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Indoor Localization: Demand
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Indoor Localization: Requirement

Fast?
"Where am I?" – "Let me think!"

Think "critical"! (fire rescue, evacuation in a building)
Think "scalable"! (service to thousands of shoppers in a mall)

Accurate?
"Where am I" – "Apple Store, but I am only 50-50 sure"

(source: studentnewsdaily.com)
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Outline

Review of representative indoor localization approaches
Most focus on accuracy but not computational efficiency

Our recent research results
Faster positioning based on spatially hierarchical learning
Better accuracy based on graph regularization
Truly calibration-free online localization
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Ranging

Ranging is a well-established method
SONAR (= SOund Navigation And Ranging),
RADAR (= RAdio Detection And Ranging) and
LIDAR (= LIght Detection And Ranging).

Distance between a transmitter and a receiver can be estimated by
probe measurements of signal strength, time of arrival, etc.

Location is determined by multi-lateration/angulation, given distances,
or a combination of distances and angles, from a set of references.
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Fingerprinting

Ranging-free (ranging is expensive!)
Fingerprint = a vector of features x = (x1, x2, ..., xm) associated
with a location

should be location-discriminative, easy to obtain
e.g,. RSS from Wi-Fi APs, FM towers, sound, light, earth’s
magnetic

1 Survey: construct a fingerprint map {fingerprint xi , location yi}ni=1
2 Training: learn a prediction function: f (fingerprint x) = location y

Nearest Neighbors (kNN)
Bayesian inference
Support Vector Machines (SVM), Artificial Neural Networks (ANN)

3 Positioning: for each new fingerprint xnew , output f (xnew ).

Duc A. Tran (UMASS Boston) July 30, 2013 6 / 35



Fingerprinting vs. Ranging

Fingerprinting is preferable for its simplicity, wide applicability, and
cost, more suitable for indoor location-based services, especially
targeting consumers
Ranging is expensive, more suitable for specialized highly-critical
applications

This talk is focused on the fingerprinting approach
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Bayesian Method

P(location | fingerprint) =
P(fingerprint | location)× P(location)

P(fingerprint)

Location estimate for fingerprint x is

f (x) = argmax︸ ︷︷ ︸
y

P(y | x)

Need to know (from training data)
Location distribution
Fingerprint distribution at each
location
Fingerprint distribution across
the whole area
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Classification Method

1 Area = a right set of classes each representing a geographic
Usually, the Grid Approach: a class = cell of flat grid

2 Location← fingerprint’s memberships in classes
Support Vector Machines (SVM): de facto for classification

Positioning phase: time complexity = O(no.classes) = O(area)
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Our Approach: Hierarchical Classification Method

Hierarchical vs. Grid = Binary Search vs. Exhaustive Search
For each dimension, define classi = i th percentile of the area
Consequently, class1 ⊂ class2 ⊂ ... ⊂ class100

Find smallest classi containing fingerprint⇒ location = i + 1
2

No. classes = O(
√

area)
Positioning phase: time O(log(no.classes)) = O(log(

√
area)
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Numerical Results: Wi-Fi Colorado Dataset

Wi-Fi RSSI fingerprints at 179 sample locations, 5 Wi-Fi APs
Training set: 1,576 fingerprints (8.8 fingerprints per location)
Testing set: 77,516 fingerprints.
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Numerical Results: Hierarchical vs. Grid
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Location error: slightly better
Computation time: 30+% faster
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Numerical Results: Hierarchical vs. kNN
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Location error: slightly better
Computation time: 16-76 times faster
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Enriching Training Set

Fingerprinting is accurate only if training data is sufficiently rich
Survey phase is labor-intensive!
Need repeated surveys to adapt to changes in the environment

Why not utilize “unlabeled" samples?
Fingerprints are abundant if location label is not required.
Semi-supervised learning to propagate the labels for the
unlabeled fingerprints
Augmented training set⇒ better localization accuracy!
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Incomplete Training Set

Input: an incomplete training set

(x1, y1), (x2, y2), ..., (xl , yl)︸ ︷︷ ︸
labeled

, (xl+1,N/A), ..., (xn,N/A)︸ ︷︷ ︸
unlabeled

.

Output: a good complete training set

(x1, y1), (x2, y2), ..., (xl , yl)︸ ︷︷ ︸
labeled

, (xl+1, yl+1), ..., (xn, yn)︸ ︷︷ ︸
unlabeled

.
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Semi-Supervised Learning

Location predictor: function f ∈ HK , a reproducing kernel Hilbert space
(RKHS) with a positive definite kernel function K : X × X → R

min
f

J(f ) =
1
l

l∑
i=1

(f (xi)− yi)
2 + λ‖f‖2K + γS(f ), (1)

where
1st term: loss function
2nd term: smoothness with respect to kernel K .
3rd term: smoothness with respect to an intrinsic space.
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Fingerprinting as An Image Processing Problem

Figure : Source:
http://carbon.videolectures.net/v001/5d/luiumhtezps2i4tvfbomsfhuu3nt2vzu.pdf
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Manifold Regularization (Belkin et (2006))

A widely used tool for semi-supervised learning
The intrinsic smoothness is

S(f ) =
1
n2

n∑
i,j=1

wij(f (xi)− f (xj))
2

︸ ︷︷ ︸
f T Lf

where wij represents similarity between fingerprints xi and xj .
Optimal solution f (x) =

∑n
i=1 αiK (x∗i ,x) where I = diag(1,1, ...,1︸ ︷︷ ︸

n

),

J = diag(1,1, ...,1︸ ︷︷ ︸
l

,0,0, ...,0︸ ︷︷ ︸
n−l

), Y = [y1, y2, ..., yl ,0,0, ...,0︸ ︷︷ ︸
n−l

]T ,

K =
[
K (xi ,xj)

]
n×n, and [α1, α2, ..., αn]

T =
(

JK + lλI + lγ
n2 LK

)−1
Y.
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Total Variation Regularization (Rudin et al. (1992))

Instead of using Laplacian, use Total Variation (TV) for the intrinsic
smoothness

S(f ) =
n∑

i=1

‖∇f (i)‖Lp(w)

where

‖∇f (i)‖Lp(w) =

 n∑
j=1

wij |fj − fi |p
1/p

.

More effective than manifold regularization for image
restoration/denoising in the area of image processing

Our interest
“Total Variation or Manifold Regularization better for semi-training of
location fingerprints?"
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TV Algorithm (Elmoataz et al. (2008))

1 Initial step: for i , j ∈ [1,n]

f (0)i =

{
yi if i ≤ l
1/2 otherwise

(2)

γ
(0)
ij = wij (3)

2 Iterative step: for i , j ∈ [1,n]

f (t+1)
i =


yi if i ≤ l∑n

j=1 γ
(t)
ij f (t)j∑n

j=1 γ
(t)
ij

otherwise
(4)

γ
(t+1)
ij =

wij

‖∇f (t)(i)‖L2(w)

+
wij

‖∇f (t)(j)‖L2(w)

(5)

3 Stop when |f (t+1) − f (t)| < τ (predetermined threshold). The value
of f (t)i (i > l) is location estimate for fingerprint xi .
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Numerical Results: Wi-Fi Trento Dataset
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257 Wi-Fi RSSI fingerprints at 257 sample locations, 6 Wi-Fi APs
Training set: 128 fingerprints (labeled and unlabeled)
Testing set: 129 fingerprints
Only use the intrinsic smoothness (S(f )) in the risk
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Numerical Results: Average Location Error
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Numerical Results: Max Location Error
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Manifold vs. Total Variation Regularization

Our Finding
MR is better than TV for enriching training set of location fingerprints

1

1D. A. Tran and P. Truong, “Total variation regularization for training of indoor
location fingerprints," in 2013 ACM MOBICOM Workshop on Mission- Oriented
Wireless Sensor Networking (ACM MiSeNet 2013), Miami, Sep 2013.
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Zero Training Set

What if no training set to start with?
Totally avoid expensive survey phase

Fingerprints become available in a stream manner, most of the
time unlabeled: x1, x2, ..., xt , ...
Minimal computing resource requirement for the positioning
algorithm

Think “scalable", “energy", “lightweight"

Challenge
Need truly calibration-free online localization
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Batching Approach

Treat all the fingerprints obtained in the time window [1, t ] as the
training samples
Apply Manifold Regularization to find the best location predictor f

min
f

J(f ) =
1
l

t∑
i=1

θ(yi)L(f (xi), yi) + λ‖f‖2K + γS(f ), (6)

θ is the Heaviside step function.
l =

∑t
i=1 θ(yi): number of labeled fingerprints observed

Disadvantage
Infinite memory to store all the fingerprints
Extremely slow to solve the minimization problem
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(Partially) Incremental Approach

Pan and Yang (2007)

Two phases
1 Initial training: build a fingerprint map using the batching approach
2 Incremental update: Upon each new fingerprint, first update the

weighted graph W = {wij} and then run iterations of weighted
averaging until convergence:

∀ i = 1,2, ..., t : ynew
i =

∑
wijyold

j∑
wij

(7)

Location of fingerprint xt at the current time t will be f (xt) = ynew
t .

Disadvantage
Faster than batching
Still, infinite memory to store all the fingerprints
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Our Approach: Truly Calibration-Free Online

Inspired by the results from online convex programming and its
subsequent development in online manifold regularization.

Model the online localization problem as an online convex
programming problem
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Online Convex Programming (Zinkevich (2003))

Convex Programming
Given convex feasible set F ⊂ Rn, convex function c : F → R
Goal: Find f ∗ = argmin

f∈F
c(f ).

Online Convex Programming

An infinite stream of cost functions, c(1), c(2), ..., c(t) : F → R
Goal: find f (t) ∈ F for each time t , not knowing cost c(t) which is
revealed only after this selection, such that regret is minimal

min

{
R(t) =

t∑
i=1

c(i)(f (i))−min
f∈F

t∑
i=1

c(i)(f )

}
. (8)

One can derive an algorithm based on gradient descent such that
under mild conditions, lim

t→∞
R(t)

t = 0.
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Online Manifold Regularization (Goldberg et al.
(2008))

Ultimate goal: minimize

J(f ) =
1
l

t∑
i=1

θ(yi)(f (xi)− yi)
2 + λ‖f‖2K +

γ

t

i∑
i,j=1

wij(f (xi)− f (xj))
2.

Let p = l/t (“labeling rate"). Express J(f ) as a sum of convex functions

J(f ) =
1
t

t∑
i=1

θ(yi)

p
(f (xi)− yi)

2 + λ‖f‖2K + γ

i∑
j=1

wij(f (xi)− f (xj))
2


︸ ︷︷ ︸

J(i)(f )

Transform to online convex programming
Function space F = HK

Sequence of functions c(1) = J(1), c(2) = J(2), ..., c(t) = J(t)

Goal: at time step t find function f (t) ∈ F with minimal regret.
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Online Localization

Online Manifold Regularization with a Buffer
Store only a finite “buffer" of previous fingerprints, indexed by a set
B(i) ⊂ {1,2, ..., i − 1} so that the computation in time step i requires
knowing the newly received fingerprint xi and fingerprints in B(i).

Same online convex programming problem but replace cost function

J(i)(f ) =
θ(yi)

p
(f (xi)− yi)

2 + λ‖f‖2K + γ

i∑
j=1

wij(f (xi)− f (xj))
2.

by a buffer-constrained cost function

J(i)
B (f ) =

θ(yi)

p
(f (xi)− yi)

2 + λ‖f‖2K + γ
∑

j∈B(i)

wij(f (xi)− f (xj))
2.
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Online Localization Algorithm (Tran and Zhang (2013))

Location estimate: f (i+1)(xi+1) =
∑

j∈B(i+1) α
(i+1)
j K (xj ,xi+1) where

buffer B(i+1) and coefficients α(i+1)
j are determined as follows:

1 Let

β
(i)
j∈B(i) = (1− 2ηiλ)α

(i)
j + 2ηiγwij(f (i)(xi)− f (i)(xj))

β
(i)
i = 2γηi

∑
j∈B(i)

wij(f (i)(xj)− f (i)(xi))−
2ηiθ(yi)

p
(f (i)(xi)− yi)

2 Solve (using Matching Pursuit algorithm, time complexity O(b3))

minimize
α(i+1),B(i+1)

∥∥∥∥∥∥
∑

j∈B(i+1)

α
(i+1)
j K (xj , .)−

∑
j∈B(i)∪{i}

β
(i)
j K (xj , .)

∥∥∥∥∥∥
2

s.t. B(i+1) ⊂ B(i) ∪ {i} and |B(i+1)| = b (given buffer size)
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Calibration-Free Online Localization: Applications

Efficient use of GPS
For a GPS-equipped smartphone, GPS can be set to switch on once in
a while and our algorithm can be used to compute the smartphone
location during the GPS-free gaps⇒ energy saving.

Location assistant
In an indoor building, we can place location labels at popular locations
(e.g,. info desks) which the phone can read automatically when
passing nearby. These labels can be used by our algorithm to infer
location at any other place.

Underwater tracking
AUV tracking is often based on built-in inertial navigation that has to
dead reckon with GPS each time the AUV surfaces. Our algorithm
could help better localize the AUV between these GPS fixes.
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Summary

Effectiveness of fingerprint depends on richness of training data

Contributions
The richer the training data, the more computation during the
positioning phase; need a fast positioning algorithm

Finding 1: Positioning based on spatially hierarchical classification
is many times faster than the conventional classification.

If the training data is not rich, utilize unlabeled fingerprints
Finding 2: Manifold regularization works better than total variation
regularization

If no training data, need to learn on the fly
Finding 3: A truly calibration-free online localization based on
online manifold regularization with buffer.
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