
Data Types
•  char (character)

8 bits (stored in one byte in memory)
unsigned:

 0 ≤ char ≤ 28 -1
 00000000 ≤ char ≤ 11111111
 Overflow at 255 (255 + 1 = 0)
 Underflow at 0 (0 – 1 = 255)

signed (if supported in the implementation):
 -27 ≤ char ≤ 27-1
 10000000 ≤ char ≤ 01111111
 Overflow at 127 (127 + 1 = -128)
 Underflow at –128 (-128 – 1 = 127)

Data Types
•  int (integer on our machines)

32 bits (stored in four sequential bytes in memory)
unsigned:

 0 ≤ char ≤ 232 - 1
 0x00000000 ≤ char ≤ 0xffffffff
 Overflow at 4294967295 (4294967295 + 1 = 0)
 Underflow at 0 (0 – 1 = 4294967295)

signed:
 -231 ≤ char ≤ 231-1
 0x80000000 ≤ char ≤ 0x7fffffff
 Overflow at 2147483647 (2147483647 + 1 = –2147483648)
 Underflow at –2147483648 (-2147483648 – 1 = 2147483647)

Data Types
•  short int (short integer on our machines)

16 bits (stored in two sequential bytes in memory)
unsigned:

 0 ≤ char ≤ 216 - 1
 0x0000 ≤ char ≤ 0xffff
 Overflow at 65535 (65535 + 1 = 0)
 Underflow at 0 (0 – 1 = 65535)

signed:
 -215 ≤ char ≤ 215-1
 0x8000 ≤ char ≤ 0x7fff
 Overflow at 32767 (32767 + 1 = –32768)
 Underflow at –32768 (-32768 – 1 = 32767)

Data Types
•  long int (long integer on our machines, same as int)

32 bits (stored in four sequential bytes in memory)
unsigned:

 0 ≤ char ≤ 232 - 1
 0x0000 0000 ≤ char ≤ 0xffff ffff
 Overflow at 4294967295 (4294967295 + 1 = 0)
 Underflow at 0 (0 – 1 = 4294967295)

signed:
 -231 ≤ char ≤ 231-1
 0x8000 0000 ≤ char ≤ 0x7fff ffff
 Overflow at 2147483647 (2147483647 + 1 = –2147483648)
 Underflow at –2147483648 (-2147483648 – 1 = 2147483647)

Data Types

•  float
–  32-bits (stored in four sequential bytes in

memory)
–  based on the IEEE 754 floating point standard

 + 1.f x 2e

1 8 bits 23 bits
sign exponent e fraction f

Data Types
•  float, double

–  “double” is a “float” with more precision
–  Implementation is machine dependent:

•  for our machine: float is 4 bytes, double 8 bytes

•  Without a co-processor to do floating point
computation, it is computationally
expensive in software.
– Not often used in real time, embedded systems.
– A cost versus performance tradeoff!

Numbering Systems
•  Binary

•  Octal (Octal Constant is written 0dd…)
OCTAL BINARY OCTAL BINARY

 0 000 4 100
 1 001 5 101
 2 010 6 110
 3 011 7 111

Note: Can’t write a decimal value with a
leading 0 digit – will be interpreted as octal

Numbering Systems
•  Hex (Hex Constant is written 0xdd…)

 HEX BIN. HEX BIN. HEX BIN. HEX BIN.
 0 0000 4 0100 8 1000 C 1100
 1 0001 5 0101 9 1001 D 1101
 2 0010 6 0110 A 1010 E 1110

 3 0011 7 0111 B 1011 F 1111

•  DO NOT convert between binary and Hex or
Octal by converting to decimal and back!
–  Group binary digits by 3 (octal) or 4 (hex) to convert

Examples of the Number System

Decimal Octal Hex
 31 --------> 037 -----------> 0x1f

 128 -------->0200 ----------> 0x80

Numbering Systems

•  char Data Type Constants
‘a’ int value in ASCII code for letter ‘a’
‘0’ int value in ASCII code for number 0
‘\b’ int value in ASCII code for backspace
‘\ooo’ octal value 000-377 (0-255 decimal)
‘\xhh’ hex value 0x00-0xff (0-255 decimal)

•  Examples
‘a’ = 0x61 ‘0’ = 0x30
‘\127’ = 0x57 ‘\x2b’ = 0x2b

Numbering Systems

•  Other Data Type Constants
1234 int
1234L long int
1234UL unsigned long int
1234. double (because of decimal point)
1234.4F float (because of the suffix)
1234e-2 double (because of exponent)

Converting Decimal to Binary
•  Divide the decimal number successively by 2 and

write down the remainder in binary form:
 e.g. 11710

 117 1 LSB (after divide by 2, remainder =1)
 58 0 (after divide by 2, remainder =0)
 29 1 (after divide by 2, remainder =1)
 14 0 (after divide by 2, remainder =0)
 7 1 (after divide by 2, remainder =1)
 3 1 (after divide by 2, remainder =1)
 1 1 (after divide by 2, remainder =1)

 0 0 MSB

•  Read UP and add any leading 0’s: 01110101

odd
even

Converting Decimal to Hex

•  Method 1: Convert decimal to binary and
group the binary digits in groups of 4

 e.g. 11710 ! 0111 01012 ! 7516
•  Method 2: Divide the decimal number

successively by 16 and write down the
remainder in hex form:
 117 5 LSB (after divide by 16, remainder =5)
 7 7 MSB (after divide by 16, remainder =7)
– Read UP and add any leading 0’s: 0x75

Converting Binary to Decimal

•  Treat each bit position n that contains a one
as adding 2n to the value. Ignore 0’s.

 Bit 0 LSB 1 1 (= 20)
 Bit 1 0 0
 Bit 2 1 4 (= 22)
 Bit 3 1 8 (= 23)
 Bit 4 0 0
 Bit 5 1 32 (= 25)
 Bit 6 0 0
 Bit 7 MSB 0 0
 Total 45

Converting Hex to Decimal

•  Treat each digit n as adding 16n to the value.

 Digit 0 LSB 0 0
 Digit 1 2 32 (= 2 * 161)
 Digit 2 b 2816 (= 11 * 162)
 Digit 3 0 0
 Digit 4 0 0
 Digit 5 1 1048576 (= 1 * 165)
 Digit 6 0 0
 Digit 7 MSB 0 0
 Total 1051424

Base for Integer Constants

•  Designating the base for an integer constant
•  If constant begins with either:

0x It is Hex with a-f as Hex digits
0X It is Hex with A-F as Hex digits

•  Otherwise, if constant begins with
0 It is Octal

•  Otherwise, it is decimal

Base for Character Constants

•  If constant begins with either:
‘\x It is Hex with 0-9 and a-f as Hex digits
‘\X It is Hex with 0-9 and A-F as Hex digits

•  Otherwise, if constant begins with
‘\0 It is Octal

•  Otherwise, it is the ASCII code for a
character

 ‘a’

Signed (Default) Behavior

•  By default, int and char variables are signed
•  Careful mixing modes when initializing

variables!
int i; (signed behavior is default)
char c; (signed behavior is default)
i = 0xaa; (== 000000aa) as intended
i = ‘\xaa’; (== ffff ffaa) sign extends!
c = ‘\xaa’; (== aa) as intended
i = c; (==ffff ffaa) sign extends!

Unsigned Behavior

unsigned int i; (must specify unsigned if wanted)
unsigned char c; (must specify unsigned if wanted)
i = 0xaa; (== 000000aa) as intended
i = ‘\xaa’; (== ffffffaa) char sign extends!
c = ‘\xaa’; (== aa) as intended
i = c; (==0000 00aa) char sign not extended!

Example to illustrate signed/
unsigned types

void copy_characters(void){
 char ch;
 while ((ch =getchar()) != EOF)
 putchar(ch);
}

If getchar() == EOF,
is this true?

What happens if ch
is defined as
unsigned char?
Is this true?

Changing the declaration of ch into int ch; makes it work.
Yes, because “int getchar(void)” No

1’s Complement
•  Flip the value of each bit

All zeroes become one, All ones become zero
~ ‘\xaa’ == ‘\x55’
~10101010 == 01010101

•  Number anded with its 1’s complement = 0
 10101010

& 01010101
 00000000

2’s Complement
•  Flip the value of each bit and add 1
•  It creates the negative of the data value

- ‘\x55’ == ‘\xab’
- 01010101 == 10101011

•  Number added to its 2’s complement = 0
 01010101
 + 10101011

 (1) 00000000 (carry out of MSB is
dropped)

Two Special Case Values
•  char 0 (or zero of any length)

-00000000 = 11111111
 + 1
 = 00000000

•  char -27 (or -2n-1 for any length = n)
-10000000 = 01111111

 + 1
 = 10000000

Bit Manipulation
•  Bitwise Operators:

 ~ one’s complement (unary not)
 & and
 | or
 ^ xor (exclusive or)
 << left shift
 >> right shift

Binary Logic Tables

AND 0 1

0

1 1

0

0

0
NOT

0

0

1

1

OR 0 1

0

1 1

0

1

1

ADD 0 1

0

1 0
Carry 1

0

1

1

XOR 0 1

0

1

1 0

0 1 Operands

Results

Bit Manipulation
unsigned char n = ‘\xa6’;

 n 10100110

 ~n 01011001 (1s complement: flip bits)

 n | ‘\x65’ 10100110 turn on bit in result if
 | 01100101 on in either operand
 11100111

Bit Manipulations

n & ‘\x65’10100110 turn on bit in result if
 | 01100101 on in both operands
 00100100

n ^ ‘\x65’ 10100110 turn on bit in result if
 | 01100101 on in exactly 1 operand
 11000011

Bit Manipulations
 n = ‘\x18’; 00011000 (Remember n is unsigned)
 n << 1 00110000 shift 1 to left (like times 2)
 n << 2 01100000 shift 2 to left (like times 4)
 n << 4 10000000 shift 4 to left

 (bits disappear off left end)
 n >> 2 00000110 shift 2 to right (like / 4)
 n >> 4 00000001 shift 4 to right

 (bits disappear off right end)

Unsigned Right Shift 0

Bit Manipulations
•  “>>” result may be different if n is signed!

–  If value of n has sign bit = 0, works same as last slide
–  If value of n has sign bit = 1, works differently!!

 char n = ‘\xa5’; (default is signed)
 n 10100101 (sign bit is set)
 n >>2 11101001 (bring in 1’s from left)

Bit Manipulations

•  For signed variable, negative value shifted
right by 2 or 4 is still a negative value
 ‘\xa5’ =10100101
 ‘\xa5’ >> 2 = 11101001 = ‘\xe9’

•  Same result as divide by 4 (22 = 4)
•  But, this is not true on all machines

Bit Manipulations

•  When dividing a negative value
– Different rounding rules than for positive value
– Remainder must be negative - not positive

•  Note that (-1)/2 = -1

•  Note that -(1/2) = 0

Forcing Groups of Bits Off

•  Given char n, how to turn off all bits except
the least significant 5 bits:

 n = n & ‘\x1f’

 n = ‘\xa5’ 10100101
 n & ‘\x1f’ 10100101
 & 00011111 turn off all bits
 00000101 except bottom 5

Forcing Groups of Bits On

•  Given n, how to turn on the MS two bits (if
already on, leave on).

 n = n | ‘\xc0’

 n = '\xa5'
 n | '\xc0': 10100101
 | 11000000 turn on MS 2 bits
 11100101

String Constants
•  String constant: “I am a string.”

–  An array (a pointer to a string) of char values
somewhere ending with NUL = '\0’

–  "0" is not same as '0'. The value "0" can't be used in an
expression - only in arguments to functions like printf().

•  Also have a library with string functions
 #include <string.h>

 With these definitions, can use: len = strlen(msg);
 where msg is string in a string array

Enumeration Symbolic Constants
•  enum boolean {FALSE, TRUE};

–  Enumerated names assigned values starting from 0
•  FALSE = 0
•  TRUE = 1

•  Now can declare a variable of type enum boolean:
enum boolean x;
x = FALSE;

•  Just a shorthand for creating symbolic constants
instead of with #define statements

•  Storage requirement is the same as int

Enumeration Symbolic Constants

•  If you define months as enum type
 enum months {ERR, JAN, FEB, MAR,
 APR, MAY, JUN, JUL,
 AUG, SEP, OCT, NOV,
 DEC};

•  Debugger might print value 2 as FEB

Code Example of the enum type
int main()
{
 enum month {ERR, JAN, FEB, MAR, APR, MAY, JUN,

 JUL, AUG, SEP, OCT, NOV, DEC};
 enum month this_month;

 this_month = FEB;
 …
 …
}

const

•  "const" declaration is like "final" in Java
– warns compiler that value shouldn't change

 const char msg[] = "Warning: . . .";
– Commonly used for function arguments

 int copy(char to[], const char from[]);

•  If logic of the copy function attempts to
modify the “from” string, compiler will
give a warning

Operators
•  Arithmetic Operators:

+ Add
- Subtract
* Multiply
/ Divide
% Modulo (Remainder after division)
 e.g. 5%7 = 5 7%7 = 0 10%7 = 3

•  Logical Operators:
&& logical and
|| logical or
! Not

Relations / Comparisons
•  We call a comparison between two arithmetic

expressions a "relation"
ae1 <= ae2 (Comparisons: <, <=, = =, !=, >=, >)

•  A relation is evaluated as true or false (1 or 0)

based on values of given arithmetic expressions

•  if (i < lim-1 = = j < k)
–  What's it mean?

•  Instead of c != EOF, could write !(c = = EOF)

