Lj+2

Lj+1

Lj

X
U + V Y

X X'

X''Lj+2

Lj+1

Lj

X U V Z

Ex-children of Y

Y

(a) Before Splitting (b) After Splitting

A set of links
A single link to a child

Fig. 3. Split Algorithm

1) subordinates of Xl, and select a random peer in V
other than Xl to be the new parent for these members.
Inversely, for each node Xi ∈ V and for each node Xl

∈ U such that xil > 0, a similar procedure takes place
except that the new parent must not be peer X .

3) Now we need to elect a new head Y for cluster V . Y
is chosen to be a peer in V with the minimum degree
because we want this change to affect a smallest number
of child peers. Y becomes a new member of the cluster
at layer-(j+1) which also contains X . Consequently, the
children of Y (after Step 2) now cannot get data from Y
anymore (due to the rules in Section II-B). For each child
cluster (i.e., cluster whose non-head members used to be
children of Y), we select a peer Z �= Y in V having the
minimum degree to be the new parent; Z must not be
the head of this cluster. Furthermore, the highest layer
of Y is not layer j anymore, but layer j+1. Therefore,
we remove the current link from X ′ to Y and add a link
from X ′′ to Y . Y will happen to have no children at this
moment. This still does not violate the rules enforcing
our multicast tree.

It might happen that the cluster on layer j+1 becomes
oversize due to admitting Y . This would have to wait until
the next period when the split algorithm will be called. The
split algorithm is run locally by the head of the cluster to be
split. The results will be sent to all peers that need to change
their connections. Since the number of peers involved in the
algorithm is a constant, the computational time to get out the
results is not a major issue. The main overhead is the number
of peers that need to reconnect. However, the theorem below
tells that the overhead is indeed very small.

Theorem 5: The worst-case split overhead is O(k2).
Proof: Step 2 requires ΣXi∈U,Xl∈V (xil + xli) peers

to reconnect. This value is at most Σi=n
i=1xi where xi is the

number of subordinates of Xi at layer j − 1. Therefore, Step
2 requires at most n × (3k - 1) < 6k × (3k - 1) to reconnect.3

In Step 3, the number of former children of Y is less than the
number of its foreign subordinates, hence at most (3k - 1)2

of them need to reconnect to Z. In total, the split procedure
needs at most 6k × (3k - 1) + (3k - 1)2 nodes to reconnect.
Theorem 5 has been proved.

3We would not wait until n ≥ 6k to do the split.

X

X''Lj+2

Lj

Lj-1 X Y

Z

Y

X'

X'

X''

(a) Before Failure (b) After Recovery

Links to non-head members of cluster
A single link to a child

X

Y YWW

X'L0

Fig. 4. Failure Recovery: Peer X fails

E. Client Departure

The new tree after a client departs must not violate the rules
specified in Section II-B. We propose the algorithm to handle
a client departure below.

Consider a peer X who departs either purposely or acci-
dentally due to failure. As a result of the control protocol
described in Section II-C, the parent peer of X , all subordi-
nates of X (if any), and all children of X (if any) are aware of
this departure. The parent of X needs to delete the link to X .
If X’s highest layer is layer 0, no further overhead emerges.

Suppose that X’s highest layer is j > 0. The failure recovery
procedure is exhibited in Fig. 4. For each layer-(j-1) cluster
whose non-head members are children of X , the head Y of
the cluster is responsible for finding a new parent for them.
Y just selects Z, a layer-j non-head clustermate, that has
the minimum degree, and asks it to forward data to Y ’s
subordinates at layer j-1.

Furthermore, since X used to be the head of j clusters at
layers 0, 1, .., j-1, they must have a new head. This is handled
easily. Let X ′ be a random subordinate of X at layer 0. X ′

will replace X as the new head for each of those clusters.
X ′ also appears at layer j and gets a link from the existing
parent of X . No other change is required. In overall, a client
departure affects a few (at most (3k - 1) × (3k - 1)) peers at
layer j-1 and mostly does not burden the server. The overhead
of failure recovery is consequently stated as follows:

Theorem 6: In the worst case, the number of peers that need
to reconnect due to a failure is O(k2).

As the result of many client departures, a cluster might
become undersize. In this case, it is merged with another
cluster of the same layer. Suppose that U is an undersize
cluster at layer j to be merged with another cluster V . The
simplest way to find V is to find a cluster having the smallest
size. Then, the following steps are taken to do the mergence:

1) The new head of U+V is chosen between the head X of
U and the head Y of V . If Y (or X) is the head of X (or
Y) at the next layer, Y (or X) will be the new head. In
the other cases, the new head is the one having a larger
degree to reduce the number of children to reconnect
(since the children of the non-chosen must reconnect).
Supposing X is the new head, Y will no longer appear
at layer j+1.

2) The new parent of non-head members in U+V is chosen

to be a layer-(j+1) non-head clustermate of X and Y .
This new parent should currently have the minimum
degree.

3) If the existing children of Y happen to be U , or that of X
happen to be V , no more work is needed since Step (2)
already handles this case. Otherwise, two possibilities
can happen:

a) X is the head at layer j+1: For each child cluster
of Y , a foreign head Z �= Y that has the minimum
degree will be the new parent; Z must not be the
head of this cluster.

b) X is not the head at layer j+1: The new parent for
the existing children of Y will be X .

Similar to the split procedure, the merge procedure is called
periodically to reduce overhead. It runs centrally at the head
of U with assistance from the head of V . Since the number
of peers involves is a constant, the computational complexity
should be small. In terms of number of reconnections, the
worst-case overhead is resulted from the theorem below.

Theorem 7: The worst-case merge overhead is O(k2).
Proof: Step 2 requires at most 2 × (3k - 1) peers to

reconnect. Step 3 requires at most (3k - 1) × (3k - 1) peers
to reconnect. In total, no more than (9k2 - 1) peers need to
reconnect. Theorem 7 has been proved.

F. Performance Optimization

Under the network dynamics, the administrative organiza-
tion and multicast tree can be periodically reconfigured in
order to provide better quality of service to clients. Consider
a peer X , in its highest-layer cluster j > 0, is busy serving
many children. It might consider switching its parenthood of
some children to another non-head clustermate which is less
busy. Suppose that X currently has links to foreign clusters C1,
C2, .., Cm, each Ci having si non-head subordinates, respec-
tively. We propose two strategies for handling the refinement:
Degree-based Switch and Capacity-based Switch.

1) Degree-based Switch: As a result of the control protocol,
X knows which layer-j non-head clustermate has what degree.
We denote the degree of a peer Y by dY . The below steps
are pursued by X to transfer the service load, attempting to
balance the degree as much as possible:

1. For(i = 1; i ≤ m; i++)
2. Select a non-head clustermate Y :

Y is not the head of Ci

dX - dY - si > 0
dX - dY - si is max

3. If such Y exists
4. Redirect non-members of Ci to Y
5. Update dX and dY accordingly

2) Capacity-based Switch: It is likely that peers have
different bandwidth capacities. In this case, we define the
busyness of a peer X to be dX

BX
where BX is the bandwidth

capacity of peer X . X follows the steps below to transfer the
service load:

1. For(i = 1; i ≤ m; i++)
2. Select a non-head clustermate Y :

Y is not the head of Ci

(dX

BX
- dY

BY
)2 - (dX−si

BX
- dY +si

BY
)2 > 0

(dX

BX
- dY

BY
)2 - (dX−si

BX
- dY +si

BY
)2 is max

3. If such Y exists
4. Redirect non-members of Ci to Y
5. Update dX and dY accordingly

The capacity-based switch attempts to balance the peer busy-
ness among all non-head peers of a cluster. In order to work
with this strategy, a peer must have knowledge about not only
a clustermate degree but also its bandwidth capacity. This is
feasible by requiring the exchanged soft-state information to
include both degree and bandwidth capacity.

The performance optimization procedure makes the service
load fairly distributed among the peers without violating the
multicast tree rules. However, frequently calling it might cause
many peer reconnections, which would affect the continuity of
client playback. To prevent this in the case of degree-based
switch, 4 a peer runs the optimization procedure when its
degree becomes larger than ∆ chosen as follows. We consider
a layer-j (0 < j < H-1) cluster with non-head members X1,
X2, .., Xn. The total number of their children must equal
the total number of their layer-(j-1) non-head subordinates
(due to the rules enforced on the multicast tree). Let this
quantity be n′. Clearly, n′ ∈ [(k-1)(n+1), (3k-1)(n+1)]. If
all Xi’s are balanced in service load, the average degree will
approximately be n′/n ∈ [(k-1)(1+1/(3k-1)), (3k-1)(1+1/k)],
thus n′/n ∈ (k-1, 3k+3). We can choose ∆ = 2 × (3k+3).

III. PERFORMANCE EVALUATION

The last section provided the worst-case analyses of
ZIGZAG. To investigate its performance under various scenar-
ios, we carried out a simulation-based study. Besides evaluat-
ing performance metrics mentioned in the previous sections,
i.e., peer degree, join/failure overhead, split/merge overhead,
and control overhead, we also considered Peer Stretch and
Link Stress (defined in [3]). Peer Stretch is the ratio between
the length of the data path from the server to a peer in our
multicast tree to the length of the shortest path between them
in the underlying network. The dedicated-unicast approach
always has the optimal peer stretch. The stress of a link
is the number of times the same packet goes through that
link. An IP Multicast tree always has the optimal link stress
of 1 because a packet goes through a link only once. An
application-level multicast scheme should have small stretch
and stress to keep the end-to-end delay short and the network
bandwidth efficiently utilized.

We used the GT-ITM Generator [8] to create a 3240-node
transit-stub graph as our underlying network topology. The
server’s location is fixed at a stub-domain node. We investi-
gated our system with 2000 clients located randomly among
the other stub-domain nodes. Therefore, the client population

4The case of capacity-based switch can be handled similarly.

ZIGZAG (avg=47.99,max=115)

0

20

40

60

80

100

120

140

1

10
9

21
7

32
5

43
3

54
1

64
9

75
7

86
5

97
3

10
81

11
89

12
97

14
05

15
13

16
21

17
29

18
37

19
45

Join ID

Jo
in

 o
ve

rh
ea

d

ZIGZAG (avg=5.13,max=136,#splits=221)

0

20

40

60

80

100

120

140

160

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

Split ID
S

p
lit

 o
ve

rh
ea

d

(a)

(b)

Fig. 5. 2000 Joins: Join and Split Overhead

accounts for 2000/3240 = 62% of the entire network. We set
the value k to 5, hence each cluster has at most 15 and no less
than 5 peers. We studied three scenarios, the first investigating
a failure-free ZIGZAG system, the second investigating a
ZIGZAG system allowing failures, and the third comparing
ZIGZAG to NICE [5], a recent P2P streaming scheme. The
performance optimization procedure was disabled in ZIGZAG.
5 We report the results in the following sections.

A. Scenario 1: No Failure

In this scenario, as 2000 clients joined the system, we
collected statistics on control overhead, node degree, peer
stretch, and link stress. We also estimated the join overhead
and split overhead accumulated during the joins.

The overhead of a join is measured as the number of peers
that the new client has to contact before being added to the
multicast tree. Fig. 5(a) shows that on the average, a new
client needs to contact 48 clients, only 2.4% of the client
population. In the worst case, a new client has to contact 115
clients, or 5.7% of the population. It is interesting that the
worst case occurs early when there are only 136 clients in
the system. This is because, at this moment, the server has
too many children and a new client has to ask all of them,

5We did study the case where the performance optimization was enabled in
ZIGZAG and the results were significantly improved. However, to avoid any
bias in comparison with NICE, only the study with performance optimization
disabled is reported in this paper.

thus resulting in many contacts. However, it becomes a lot
better then (we can see a “downfall” right after the 136th join
in Fig. 5(a)). This is understandable since the split procedure
takes place after detecting a cluster at the second-highest layer
is oversize. As the result of this split, the server will have very
few children. We can see the correlation between the join
procedure and split procedure from Fig. 5(a) and Fig. 5(b).
Each run of the split procedure helps reduce the overhead
incurred by a client join. The two “downfalls” in Fig. 5(a)
corresponds to the two peak points in Fig. 5(b). We can
conjecture that the join-overhead curve would continue going
up slowly as more clients join until a constant point (e.g.,
when overhead approximates 90) when it would fall down
to a very low value (e.g, overhead approximates 20). This
behavior would repeat, making the join algorithm scalable with
the client population.

In terms of split overhead, since we wanted to study the
worst scenario, we opted to run a split whenever detecting a
cluster is oversize. However, as illustrated in Fig. 5(b), small
split overhead is incurred during the joins of 2000 clients. The
worst case requiring 136 reconnections is when the server is
overloaded by many children, but after splitting, the server
bottleneck is resolved very well (we can see the two downfalls
in Fig. 5(a), which are consequences of the 16th and 166th
splits.) Hence, most of the time, a split requires about 5 peers,
or 0.25% of client population, to reconnect. Although our
theoretical analysis in Section II-D shows a worst-case split
overhead of O(k2), the real result turns out to be a lot smaller
than this bound.

Fig. 6(a) shows that not only the node degrees in a ZIGZAG
multicast tree are small, but also they are quite balanced. The
thick line at the bottom represents the degrees of the leaves,
which are 0-degree. For those peers forwarding the content
to other, they forward to about 10 other peers. This study
shows that ZIGZAG handles peer bottleneck efficiently, and
distributes the service load among the peers fairly. In the worst
case, a peer has to transmit the content to 22 others, which
is tiny to the client population of 2000 clients. In terms of
control overhead, as shown in Fig. 6(b), most peers have to
exchange control states with only 12 others. The dense area
represents peers at layers close to layer 0 while the sparse
area represents peers at higher layers. Those peers at high
layers do not have a heavy control overhead either; most of
them communicate with around 30 peers, only 1.5% of the
population. This can be considered lightweight, taking the fact
that the control information is very small in size.

The study on link stress and peer stretch results in Fig. 7.
ZIGZAG has a low stretch of 3.45 for most of the clients,
and a link stress of 4.2 for most of the underlying links used.
Especially, these values are quite fairly distributed. We recall
that the client population in our study accounts for 62% of
the entire network in which a pair of nodes have a link with
a probability of 0.5. Therefore, the results we got are very
promising. We also studied the case where the number of
clients is small (fewer than 100), its results showed that the
stretch was no more than 1.2 on average and 4.0 in the worst

ZIGZAG (max=22, std-deviation=3.1)

0

5

10

15

20

25

0 500 1000 1500 2000 2500

Client ID

D
eg

re
e

ZIGZAG (avg=12.5745, max=48, std-deviation=6.71)

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500

Client ID

C
o

n
tr

o
l O

ve
rh

ea
d

(a)

(b)

Fig. 6. 2000 Clients: Node Degree and Control Overhead

case. The stress was also very small, less than 2.1 on average
and 9.2 in the worst case. Since we focus on a large client
population and due to paper length restriction, we decided not
to show the results for small P2P networks in this section.

B. Scenario 2: Failure Possible

In this scenario, we started with the system consisting of
2000 clients, which was built based on the first scenario
study. We let a number (200, 400, .., 1000) of peers fail
sequentially and evaluated the overhead for recovery and the
overhead of mergence during that process. Fig. 8(a) shows
the results for recovery overhead as failures occur. We can
see that most failures do not affect the system because they
happen to layer-0 peers (illustrated by a thick line at the
bottom of the graph). For those failures happening to higher-
layer peers, the overhead to recover each of them is small and
mostly less than 20 reconnections (no more than 2% of client
population). Furthermore, the overhead to recover a failure
does not depend on the number of clients in the system. On
average, the recovery overhead is always between 0.95 and
0.98, when the system has 1800, 1600, .., and 1000 clients
left, respectively. This substantiates our theoretical analysis in
Section II-E that the recovery overhead is always bounded by
a constant regardless of the client population size.

In terms of merge overhead, the result is exhibited in Fig.
8(b). There are totally 62 calls for cluster mergence, each
requiring 11 peers on average to reconnect. In the worst case,

ZIGZAG (avg=4.244, max=78, std-deviation=7.504)

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500

Link ID

L
in

k
S

tr
es

s

ZIGZAG (avg=3.45, max=22, std-deviation=1.35)

0

5

10

15

20

25

0 500 1000 1500 2000 2500

Client ID

S
tr

et
ch

(a)

(b)

Fig. 7. 2000 Clients: Link Stress and Peer Stretch

only 17 peers need to reconnect, which accounts for no more
than 1.7% of the client population. This study is consistent
with our theoretical analysis in Section II-E that the merge
overhead is always small regardless of the client population
size. Indeed, the final merge call and the first merge call
require the same number (only 10) of reconnections, even
though the system has different numbers of clients before those
calls take place.

C. Scenario 3: ZIGZAG vs. NICE

We compared the performances between ZIGZAG and
NICE. NICE was recently proposed in [5] as an efficient
P2P technique for streaming data. NICE also organizes the
peers in a hierarchy of bounded-size clusters as ZIGZAG does.
However, NICE and ZIGZAG are fundamentally different
due to their own multicast tree construction and maintenance
strategies. For example, NICE always uses the head of a cluster
to forward the content to the other members, whereas ZIGZAG
uses a foreign head instead. According to the analyses in
[5], NICE has a worst-case node degree O(logN), worst-case
control overhead O(logN), average control overhead O(k), and
a worst-case join overhead O(logN). Obviously, ZIGZAG is
no worse than NICE in terms of join overhead and control
overhead. Furthermore, ZIGZAG is significantly better than
NICE in terms of node degree. For comparisons in terms of
failure recovery overhead, peer stretch, and link stress, we
report the results drawn from our simulation in this section.

ZIGZAG (avg=11.16,max=17,std-
deviation=3.16,#merge=62)

0
2
4
6
8

10
12
14
16
18

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Merge ID

M
er

g
e

O
ve

rh
ea

d

ZIGZAG (avg=0.96,max=31,std-deviation=3.49)

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200

Failure ID

F
ai

lu
re

 O
ve

rh
ea

d

(a)

(b)

1800 clients
remained

1600 1400 1200 1000

Fig. 8. Failure and merge overhead as 1000 peers fail

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Failure probability p

A
vg

. R
ec

o
ve

ry
 O

ve
rh

ea
d

ZIGZAG
NICE

Fig. 9. ZIGZAG vs. NICE: Failure Recovery Overhead

We worked with the following scenario. The system initially
contained only the server and stabilized after 1000 clients
join sequentially. Afterwards, we ran an admission control
algorithm, which is a loop of 1000 runs, each run letting a
client to fail or a new client to join. The probability that a client
fails is p (ranging between 0.2 and 0.8), thus a new client joins
with a probability 1 - p. After the admission control algorithm
stopped, we collected statistics on the trees generated by
ZIGZAG and NICE, respectively. Recovery overhead was
measured for each failure during the period from when the
system was initialized to when it was stopped.

Results on failure overhead are illustrated in Fig. 9. By
enforcing our distinguishing multicast tree rules, ZIGZAG’s

(a)

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Failure probability

A
vg

. L
in

k
S

tr
es

s

ZIFZAG
NICE

0

0.5

1

1.5

2

2.5

3

3.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Failure probability p

A
vg

. P
ee

r
S

tr
et

ch

ZIGZAG
NICE

Fig. 10. ZIGZAG vs. NICE: Peer Stretch and Link Stress

recovery algorithm is more efficient than that of NICE. Indeed,
a failure happens to a peer at its highest layer j in NICE
requires j × O(k) peers to reconnect. j can be the highest
layer, thus the worst-case overhead is Ω(logN). According to
our theoretical analyses, ZIGZAG requires at most a constant
number of reconnections in a recovery phase, regardless of
how many peers are in the system. Consequently, we can see
in Fig. 9 that ZIGZAG clearly prevails NICE. We note that
the average failure overhead values for both schemes can be
smaller than 1 because there are many layer-0 peers and their
failure would require zero reconnection.

Fig. 10(a) shows the results of average peer stretch. Recall
that the peer-stretch metric is defined as the ratio of path-
length from the server to the client along the overlay to the
direct unicast path. In its join algorithm, ZIGZAG always
tries to keep the distance from the server to the joining client
small. Meanwhile, in NICE’s join algorithm, distance is also
considered, but only between the joining client and the joined
client. This does not guarantee a reduced distance between
the server and the joining client. Consequently, average peer
stretch of ZIGZAG is better than that of NICE.

As shown in Fig. 10(b), the average link stress of ZIGZAG
is slightly better than that of NICE. This is no way by accident,
but is rooted from the degree bound of each scheme. The worst
case degree is O(klogkN) in NICE, while bounded by O(k2)
in ZIGZAG. Hence, it is more likely for NICE to have many
more identical packets being sent through an underlying link

near heavy loaded peers. In this study, where k = 5 and N ≤
2000, the two curves are quite close because logkN is close
to k. If the system runs in a larger underlying network with
many more clients, logkN will be a lot larger than k, and we
can expect that link stress in ZIGZAG will be sharply better
than that in NICE.

IV. RELATED WORK

Several techniques have been proposed to address the prob-
lem of streaming media on the Internet. Most of them try to
overcome the lack of IP Multicast, which makes the problem
challenging, by implementing the multicast paradigm at the
application layer based on IP Unicast services only. They can
be categorized into two classes: overlay-router approach and
peer-to-peer (P2P) approach.

In the overlay-router approach [4], [9–13], a number of
reliable servers are installed across the network to act as the
software routers with multicast functionality. These routers are
interconnected according to a topology which forms an overlay
for running the services. The content is transmitted from the
source to a set of receivers on a multicast tree consisting of the
overlay routers. A new receiver joins an existing media stream
by connecting to an overlay router appearing on the delivery
path to an existing receiver. This approach is designed to be
scalable since the receivers can get the content not only from
the source, but also from software routers, thus alleviating
bandwidth demand at the source.

The P2P approach assumes no extra resources such as the
dedicated servers mentioned above. A multicast tree involves
only the source and the receivers, thus avoiding the complexity
and cost of deploying and maintaining extra servers. Since
we employ this approach, we discuss the differences between
ZIGZAG and the existing P2P techniques below.

[14] introduced the first P2P technique for streaming
applications. This early design, however, did not address the
stability of the system under network dynamics. [6] proposed
SpreadIt which builds a single distribution tree of the peers.
A new receiver joins by traversing the tree nodes downward
from the source until finding one with unsaturated bandwidth.
Spreadit has to get the source involved whenever a failure
occurs, thus vulnerable to disruptions due to the severe bottle-
neck at the source. Additionally, orphaned peers reconnect by
using the join algorithm, resulting in a long blocking time
before the their service can resume. CoopNet [7] employs
a multi-description coding method for the media content.
In this method, a media signal is encoded several separate
streams, or descriptions, such that every subset of them is
decodable. CoopNet builds multiple distribution trees spanning
the source and all the receivers, each tree transmitting a
separate description of the media signal. Therefore, a receiver
can receive all the descriptions in the best case. A peer failure
only causes its descendant peers to lose a few descriptions.
The orphaned are still able to continue their service without
burdening the source. However, this is done with a quality
sacrifice. Furthermore, CoopNet puts a heavy control overhead

on the source since the source must maintain full knowledge
of all distribution trees.

Narada [3], [15] focuses on multi-sender multi-receiver
streaming applications, maintains a mesh among the peers,
and establishes a tree whenever a sender wants to transmit
a content to a set of receivers. Narada only emphasizes on
small P2P networks. Its extension to work with large-scale
networks was proposed in [16] using a two-layer hierarchical
topology. To better reduce cluster size, whereby reducing the
control overhead at a peer, the scheme NICE in [5] focuses
on large P2P networks by using the multi-layer hierarchical
clustering idea as we do. However, NICE always uses the
head to forward the content to its subordinates, thus incurring
a high bottleneck of O(logkN). Though an extension could be
done to reduce this bottleneck to a constant, the tree height
could become O(logkN × logkN). ZIGZAG, no worse than
NICE in terms of the other metrics, has a worst-case tree
height of O(logkN) while keeping the bottleneck bounded
by a constant. Furthermore, the failure recovery overhead
in ZIGZAG is upper bounded by a constant while NICE
requires O(logkN). All these are a significant improvement for
bandwidth-intensive applications such as media streaming.

V. CONCLUSIONS

We were interested in the problem of streaming live media
in a large P2P network. We focused on a single source only
and aimed at optimizing the worst-case values for important
performance metrics. Our proposed solution called ZIGZAG
uses a novel multicast tree construction and maintenance
approach based on a hierarchy of bounded-size clusters. The
key in ZIGZAG’s design is the use of a foreign head other
than the head of a cluster to forward the content to the other
members of that cluster. With this key in mind, our algorithms
were developed to achieve the following desirable properties,
which were substantiated by both theoretical analyses and
simulation studies:

• Short end-to-end delay: The end-to-end delay is not only
due to the underlying network traffic, but largely depends
on the local delays at intermediate clients due to queuing
and processing. The local delay at such an intermediate
client is mostly affected by its bandwidth contention.
ZIGZAG keeps the end-to-end delay small because the
multicast tree height is at most logarithm of the client
population and each client needs to forward the content
to at most a constant number of peers.

• Low control overhead: Each client periodically ex-
changes soft-state information only to its clustermates,
parent, and children. Since a cluster is bounded in size
and the client degree bounded by a constant, the control
overhead at a client is small. On average, the overhead
is a constant regardless of the client population.

• Efficient join and failure recovery: A join can be ac-
complished without asking more than O(logN) existing
clients, where N is the client population. Especially, a
failure can be recovered quickly and regionally with a

constant number of reconnections and no affection on
the server.

• Low maintenance overhead: To enforce the rules on the
administrative organization and the multicast tree, main-
tenance procedures (merge, split, and performance refine-
ment) are invoked periodically with very low overhead.
Fewer than a constant number of clients need to relocate
in such a procedure.

It is still open to improve the performance. In the current
version of ZIGZAG, if a peer X has to forward the content
to non-head members of a foreign cluster, a star topology
is used. (i.e., an individual link is created from X to each
such member.) In our future work, we can improve this by
organizing X and those members in a non-star tree to better
reduce the degree at X . Furthermore, we are interested in
extending ZIGZAG for dealing with peer heterogeneity.

ACKNOWLEDGMENT

The authors would like to thank the US National Science
Foundation for partially funding the work in this paper under
grant ANI-0088026.

REFERENCES

[1] S. Deering, “Host extension for ip multicasting,” RFC-1112, August
1989.

[2] B. Quinn and K. Almeroth, “Ip multicast applications: Challenges
and solutions,” Internet Engineering Task Force (IETF) Internet Draft,
March 2001.

[3] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang, “A case for end system
multicast,” in ACM SIGMETRICS, 2000, pp. 1–12.

[4] J. Jannotti, D. K. Gifford, and K. L. Johnson, “Overcast: Reliable
multicasting with an overlay network,” in USENIX Symposium on
Operating System Design and Implementation, San Diego, CA, October
2000.

[5] S. Banerjee, Bobby Bhattacharjee, and C. Kommareddy, “Scalable
application layer multicast,” in ACM SIGCOMM, Pittsburgh, PA, 2002.

[6] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming live media
over a peer-to-peer network,” in Submitted for publication, 2002.

[7] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing streaming media content using cooperative networking,”
in ACM/IEEE NOSSDAV, Miami, FL, USA, May 12-14 2002.

[8] Ellen W. Zegura, Ken Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in IEEE Infocom, San Francisco, CA, 1996.

[9] Y. Chawathe, S. McCanne, and E. Brewer, “An architecture for internet
content distribution as an infrastructure service,” Unpublished work,
February 2000.

[10] Duc A. Tran, Kien A. Hua, and Simon Sheu, “A new caching
architecture for efficient video services on the internet,” in IEEE
Symposium on Applications and the Internet, Orlando, FL, USA, 2003.

[11] Kien A. Hua, Duc A. Tran, and Roy Villafane, “Overlay multicast
for video on demand on the internet,” in ACM Symposium on Applied
Computing, Melbourne, FL, USA, 2003.

[12] S. Q. Zhuang, B. Y. Zhao, and A. D. Joseph, “Bayeux: An architecture
for scalable and fault-tolerant wide-area data dissemination,” in 11th
ACM/IEEE NOSSDAV, New York, June 2001.

[13] D. Pendakaris and S. Shi, “ALMI: An application level multicast
infrastructure,” in USENIX Symposium on Internet Technologies and
Systems, Sanfrancisco, CA, March 26-28 2001.

[14] S. Sheu, Kien A. Hua, and W. Tavanapong, “Chaining: A generalized
batching technique for video-on-demand,” in Proc. of the IEEE Int’l
Conf. On Multimedia Computing and System, Ottawa, Ontario, Canada,
June 1997, pp. 110–117.

[15] Yang-Hua Chu, Sanjay G. Rao, S. Seshan, and Hui Zhang, “Enabling
conferencing applications on the internet using an overlay multicast
architecture,” in ACM SIGCOMM, San Diego, CA, August 2001.

[16] S. Jain, R. Mahajan, D. Wetherall, and G. Borriello, “Scalable self-
organizing overlays,” Tech. Rep., University of Washington, 2000.

