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ABSTRACT

Despite advances in networking technology, the limitation of the server bandwidth prevents multimedia applications

from taking full advantage of next-generation networks. This constraint sets a hard limit on the number of users the

server is able to support simultaneously. To address this bottleneck, we propose a Caching Multicast Protocol (CMP)

to leverage the in-network bandwidth. Our solution caches video streams in the routers to facilitate services in the

immediate future. In other words, the network storage is managed as a huge \video server" to allow the application

to scale far beyond the physical limitation of its video server. The tremendous increase in the service bandwidth

also enables the system to provide true on-demand services. To assess the e�ectiveness of this technique, we develop

a detailed simulator to compare its performance with that of our earlier scheme called Chaining. The simulation

results indicate that CMP is substantially better with many desirable properties as follows: (1) it is optimized to

reduce tra�c congestion; (2) it uses much less caching space; (3) client workstations are not involved in the caching

protocol; (4) it can work on the network layer to leverage modern routers.
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1. INTRODUCTION

The desire to deploy multimedia applications over broadband networks has introduced new challenges for storage

and communication of multimedia objects. In this paper, we focus on video and audio data that must be presented

to the users in a continuous manner. Without loss of generality, we will only refer to video data in this paper though

the techniques can also be used for audio.

In a multimedia information system, a large media server is typically used to store video �les. Upon a service

request, the desired video is transmitted to the remote user over a high-speed network. Although the aggregate

bandwidth of communication networks has improved tremendously, the performance of such a system is severely

constrained by the bandwidth limitation of the media server. It is desirable to overcome this hurdle in order to take

advantage of the in-network bandwidth, i.e., the aggregate bandwidth of the entire network. Two approaches can

be used to address this bottleneck: (1) placing multiple media servers at strategic locations to exploit the aggregate

bandwidth of the servers;(2) using multicast to facilitate data sharing. The �rst approach is simple, however, it is

expensive to install and maintain multiple data centers. A good design should also exploit the latter approach to

keep the degree of distribution to a minimum. Technology such as IP Multicast1,2 is available today for such an

implementation. In this paper, we focus on improving the e�ectiveness of the multicast mechanism. There are a

number of multicast schemes that have been proposed for video data:

� Periodic Broadcast3{6: In this approach, each video is partitioned into a number of segments, each repeatedly

broadcast on its own communication channel (e.g., multicast group). To receive a service, a client tunes to the

appropriate channels to download the desired video. This strategy guarantees the service delay to be no more

than the broadcast period of the �rst segment. To ensure acceptable delays, this segment can be made small. A

major advantage of this approach is that the required server bandwidth is independent of the number of users

the system is designed to support. Each video, however, requires substantial bandwidth. This requirement

renders this approach suitable only for very popular videos.
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� Batching7,8: This approach delays service requests for a particular video hoping that more will arrive within

the current batching interval. All these requests can be served together using a single multicast. Compared

to periodic broadcast, batching is e�ective for a wider range of videos. However, it is less e�ective for very

popular videos. Studies have shown that a hybrid of the two techniques provides the best performance.9

� Chaining10: In the two approaches above, since each request must wait for the next multicast, they cannot o�er

true on-demand services. Another drawback is that the number of concurrent multicasts is still constrained by

the bandwidth limitation of the server. To address these issues, we proposed an on-demand multicast technique,

called Chaining.10 This approach manages the disk bu�ers in the client machines as a huge network cache.

Each client is capable of caching the requested video and pipelining it to other clients in the downstream at a

later time. In other words, a multicast tree can grow dynamically at the application level to accommodate future

requests for the same video. This strategy allows the application to scale far beyond the physical limitation of

the video server. Furthermore, since the multicasts are performed on demand, true on-demand services can be

achieved.

� Patching11{13: Patching is another on-demand multicast technique. When a client requests a video, it joins an

on-going multicast of the video. The multicast data is temporarily cached in the local disk as the client plays

back the leading portion of the video arriving on a separate channel called the patching channel. When the

playback of the patching data is completed, the client switches to play the multicast data cached in the local

bu�er. This approach also can o�er true on-demand services. It is simpler than Chaining because clients do

not have to serve other clients. However, since the server is the only source for data, this approach cannot

utilize the in-network bandwidth as e�ectively as Chaining can.

In general, multicast techniques try to reduce the demand on the server bandwidth by exploiting in-network band-

width. It is obvious that Chaining is the best among the above techniques in achieving this goal. In this scheme,

every client who uses the service must contribute its own resources (i.e., disk space and bandwidth) to the environ-

ment. As a result, each service request can be seen as a contributor, rather than just a burden to the server. This

unique characteristic makes Chaining much more scalable than the other methods.10

Although Chaining o�ers outstanding performance, it still has a few drawbacks. While using client resources for

later multicasts seems to be equitable, the matter of reliability should not be ignored. Handling sudden terminations

of the services in a chain can be quite complex. Another drawback is due to the fact that forwarded data must travel

from one edge to another edge of the network. This approach results in very expensive network costs. To address

these practical problems, we propose in this paper a new technique called Caching Multicast Protocol (CMP). This

scheme caches video streams in the routers to provide future services to the local requests. This idea is consistent

with the current trend of designing routers to support more complex forwarding logic. Our simulation results indicate

that this protocol outperforms Chaining by a signi�cant margin. Furthermore, CMP o�ers many desirable properties

as follows: (1) it is optimized to reduce network costs; (2) it uses much less caching space; (3) client workstations

are not involved in the caching protocol; (4) it can work on the network layer to leverage modern routers.

CMP is motivated by the observation that it is essential to get content, especially rich content (such as video),

closer to the edge of the network and to the consumer in order to leverage new high-speed, \last-mile" technologies,

such as xDSL and cable modem. We believe network caching is an e�ective way to achieve this goal.

Compared to the multicast techniques discussed previously, CMP is very di�erent. In fact, they are really

scheduling policies designed to use existing multicast techniques more e�ciently. In this paper, we look deeper into

the network layer to investigate routing and caching protocols for more e�cient video communications. CMP is

also di�erent from many existing protocols which were designed to support general-purpose applications.14{17 In

contrast, CMP is customized for audio and video delivery.

The remainder of this paper is organized as follows. To make the paper self contained, we describe Chaining in

more detail in Section 2. The proposed technique is presented in Section 3. Our simulation studies are discussed in

Section 4. Finally, we give our concluding remarks in Section 5.

2. CHAINING

Two variations of Chaining have been studied.10 They are described in this section.



2.1. Standard Chaining

The basic idea in Chaining is that each client station reserves a small amount of disk space for caching purposes.

When a communication channel becomes available, it is scheduled to multicast a video to all the pending requests

currently waiting for this video. As these clients play back the video, they cache the data in their disk bu�ers using

a FIFO replacement policy. Thus, the �rst block of the video data remains in a bu�er until the cache is full. Before

that happens, any new requests can be serviced from these clients creating the \second generation" of a dynamic

multicast tree. That is, the second-generation clients are chained to the �rst in order to pipeline the video data.

Similarly, the third-generation can receive data from the second, and so forth. This process can continue until the

�rst data block of the video is dropped out of the tree due to the cache replacement policy. When that happens, the

server needs to initiate another dynamic multicast tree to serve future requests.

We observe that a dynamic multicast tree can grow to be very big, yet uses only one server channel. This

explains the e�ectiveness of Chaining in using in-network bandwidth to reduce the demand on the server bandwidth.

Another observation is that a tree can grow dynamically to accommodate new requests as soon as they arrive. True

on-demand services, therefore, can be achieved.

2.2. Extended chaining

It is desirable to prolong the \life" of a dynamic multicast tree to save server bandwidth. This can be achieved by

strategically deferring the services for some of the requests as follows. When we schedule a group of pending requests

to join a new generation of a dynamic multicast tree, we can delay the youngest request to the next generation as

long as it has not waited more than a predetermined threshold. The purpose is to make sure that the tree can grow

at least another generation, and thereby buy some time for the tree to admit more requests.

The advantage of the above strategy is best illustrated using a state diagram as illustrated in Fig. 1. There is a

state diagram for each video �le in the system. The state diagram for conventional batching is shown in Fig. 1(a).

It shows that a video �le can be in one of two possible states:
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Figure 1. State transition diagrams of various schemes for multicast scheduling.

� I State: The video �le is in I (or initial) state if it currently has no pending requests.

� Q State: The arrival of a new request causes the video to transit from the I state to the Q (or queuing) state,

and a new batch to be created to hold the new arrival. Subsequent requests for this video are accumulated in

this batch while the video remains in the Q state. Eventually, a video stream is allocated to serve this batch

according to some queuing policy; and the video �le returns to the I state.



The state diagram for Standard Chaining is shown in Fig. 1(b). It is similar to that of conventional batching except

for one additional state.

� C State: Unlike regular batching, when a video stream is allocated to serve the current batch, the video �le

does not return to the I state. Instead, it goes into the C (or chaining) state signifying the existence of a

dynamic multicast tree for this video. As long as new requests continue to arrive to keep this tree open, the

video �le remains in the C state. If the arrival of requests discontinues for an extended period of time, the tree

is closed down and the video �le returns to the I state.

The state diagram for Extended Chaining is shown in Fig. 1(c). This scheme has one additional state, E (or

extending) state. Unlike Standard Chaining, the allocation of a video stream does not immediately move the video

�le into the C state. Instead, it transits into the E state.

� E State: In this state, the scheduler delays the youngest request to the next generation. As long as new

requests continue to arrive, the video remains in the E state. If no new request arrives for an extended period

of time, the video transits into the C state after the service is initiated for the last delayed request. We note

that if new requests begin to arrive again at this time, the video �le can return to the E state; otherwise, it

returns to the I state after a period of missing new arrivals.

We note that the Q state is a waiting state. Service requests arriving during this state must wait. To achieve low

service latency, batching requires substantial server bandwidth to keep the duration of the Q state short. In general,

a technique is more demanding on the server bandwidth if it returns to the I state more often. Standard Chaining

reduces this frequency by adding state C. Extended Chaining further reduces it by adding yet another state E. In

addition to saving server resources, Chaining o�ers better service delays because the videos are in C state most of

the time, which is not a waiting state.

3. CACHING MULTICAST PROTOCOL (CMP)

A performance limitation of Chaining is due to the fact that data must be forwarded from client to client. This

results in data traveling from one edge of the network to another. Such a communication strategy makes the network

cost very high. CMP addresses this problem by caching data in the network routers. This approach allows us to

forward data from within the network signi�cantly reducing the network costs. We present this novel idea in this

section.

3.1. Protocol Description

We assume that the network consists of subnets, each having a dedicated router as its multicast router. The multicast
router of the video server is referred to as the root router in this paper. To facilitate our protocol, routers are equipped
with local storage for caching purposes. This storage is organized into chunks of equal size. Each chunk is used to

cache the last chunk-size of data for a video stream currently passing through the router. Furthermore, routers must

be built as active nodes which can perform computations on packet data that travel through them. This is made

possible by the recent trend of active network technology.18

When a node (client station) X requests some movie V , it sends a request message to its multicast router. This

router broadcasts the request message toward the root router. A time to live is used to prevent the message from

traveling too far. Upon receiving the message, each router along the way checks its internal information to see if V

is being cached in any chunk of its cache. If this condition is not satis�ed, it just forwards the message. Otherwise,

a router, say R, is capable of serving node X if R still has the �rst frame of the video. In this case, R modi�es the

packet to request the right to serve, and unicasts the message to the root router. Suppose that before R receives the

answer from the root router, another request for the same video arrives from node Y . To handle this new request,

informing the root router is not necessary. R needs only add this new request to its group list of nodes waiting for

the video V .

As soon as the root router receives the �rst request to serve X , say from R, it sends a message to inform R of

its right to serve along with the group address. In this case, R is referred to as the serving router. All subsequent
requests to serve are denied; and the requesting nodes are noti�ed accordingly. The serving router R, having received

the group address from the root router is ready to build the delivery tree for the group. This tree from R to the



receivers (nodes in the group list) is the reversal of the paths from the receivers to the router on which request

messages were sent. Over this tree, R noti�es the receivers of the group address. In response to this group-address

message, all the intermediate routers along the way update their multicast tables and prepared to cache the upcoming

video stream. We will discuss the cache management policy shortly. In the case that no router has the data to serve

node X , the service request will eventually reach the video server. Under this circumstance, the server must initiate

a new stream to provide the service. The multicast path is the reversal of the path on which the request message

is sent from node X to the video server. On the way the group address is sent back to X , each intermediate router

responding by getting prepared to cache the upcoming video stream as in the previous case.

There might be a situation in which a node belongs to more than one multicast group. In this case, the node

simply picks the �rst one. It sends back an acknowledge to the corresponding serving router, and gives up the other

groups. In order to quit a group, a node needs to send a request to its multicast router. If the multicast router R

of a subnet S detects that a group G no longer has members in S, R looks up its multicast table to determine the

incoming router for group G and informs this router to drop R from its multicast table.

To illustrate the way CMP works, let us look at the example given in Fig. 2(a). We assume that each router has

only one chunk of caching space. Each chunk can cache up to ten minutes of video data. All videos are assumed to

be longer than ten minutes. VS denotes the video server. The label on each link indicates the starting time of the

video service. For instance, the server starts a video stream at time zero, and deliver it to client C1 over the routers

(R1; R2; R3; R4). For simplicity, we assume that requests can be serviced instantaneously. Therefore, the request

from C1 was also initiated at time zero. Fig. 2(a) illustrates the following scenario. At time 0, a node C1 requests

some video V . Since no router has the data, the server has to allocate a new stream to serve C1. As the data goes

toward C1, all the routers along the way, R1; R2; R3; R4, cache the data in one chunk of their local bu�er. At time

7, node C2 requests the same video. Since R2 has not dropped the �rst video frame from its cache, it can serve C2.

R2 is referred to as the serving router. As a result, all the routers along the path from R2 to C2 (i.e., R5; R6; R7)

are asked to cache the video if possible. Later at time 8, node C3 also requests video V . C3 can get the service from

router R3 since R3 still has the �rst video frame in its cache. By time 10, R1; R2; R3, and R4 have replaced the �rst

video frame in their cache. At time 11, C4 asks for V . It can receive the service from router R5 which still has the

�rst video frame.
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Figure 2. Examples of how CMP and Chaining work

To see the advantage of CMP over Chaining, let us refer to Fig. 2(b), where the situation and con�guration

are the same. However, Chaining leads to a totally di�erent result. At time 0, C1 requests video V . The video

server allocates a stream to deliver V to C1. As C1 plays back the video, it caches the data in its local bu�er.

Node C2 requests the same video at time 7. According to Chaining, C2 can receive the service from C1. A stream



(through R4; R3; R2; R5; R6; R7) is reserved for this session. Similarly, C2 also caches the data in its local bu�er.

At time 8, C3 requests also video V . A communication channel is set up to chain C3 to C2 through routers

R7; R6; R5; R2; R3; R8; R9. As C3 plays back the data arriving from C2, C3 caches the data in its local bu�er. At

time 11, the request from C4 arrives also for the same video. Similarly, a channel is set up to pipeline the data from

C3 to C4 through R9; R8; R3; R2; R5; R10.

Comparing the two examples, we can make the following observations: (1) although both schemes requires only

one data stream from the server, the network cost is about two times higher for Chaining. (2) he average service

delay is shorter under CMP. As an example, C4 can receive the service from R5 under CMP, instead of from C3

under Chaining, which is much farther away. We note that the CMP design is not distance-based as some other

routing protocols. As a result, there is not much processing to determine the delivery trees.

3.2. Data structures and algorithms

In what follows, we present how CMP can be implemented in terms of packet structure, router data structures and

routing algorithms. We need to categorize CMP packets into several types:

REQ: This packet is sent by a client station to its multicast router to request a service.

FIND: It is sent by a router after it receives a REQ message initiated by some client.

FOUND: If a router receives a FIND message and is able to serve the request, it sends a FOUND message to the

root router to request the right to serve.

REP: The root router replies with a REP message to each router that sents a FOUND to the root router.

CACHE: When a router gets this message, it needs to be ready to cache the upcoming video stream.

ACK: An acknowledge sent by a client's multicast router to a router that is willing to serve the client (i.e., the

serving router).

DAT: Video data packets.

QUIT: A node sends this packet to withdraw its participation from a multicast.

For each of these types, a corresponding routine is installed at each router in order to route the packets correctly.

A dispatcher is also needed to listen to incoming packets. Based on their type, the dispatcher passes them to the

responsible routine for further processing. Routers like this are active since they can perform computations on the

packets and signi�cantly become involved in the routing progress.

To support the service routines, we need to maintain the following information at each router:

Cache Directory: It maintains information about which video is being cached in which chunk of the local bu�er.

We use FIFO as the replacement policy within each chunk. That is, it caches the last chunk-size of data for the

stream currently using the chunk. If a chunk is not caching data for a serving router, it is marked as free after

dropping the �rst video frame. Any of these free chunks can be assigned to the next video stream. This cache

management policy utilizes the bu�er space very e�ciently due to the following observations: (1) A chunk, at

any one time, caches only a small portion of a video. (2) If a chunk is not caching data for a serving router, it

is released very quickly.

Multicast Table: It stores the IDs of the incoming and outgoing routers for each multicast group.

Log Table: It stores information about the REQ packets traveling through the router. This is used to avoid some

packets coming back to the router. This is also used to build the multicast trees.

Group Lists: While a router is waiting for permission to serve a client, more requests for the same video are added

to a group list associated with that service. If the router is selected to provide the service, this group list and

the log table are used to build the multicast tree. On the other hand, if the router is rejected (either by the

root router or by the client), the group list is deleted.

To illustrate some of the packet types and data structures discussed above, we provide the service routines for the

root router in Fig. 3. We note that a root router only deals with three types of packets: REQ, FIND and FOUND.



� Packet type = REQ:

{ Check and update the log table

{ Serve the client

� Packet type = FIND

{ Check and update the log table

{ Set a timer to wait until a FOUND message comes

{ If (the timer expires and no FOUND message comes)

� Update the multicast table

� Send a CACHE message to the client

{ Else

� If (this is the 1st FOUND message for the same client ID)

� Update the multicast table

� Send a REP to the sending router to ask it to serve the client

� Else

� Send a REP to the sending router to ask it not to serve the client

� Packet type = FOUND

{ Check and update the log table

{ If (this is the 1st FOUND message for the same client ID)

� Update the multicast table

� Send a REP to the sending router to ask it to serve the client

{ Else

� Send a REP to the sending router to ask it not to serve the client

Figure 3. Routines at the root router

3.3. Application

To demonstrate the usefulness of CMP, we discuss in this section how an existing video-on-demandmulticast technique

can leverage this protocol. We chose Patching11{13 for this discussion.

One disadvantage of standard multicast techniques is that once a server channel is allocated to deliver a video, it

is not released until the end of the video. As a result, the demand on the server bandwidth is signi�cant. Patching

can avoid this. The idea is to allow a new client to join an existing multicast by caching the multicast data in its

local disk. The server needs only transmit the leading portion of the video in a new patching stream. When the

playback of the leading portion is completed, the client continues to play back the remainder of the video using the

data already bu�ered in the local disk. Clearly, since the video server does not always have to use a channel for the

full duration of a video, the demand on the server bandwidth is much less under Patching. In,11 Patching is shown
to o�er substantially better performance than standard multicast techniques.

By using CMP, Patching can be improved. For convenience, we call the new patching scheme CMP-Patching.
Let jvj represent the video length. Suppose that at time 0, a regular stream Sr is launched. At time t, a patching

stream Sa is initiated for client A. Soon afterward at time t+h (h is very small), a new client B arrives, and another

patching stream Sb is allocated according to Patching. If we use v[t1; t2] to denote the segment of the video from

time t1 to time t2, then the patch required by A is v[0; t], and that required by B is v[0; t+ h]. In total, 2t+ h time



units of video data are delivered on patching streams for the two clients. CMP-Patching can reduce this amount of

data. Since both the streams Sr and Sa can be cached in the routers under CMP, B can receive v[0; t] from a router

on the path from the server to A. Consequently, the server needs to send only h amount of patching data to B. In

total, the server sends only t+h amount of patching data under CMP, which is about half the amount under regular

Patching.

4. PERFORMANCE EVALUATION

To evaluate the e�ciency of CMP, we implemented two detailed simulators to compare it to (Extended) Chaining

running on the Multicast Open Shortest Path First (MOSPF) routing protocol.16 Our performance metrics are

average latency and system throughput. We explain them below:

� Average latency: The average waiting time it takes for a request to get service.

� System throughput: The mean number of requests served in a time unit.

Routers used in our simulation have a default bandwidth of 100 concurrent streams per communication port. That

is, a link between any two nodes can support up to 100 video streams at any one time. Our network is assumed to

consist of a root router and 1,024 multicast routers, each being dedicated to a distinct subnet. The multicast routers

are interconnected to form a 10-dimensional hypercube. The root router is connected to this hypercube through links

to routers located on its di�erent dimensions. This scheme gives the same e�ect of placing a set of distributed servers

at various strategic locations thoughout the network. For convenience, we refer to the number of links between the

root router and the hypercube as the server bandwidth in this paper. The default value is 20 links. That is, the root

router has two links connected to each of the ten dimensions of the hypercube.

Our workload consists of 100,000 service requests, each having the form (client id, video id, router id, arrival
time). We explain these parameters as follows:

� Our workload generator creates the service requests according to a Poisson process with the default request

rate � = 0.7. Each client is willing to wait for at most �ve minutes. When this time expires, the client reneges

its request if resources are still not available for the service.

� The workload generator increments the client id for each new service request. In other words, each client is

assumed to make only one request during the entire simulation run. Without loss of generality, this assumption

simpli�es the implementation of our simulators. For each new request (or client), the workload generator

randomly selects the multicast rounter. Thus, clients are randomly assigned to the subnets. This strategy

allows us to e�ectively control the sizes of the subnets by adjusting the request rate.

� To model the access pattern, videos are chosen according to a Zipf-like distribution with skew factor z. That

is, a video i (1...N) is selected by any request with a probability of 1

iz
P

N

j=1

1

jz

, where N is the total number

of videos. A larger skew factor represents a more skewed distribution, in which some videos are requested

much more often than the others. In our experiments, we adjust this parameter to control the desired access

patterns. Its default value is set at 0.7 which is typical for VOD applications.

Under CMP, each router is equipped with a small cache, whose default size is one minute of video data. We note that

such a small bu�er can be implemented in semiconductor memory. In the case of Chaining, each client can cache up

to �ve minutes of video. For convenience, we use one minute of video data as the unit for caching in this paper. We

summarize our system and workload parameters in Table 1. The rightmost column shows the ranges selected for our

sensitivity analyses. For instance, the average request rate was varied between 0.1 to 1.0 to observe its e�ect on the

performance metrics (i.e., mean service delay and system throughput).



Table 1. Parameters

Parameter default variation

Number of requests 100,000 N/A

Number of videos 100 N/A

Video length(minutes) 90 N/A

Client bu�er size (minutes) 5 1-5

Router chunk size (minutes) 1 1-5

Number of memory chunks 1 N/A

Request rate (request/second) 0.7 0.1-1.0

Network bandwidth (streams/port) 100 60-140

Server bandwidth (comm. links) 20 12-28

Skew factor 0.7 0.1-1.0
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Figure 4. E�ect of the cache size.

4.1. E�ect of cache size

In this study, we set the router cache size under CMP to be the same as the client cache size under Chaining. We

varied this cache size from 1 to 5 units over �ve simulation runs. The performance results are plotted in Fig. 4. We

observe that CMP outperforms Chaining by a very wide margin. As an example, when the cache size is 3 units,

CMP is 400% better in terms of latency, and 60% better in terms of system throughput. As the cache size increases,

CMP exhibits better performance. In contrast, Chaining does not seem to be able to bene�t from the additional

caching space. This is due to the fact that Chaining has much higher network costs. As a result, it does not have

enough network bandwidth to handle the relatively high request rate selected for this study. In summary, Chaining

is much more demanding on the network bandwidth compared to CMP.

4.2. E�ect of request rate

The e�ect of request rate on the two schemes is shown in Fig. 5. We note that since we �xed the number of requests

for each simulation run, the simulated time decreases as the request rate increases. Again, CMP is signi�cantly better

in this study. The improvement in throughput is as high as 100% when the request rate is 1 request per second.

This performance gap would have been larger if we had continued to increase the request rate. This outstanding

performance is achieved while maintaining good service latency. The plot indicates that CMP provides at least 50%

better service latency. For applications requiring true VOD (i.e., no delay), we observe that CMP and Chaining

can support 0.3 and 0.2 requests per second, respectively. The improvement in this case is 33%. We again observe

here that Chaining cannot handle very high request rates due to its high demand on network bandwidth. The

�nite network bandwidth (i.e., 100 streams/port) limited the performance of Chaining to about 0.37 requests per
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Figure 5. E�ect of request rate.
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Figure 6. E�ect of network bandwidth.

second. Increasing the request rate beyond this point only lengthens the service delay without further gain in system

throughput. In contrast, we observe that CMP can scale well beyond one request per second.

4.3. E�ect of network bandwidth

In this study, we varied the network bandwidth from 60 to 140 concurrent streams per port. The performance results

are plotted in Fig. 6. It shows that CMP substantially reduces the service latency. As an example, a reduction of

70% can be achieved when the network bandwidth is 120 streams/port. Similar behavior is observed for throughput,

except the curve for CMP starts to 
at out at 120 streams/port. This should be interpreted as positive. It con�rms

the fact that CMP does not need that much network bandwidth unless the request rate is higher.

4.4. E�ect of server bandwidth

We can increase the server bandwidth by adding more links between the root router and the hypercube network. In

this study, we varied the server bandwidth from 12 to 28 links, each giving an e�ective bandwidth of 100 concurrent

streams. These links are evenly distributed among di�erent dimensions of the hypercube. The results of this study

are plotted in Fig. 7. They show that Chaining is much more demanding on the server bandwidth. As an example,

in order to achieve a throughput of 25 services per minute, Chaining needs a server bandwidth 400% more than that

required by CMP. This is quite impressive considering the fact that CMP uses 488 (� 100;000�5

1025
) times less caching

space. We note that the two throughput curves will eventually converge if we continue to add server bandwidth.

This is due to the fact that CMP does not have enough workload to fully utilize the available bandwidth. In other

words, CMP does not need a lot of server bandwidth unless the request rate is higher.
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Figure 8. E�ect of video access pattern.

4.5. E�ect of video access pattern

The e�ect of video access pattern is plotted in Fig. 8. We observe that the performance of Chaining is essentially

una�ected by the skew condition. On the contrary, the performance of CMP improves noticeably under a more

skewed video access distribution. As an example, if more videos are selected more frequently, the average latency in

CMP is close to zero and the throughput is about 100% better than that of Chaining. This is because the delivery

trees generated by CMP are much larger due to delay features, cache availability, and very e�cient routing and

caching policies.

5. CONCLUDING REMARKS

In this paper, we surveyed di�erent approaches for scheduling multicasts in a distributed video-on-demand system.

We contend that such techniques do not o�er the best performance. To further improve the performance of video

multicasts, we looked deeper into the network layer and developed a new protocol called Caching Multicast Protocol
(CMP). Unlike many existing protocols which were designed to support general-purpose applications, CMP is tuned

to take advantage of the peculiar characteristics of video and audio data. In particular, it uses local storage in

routers to cache network data and multicasts them to future requests on demand. Since these multicasts are done on

demand, true video on demand can be achieved. Making data available at various routers also reduces the demand

on the server bandwidth and allows the application to leverage the in-network bandwidth.

CMP and Chaining are fundamentally di�erent. While Chaining operates at the application level, CMP is a

network-layer protocol. As a result, a multicast tree truly expands over time under CMP. On the contrary, Chaining



must introduce new multicast groups in order to admit new members. This fundamental di�erence makes CMP

less expensive in terms of network costs. It uses substantially fewer network links for delivering data. Another

important di�erence between these two techniques is that CMP does not require client nodes to forward data. This

characteristic makes CMP more practical for a wider range of applications.

To assess the performance of the new technique, we carried out simulation studies to compare CMP with Chaining

running on the Multicast Open Shortest Path First (MOSPF) routing protocol.16 The results indicate that CMP

is much less demanding on network and server bandwidth. It also requires substantially less caching space. With

caching space 488 times less than that used in Chaining, CMP still wins by a very signi�cant margin.

The design of CMP is motivated by the current trend of designing routers to support more complex forwarding

logic. Since CMP requires the routers to perform computation on packet data, it performs best if active routers

are available. For the current IP, Active Node Transport System (ANTS)19 can be used. ANTS is a reference

active network implementation, in which if a node that a packet passes through contains the related code, the

node initializes the code with the packet's parameter values and then executes the code. Since the default code

performs only conventional IP forwarding logic, ANTS can be used to integrate active networks into IP. CMP can

be implemented on IP using this model.
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