
C Programming
•  C is the language of choice for systems

programming and embedded systems
•  You will learn to write, execute, and debug C

language programs in this course
•  Use Kernighan and Ritchie (K&R) textbook!!

Prof. Duc A. Tran
Department of Computer Science

Disclaimer: Many of these slides are the revised and extended version of those used
in earlier offerings of this class (taught by Dr. Ron Cheung and Mr. Glenn Hoffman)

Working Environment
•  For grading, I will use the terminal window to

compile and test your program.
•  In the lectures, I will use Mac OS as the operating

system, Xcode for writing the source code, and
gcc at the command line as the C compiler

•  You can use any OS, text editor, and IDE of your
choice to work on your C code, but you need to
know how to compile and run your code at the
command line in UNIX.

Basic UNIX Commands

cat display a file on your terminal screen (see also “more”)
cd change directory
cp copy a file
logout logout from your account
lpr print a hard copy
ln creates a new link to a file
ls list files in a directory
more display a file on your terminal screen - one page at a time
mv move a file from one place to another
mkdir create a new subdirectory
pwd print working directory (pathname of directory you’re in)
rm remove (delete) a file
rmdir remove (delete) a directory
CTRL-c “Control” key and “c” key together – stop current command

Visit class website for some basics about UNIX

First Program: Hello World!
•  Create and run a C program – “Hello World!” (K&R, p5+)
•  Create a source file “hello.c” in one of three ways

–  Use a PC in S-3-157, run Putty/SSH and vi or emacs
–  Use your home PC, run Putty/SSH and vi or emac

•  Use “gcc” to compile and create a file named “hello”
•  Run “hello” to see the printout on screen
•  Run “script” to create a “typescript” file and run “exit” to

end the script file

Using script
•  The “script” command: record a terminal session.
•  The “scriptreplay” command: replay a script.
•  The session is captured in a file name

“typescript” by default to specify a different
filename: “script filename”

% script (Start recording typescript file)
Script started, file is typescript
% ls –l (list directory entries)
% cat hello.c (display source file)
% gcc –m32 hello.c –o hello (compile source file in 32-bit
mode)
% ./hello (run executable from current
directory)
% exit (stop recording)
script done on Thu Aug 23 11:30:02 2012

Using vi or vim as Text Editor
•  Many like vi or emacs in Unix as a text editor

–  vim is the LINUX version
•  Keyboard oriented – no use of a mouse!
•  At UNIX prompt, type “vi hello.c”
•  “vi” has three modes (See next slide)

–  “Command mode”
–  “Insert mode”
–  “Last line command mode”

vi Modes

Command Mode:
Type commands or

move cursor over text

At UNIX prompt, type “vi [filename]”

Type “Esc”

Insert Mode:
Insert text at the

current cursor position

Type “i”
Type “I”
Type “a”
Type “A”
Type “o”
Type “O”
Type “R”
(Glass, p. 58) Type “q” or “q!” and

to exit vi
(Return to Unix prompt)

Last Line Command
Mode:

Type “w file” to write file
Type “r file” to read file

Type “:”

Type

“Enter”

vi: Text Entry Commands
•  Key Action

•  i Text is inserted in front of the cursor
•  I Text is inserted at the beginning of the current

line
•  a Text is added after the cursor
•  A Text is added to the end of the current line
•  o Text is added after the current line
•  O Text is inserted before the current line
•  R Text is replaced (overwritten)

vi: Other Commands
•  Movement Commands (Glass, page 86)

 Up one line “cursor up” or “k” key
 Down one line “cursor down” or “j” key
 Right 1 char “cursor right” or “l” key
 Left 1 char “cursor left” or “h” key

•  Edit commands (Glass, page 87)
 [n]x delete n characters at cursor
 [n]dd delete n lines at current line

•  To display line numbers by default, create an .exrc file in
your home directory with one line: “set nu”. Your new vi
session should show line numbers.

hello.c Program (K&R, Page 6)
/* hello: first program

 name: your name
 date: xx/xx/xx

*/
#include <stdio.h>
int main(void) {

 printf(“Hello World!\n”);
 return 0;

}

comment

statements

C preprocessor
directive

C function

Comment Lines
•  Comment text is ignored by the compiler

 /* This is a multi-line comment.
 Write whatever you want here
 The compiler ignores all these lines. */

•  Be sure to start with /* and close with */

Include a Library - #include …
•  Because this program uses the Standard I/O

Library, it needs to include <stdio.h>

•  In C programming, a “.h file” defines
– Macros (e.g. Names for constants)
– Prototypes for functions (e.g. printf itself)

•  “gcc won’t compile “hello.c” with the “printf”

function without the “#include <stdio.h>”

Main Function
•  “int main (void)” is where your C program starts

execution
•  Every function start with { and close with }. The

code to implement this function put between these
“braces”

 {
 program statements are here;
 }

printf
•  The Standard I/O Library provides a function

named “printf (…)” to display argument as text
on screen

 printf(“Hello World!\n”);

•  “\n” is a C convention for “end of line”

(character constants in K&R page 193)
•  All C program statements end with a “ ; ”

Character Constants

New line \n backlash \\
Horizontal tab \t question mark \?
Vertical tab \v single quote \’
Backspace \b double quote \”
Carriage ret \r octal number \ooo
Form feed \f hex number \xhh
Audible alert \a

Compiling and Linking

Source
program

Object
Module

Executable
Module

hello.c hello.o hello

compile
gcc -c

Object
Module

Object
Module

link
gcc -o

Compile Your Program
•  To compile your program, type
• 

 gcc hello.c –o hello

–  To build a 32-bit application: gcc –m32 hello.c –o hello
•  If you get no error messages

–  The compiler has accepted your source code
–  You should now have a file named “hello”
–  If you forget to specify –o hello in “gcc hello.c”, the

default executable will be a file name “a.out”

Run Your Program
•  At UNIX/LINUX prompt, type ./hello

•  If you get the printout “Hello World!” and a new

prompt, your program ran successfully

•  If not,
– Study any UNIX error messages for clues
– Study your source code for logical errors
– Probably logical errors - compiler didn’t catch
– Fix your source code and recompile / rerun

Debugging a C program error

•  There is a big difference between:
– The program compiling correctly
– The program doing what you want it to do

•  You hope the compiler will catch your
errors
– These errors will be easier to find

•  If the compiler does not catch your errors
– These errors will be harder to find

Compiler Error Messages

•  A compiler error message may direct you to
a specific error in your program

•  A compiler error message may be vague
about what the error is and why it is an error

•  Some compilers are better than others at
providing useful error messages!

Compiler Error Messages

% gcc hello.c –o hello
hello.c: In function `main':
hello.c:6: parse error at end of input

•  Not a very helpful message!

#include <stdio.h>
int main(void) {

 printf("Hello, World!");
 return 0;
 /* missing “}” */

Variables
•  Defined Data Type, Name, and (= value)

 int lower = 0; /* Note: “=“ and “;” */

•  lower case by convention for readability
•  An executable statement
•  Memory location assigned to hold the value
•  Value can be changed as program executes

 lower = 20; /* Legal */

Symbolic Constants
•  Defined Name and Value

#define LOWER 0 /* Note: No “=“ or “;” */

•  UPPER CASE by convention for readability
•  Not an executable statement
•  No memory location assigned to hold value

(known as declarations)
•  Value can’t be changed as program executes

 LOWER = 20; /* NOT Legal */

Example Program (K&R, P 15)
#include <stdio.h>
#define LOWER 0 /* Symbolic Constants */
#define UPPER 300
#define STEP 20
/* Print out Fahrenheit – Celsius Conversion Table */
int main() {

 int f; /* Variable type*/
 for (f= LOWER; f<= UPPER; f = f + STEP)
 printf(“%3d,%6.1f\n”, f, (5.0/9.0)*(f– 32));
 return 0;

}

definition

statements

declarations

for Statement
for (A; B; C) – repeat executing statement(s) within the loop

 A is initialization (executed once when loop is started)
 B is the loop test statement (when to stop looping)
 C is a statement to execute at end of each loop

Example

for (f= LOWER; f<=UPPER; f= f+ STEP) {
 statements within the loop;

}

printf statement (K&R, p. 154)
printf (“%3d, %6.1f\n”, f, (5.0/9.0)* (f- 32));

First argument = “%3d, %6.1f\n”

 %3d = integer format with 3 digits
 %6.1f = floating point format with 6 digits and 1 decimal
 \n = end of line character just as in “Hello World!”

Second argument = f

Third argument = (5.0/9.0)*(f– 32.0)

printf formats
printf (“%3d, %6.1f\n”, f, (5.0/9.0)* (f- 32));

•  %3d and %6.1f are special placeholders

•  The two expressions following the quoted string,
f, and (5.0/9.0)*(f-32), are to be printed according
to the prescription given, respectively.

•  Other characters in the quoted strings are printed
verbatim

Function
•  A function is a separate block of code that you can

call as part of your program
•  A function executes and returns to next line after

you call it in your program
•  Arguments may be passed to a function
•  Arguments are passed by value

function_name (arguments);
•  A return value may be passed back

return_value = function_name (arguments);

Character I/O – getchar()
•  A standard function/macro defined in <stdio.h>
•  Get a int value representing a character from

standard input
–  No argument needed

 int c;
 c = getchar();

Character I/O – putchar()
•  A standard function/macro defined in <stdio.h>
•  Print the character to standard output
•  Argument: the int value representing the character

from standard input

 int c;
 putchar(c);

int vs. char
•  int is an integer type, 4 bytes of significance, from

-2^31 to 2^31 -1.
•  char is another integer type, but only 1 byte of

significance from -128 to 127

•  What is a character? (‘a’, ‘b’, ‘1’, ‘2’, etc.): Values

in the range of 0-127 decimal are ASCII code
characters.
–  These characters each fits in 1 byte.
–  Therefore, we should use type char to represent a

character

ASCII Code
•  For computers to process our letters, digits,

punctuation marks, etc, we need a binary
code for each such “character”.

•  American Standard Code for Information
Interchange (ASCII) provides these codes.
– See the ASCII Code Table on the next slide

•  Standard 8 bit bytes and 16 bit words are
not integer multiples of 3 bits but are integer
multiples of 4 bits – favoring use of Hex!

Octal and Hex Numbers
•  People normally deal in numbers base 10
•  Computers normally deal in numbers base 2
•  The problem:

– Reading a long string of 1’s and 0’s not easy
– Conversion between base 2 and base 10 not

easy
•  The solution:

– Convert binary digit strings to Octal or Hex
– Easily done because 23 = 8 and 24 = 16

Octal and Hex Numbers
•  Look at a long string of binary digits in groups

–  3 digits for Octal
–  4 digits for Hex

•  See the following examples:
–  Binary Digits
–  Grouped by threes
–  For Octal
–  Grouped by fours
–  For Hex

•  Don’t convert binary to/from Hex/Octal via
decimal!

011010101100 …
011 010 101 100 …

0110 1010 1100 …
003 002 005 004 …

0x6 0xa 0xc …

“Octal” Dump
•  Use “od –x” to see hex dump of a file

 od –x trim.in
 00000000 0909 4e68 …. 2020
 . . .
 00000120 7061 7274 .… 0a0a

•  Octal and Hexadecimal numbers
•  Why dump in Hex instead of Octal?
•  ASCII code for representing characters

Example: File Copying
/* filecopy.c */
include <stdio.h>
main ()
{

 int c;
 c = getchar();
 while (c != EOF) {
 putchar (c);
 c = getchar();
 }

}

This program takes whatever
you get from standard input
(keyboard) and prints it out at
standard output (screen)

EOF: a special int constant
representing the end of file (in
this case, end of standard input)

Here, variable c means a
character. Why do we define it
as an int?

Redirecting stdin and stdout

•  We can use the previous program, filecopy,
to copy a file into another. How?
– Redirect getchar() to read from a file, instead

the standard input (stdin)
 filecopy < input.txt

– Redirect putchar() to write to a file, instead
the standard output (stdout)
 filecopy > output.txt

Example: Counting Lines
/* linecount.c */
#include <stdio.h>
main () {

 int c, m;
 m = 0;
 c = getchar();
 while (c!= EOF) {
 if (c= =‘\n’) ++m;
 c=getchar();
 }
 printf(“%d\n”, m);

}

Stop the loop when we
see EOF (end of file)

Each time we see the
new line character ‘\n’,
we increment the
count m

Check for Equality
•  Use double equals (= =) for checking “equals”
•  if (c = = ‘\n’)

–  If statement with logical expression in parentheses
•  Result of comparison equal to 0 is treated as False
•  Result of comparison not equal to 0 is treated as True

–  The expression is a check for int c equal to ‘\n’ or not
•  if (c = ‘\n’)

–  If int c wasn’t equal to ‘\n’ before, it is now!
–  And the expression is treated as true (‘\n’ is not = 0)

Increment, Decrement
•  Incrementing a variable

Shorthand ++m;
Shorthand m++;
Equivalent to m = m + 1;

•  Decrementing a variable

Shorthand --m
Shorthand m--
Equivalent to m = m - 1

Prefix: increment m
 before m is used

Postfix: increment m
 after m is used

The while loop

 while (logical expression) {
 statements while expression is true;
 }

•  while does not execute any statements if the
logical expression is false upon entry!

The for loop

 for (initialize; loop test; increment) {
 statements for expression is true;
 }

•  for does not execute any statements if the
loop test is false after initialization!

The if-else statement

 if (logical expression) {
 statements when expression is true;
 } else {
 statements when expression is false;
 }

•  “else” portion of statement is optional!

Nested if-else

 if (logical expression 1) {
 statements when expression is true;
 } else if (logical expression 2) {
 statements when expression is false;
 } else if (logical expression 3) ….

•  Inside a if-else statement block, we can
have other if-else statements

Array / Character String
•  An array is a list of a given number of values of a

given type. The name of the array is a pointer to
the memory space where its elements are stored

 int array[100];

•  Character string = is an array of char type values
ending with a null character (‘\0’)

 char name[50];

Arrays / Character Strings
•  How to use a variable to store the string “hello\n”?

 char array[7] = “hello\n”;

•  Make sure that the last element’s value is ‘\0’
•  The values of this array are
array[0] array[1] array[2] array[3] array[4] array[5] array[6]

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\n’ ‘\0’

Example: Counting Digits
/* count.c */
/* count digit characters 0-9 coming from stdin */

#include <stdio.h>
int main() {
 int c, i; /* c for getchar - ASCII code for integers */

 int ndigit[10]; /* subscripts 0 through 9 */

 for (i = 0; i <= 9; ++i) /* Set all array value = 0 */

 ndigit[i] = 0;

Example: Counting Digits, cont’d
 while ((c = getchar()) != EOF) {
 if(c >= '0' && c <= '9') /* if c is a digit */

 ++ndigit[c-'0']; /* increment 1 array element */

 }
 printf("digits = ");

 for (i = 0; i <= 9; ++i) printf("%d ", ndigit[i]);
 printf("\n");

 return 0;
}

Run count.c
% gcc count.c
% ./a.out
123456789011222333344444555555677888999000
fgfgfgfg (Note: These won’t be counted as digits)

^D (Control-D is End of File – EOF)

digits = 4 3 4 5 6 7 2 3 4 4
%

Example: maxline.c
•  Find the longest line. Here is the pseudocode:

 while (there’s another line)
 if (longer than the previous longest)
 save it
 save its length

 print longest line

•  Large enough to break up into “functions”

maxline.c
#include <stdio.h>

/* define maximum length of lines */
#define MAXLINE 1000

/* define function prototypes */
int getline(char line[], int maxline);
void copy(char to[], char from[]);

Program: maxline (cont’d)
int main (){

 int len, max=0; /* initialization */

 char line[MAXLINE], longest[MAXLINE];
 while ((len = getline(line, MAXLINE)) >0)

 if (len > max) {
 max = len;
 copy(longest, line);

 }
 if (max > 0) printf (“%s”, longest); /* there was a line */

 return 0;
}

Function: getline()
/* getline: read a line into s, return length */
int getline(char s[], int lim) {

 int c, i;
 for (i=0; i<lim-1&&(c=getchar()) != EOF&&c != ‘\n’; ++i)
 s[i] = c;
 if (c = = ‘\n’) {
 s[i] = c;
 ++i;
 }
 s[i] = ‘\0’;
 return i;

}

Function: copy ()
/* copy: copy ‘from’ into ‘to’

 assume size of array ‘to’ is large enough */

void copy (char to[], char from[])
{

 int i;
 i = 0;
 while ((to[i] = from[i]) != ‘\0’)
 ++i;

}

an array of characters; length unspecified

Notes on the Details
•  Precedence of operators in getline()

 i < lim-1;
 ((c = getchar()) != EOF);
 (expression && expression && expression)

•  Pass by value arguments for copy (pointers)
 void copy(char to[], char from[])
 while ((to[i] = from [i]) != ‘\0’)

Debugging
•  2 ways to debug a program:

–  Use printfs
•  Insert printf’s in multiple places in your program and print out

intermediate values

–  Use gdb debugger
•  A professional programmer uses a debugger, rather than

putting in lots of printf statements to track down a bug.
•  Most IDEs provide a debugger tool that is much

easier to use than gdb at the command line
•  But gdb is good if we want to program at the low

level

Use of the gdb Debugger

•  Start with the correct compiler options:
 gcc -g vt.c -o vt

•  Type the following to run the program:
 gdb vt

•  Gives message:
Ready to run -- not yet running.

creates an executable that has debugging info, e.g.
 - data type for variables/functions
 - correspondence between line # and addresses

Use of the gdb
•  Want to interact with running program, not letting

it run free. To set a break point at main(), type:
 b main

 break at main()
•  To run, type:

 r <vt.in
 run, taking stdin from vt.in

•  Will stop when encounters main() in program
execution -- often lot of things get done first.

•  Now can single step through program, s or n (skip
entering functions), put out values of variables.

Examples of gdb commands
p i (print value of variable i)

p i=2 (set the variable i to 2 and print it)

p 3*i (print value of expression 3*i)

p/x i (print in hex format value of variable i)

set variable i=5 (set the variable i to 5 without printing)

i lo ("info" - give values of all local variables)

h (help -- pretty good messages -- lists topics)

h topic (help on named topic)

h p (help on command p for printf)

q TO QUIT (leave debugger)

Use of gdb (cont’d)
•  More complex gdb commands in User’s Guide.
•  Setting breaks/conditional breaks at line numbers:

b 36
b fn.c:22 if i = = 3

•  Getting line numbers from "list" or "l" command:
l 22 print 10 lines around line 22 in main
l after listing some lines, then l means next 10 lines
i b to get info on breakpoints

d 3 to delete bkpt 3

c for continue after bkpt encountered

Function: Call by Value

•  Pass values as
arguments into the
function
– The passed variables

are actually only
copies on the stack

Stack Pointer
Before call and after return

Unused

Stack Pointer
After call and before return

Unused i j Return
Data

Stack
Data

Stack
Data

Copy of Value

void foo(int i, int j) {
}
foo(i, j);

Note: Stack pointer is a register

Function: Call by Value

•  This is known as Call by Value.
•  You can't change arguments in original location

within the function -- just change the stack copy
•  To make changes, you must pass pointers to

original variables. See next slide.

void foo(int i, int j) {
}

foo(i, j);

The following doesn’t work!!!

 void exchgint (int a, int b) {
 int dummy;
 dummy = a;
 a = b;
 b = dummy;
 }

Outside, let’s say a=5, b=4, and we call exchgin(a, b),
then the values of a and b won’t swap.

int a = 4;
int b = 5;
exchgin(a, b);
/* still, a=4, b=5 */

Function: Call by Reference
•  Pass pointers

as arguments
into the
function
– Still only value

on the stack
but we can
access original
location
indirectly

Stack Pointer
Before call and after return

Unused

Stack Pointer
After call and before return

Unused &i &j Return
Data

Stack
Data

Stack
Data

Point to values

foo(&i, &j);
void foo(int *i, int *j) {
}

What is a Pointer?

•  Pointer = a variable that represents a
memory address

•  For example
int* pi;
char* pc;
float* pf;

•  pi is a pointer, representing a memory address
where an integer is stored

•  pc is a pointer, representing a memory address
where a character is stored

Pointers as Arguments
•  Must be done with pointers!!!

 void exchgint (int *pa, int *pb) {
 int dummy;
 dummy = *pa;
 *pa = *pb;
 *pb = dummy;

}
•  int * is a pointer type. A variable of

this type (e.g., pa) is to represent a
memory address

•  Expression *pa represents the value
stored at the address pa

int a = 4;
int b=5;
exchgin(&a, &b);
/* now, a=5, b=4 */

&a is the the address
(pointer) where variable a
is stored. Here, we pass
arguments into the
function by pointers (&a
and &b)

An Array as a Pointer
 int array1[10], array2[10];
 foo(array1, array2);

•  When passing an array, it is automatically passed
as a pointer

•  You don't need to create a pointer yourself with
the “address of” operator (&)

•  This is because by convention, the array variable
array1 is the address where the array begins. It is
therefore a pointer.

Local Automatic Variables

•  Local variable = defined inside a function (or
block{ }), valid only inside this function.

•  Local variables are said to be automatic
–  Automatically created when function is called and go

away when function is finished
•  Memory is allocated on the stack after the calling
•  Undefined (i.e. garbage) value unless explicitly

initialized in the source code
•  Initialization is done each time the function or

block is entered

Local static Variables: Example
#include <stdio.h>

void increment() {
 static int i = 5;
 printf("%d\n", i);
 i++;
}

int main() {
 increment();
 increment();
 increment();

 return 0;
}

Each time, increment() is called, local static
variable i value is preserved for future use

Local static Variables
•  A static variable declared in a function is

preserved in memory. Local, only used inside { }.
•  Set to zero if it is not initialized otherwise.
•  Initialization is done only once and when the

program starts execution (K&R P.85).
e.g., the seed of a random number generator so it
will have memory from one invocation to the next
and not always give the same random number.
 int rand() {
 static int seed = 1; /* initialize to 1 in the beginning and
 … remember value between calls to rand */

 }

External Variables
•  External variable = defined outside every function

(or block{ }), usable everywhere (even in a
different file, for example, of a project).

•  Don’t use them. Why?
–  If their value is corrupted, NOT easy to figure out
–  They make the functions depend on their external

environment instead of being able to stand alone using
arguments to get their input values and a return value to
pass back an output value.

•  Software architecture/design standards for most
projects will prohibit use of “global variables” or
severely restrict their use.

External Variables: Example
/* file2.c */
extern int i;
void f() {

 i++;
}

/* file1.c */
int i;
extern void f();
int main() {
 f();
 printf(“%d\n”, i);
 return 0;
}

A project with 2 programs. The external variable i in file1.c can
be used everywhere in the project (file2.c)

External Variables: extern

The external variable i in file1.c is declared as “extern” in file2.c
so that it can be used in file2.c. is also applicable to functions.

/* file2.c */
extern int i;
void f() {

 i++;
}

/* file1.c */
int i;
extern void f();
int main() {
 f();
 printf(“%d\n”, i);
 return 0;
}

Global static Variables

•  To limit the scope of a global variable to this file
only, declare it as static

•  Can be used to pass data between functions in file
only

•  Values are preserved like static local variables
•  It is guaranteed to be initialized to zero
•  If initialized, it is done once before the program

starts execution.
•  These are more acceptable than external (non-

static) variables

Examples of Scopes of Variables

•  These examples are from p.342:

“C Programming for Scientists and Engineers
with Applications” by Rama Reddy and
Carol Ziegler, Jones and Bartlett 2010.

Scope of Variables – Example #1
#include <stdio.h>
int main() {
 int x=10;
 printf(“x=%d\n”, x);
 {
 int x=5;
 printf(“x=%d\n”, x);
 {
 int x=40;
 printf(“x=%d\n”,x);
 }
 x=x+4;
 printf(“x=%d\n”,x);
 }
 x=x+15;
 printf(“x=%d\n”,x);
 return 0;
}

x=40 x=5+4 x=10+15

If the same variable is
defined
inside and outside the
block,
the name inside the block
will be referenced if the
block is being executed.

10

5

Scope of Variables – Example #2
#include <stdio.h>
void func1(void);
void func2(void);
void func3(void);
int main() {
 int x=20;
 printf(“x=%d\n”, x);
 func1();
 x=x+10;
 printf(“x=%d\n”, x);
 func2();
 x=x+40;
 printf(“x=%d\n”,x);
 func3();
 return 0;
}

int x;
void func1(void){
 x=5;
 printf(“In func1 x=%d\n”,x);
 return;
}

void func2(void){
 int x=0;
 printf(“In func2 x=%d\n”, x);
 return;
}

void func3(void){
 printf(“In func3 x=%d\n”, x);
 return ;
}

Scope of
1st x

Scope of
2nd x Scope of

3rd x

20

30

70

5

0

5

Scope of Variables – Example #3

#include <stdio.h>
void func1(void);
void func2(void);
int main(){
 extern int x;
 x=1;
 printf(“x=%d\n”, x);
 func1();
 x=x+6;
 printf(“x=%d\n”, x);
 func2();
 x=x+7;
 printf(“x=%d\n”,x);
 return 0;
}

int x;
void func1(void){
 printf(“In func1 x=%d\n”,x);
 x=5;
}
void func2(void){
 x=x+10;
 printf(“In func2 x=%d\n”, x);
}

Scope
of x

File 2

File 1

1 1

11
21

28

Scope of Variables – Example #4
#include <stdio.h>
void func1(void);
void func2(void);
int main(){
 extern int x;
 x=1;
 printf(“x=%d\n”, x);
 func1();
 x=x+6;
 printf(“x=%d\n”, x);
 func2();
 x=x+7;
 printf(“x=%d\n”, x);
 return 0;
}

int x;
void func1(void){
 x=5;
 printf(“In func1 x=%d\n”,x);
}
void func2(void){
 int x=10;
 printf(“In func2 x=%d\n”, x);
}

Scope
of x

Scope
of x

File 1 File 2

1

11

18

5

10

