
Data Types 
•  char (character) 

 
8 bits (stored in one byte in memory) 
unsigned: 

 0 ≤ char ≤ 28 -1 
 00000000 ≤ char ≤ 11111111 
 Overflow at 255  (255 + 1 = 0) 
 Underflow at 0  (0 – 1 = 255) 

signed (if supported in the implementation): 
 -27 ≤ char ≤ 27-1 
 10000000 ≤ char ≤ 01111111 
 Overflow at 127  (127 + 1 = -128) 
 Underflow at –128  (-128 – 1 = 127) 



Data Types 
•  int (integer on our machines) 

 
32 bits (stored in four sequential bytes in memory) 
unsigned: 

 0 ≤ char ≤ 232 - 1 
 0x00000000 ≤ char ≤ 0xffffffff 
 Overflow at 4294967295  (4294967295 + 1 = 0) 
 Underflow at 0   (0 – 1 = 4294967295) 

signed: 
 -231 ≤ char ≤ 231-1 
 0x80000000 ≤ char ≤ 0x7fffffff 
 Overflow at 2147483647  (2147483647 + 1 = –2147483648) 
 Underflow at –2147483648  (-2147483648 – 1 =  2147483647) 



Data Types 
•  short int (short integer on our machines) 

 
16 bits (stored in two sequential bytes in memory) 
unsigned: 

 0 ≤ char ≤ 216 - 1 
 0x0000 ≤ char ≤ 0xffff 
 Overflow at 65535   (65535 + 1 = 0) 
 Underflow at 0   (0 – 1 = 65535) 

signed: 
 -215 ≤ char ≤ 215-1 
 0x8000 ≤ char ≤ 0x7fff 
 Overflow at 32767   (32767 + 1 = –32768) 
 Underflow at –32768  (-32768 – 1 =  32767) 



Data Types 
•  long int (long integer on our machines, same as int) 

 
32 bits (stored in four sequential bytes in memory) 
unsigned: 

 0 ≤ char ≤ 232 - 1 
 0x0000 0000 ≤ char ≤ 0xffff ffff 
 Overflow at 4294967295  (4294967295 + 1 = 0) 
 Underflow at 0   (0 – 1 = 4294967295) 

signed: 
 -231 ≤ char ≤ 231-1 
 0x8000 0000 ≤ char ≤ 0x7fff ffff 
 Overflow at 2147483647  (2147483647 + 1 = –2147483648) 
 Underflow at –2147483648  (-2147483648 – 1 =  2147483647) 



Data Types 

•  float  
–  32-bits (stored in four sequential bytes in 

memory)  
–  based on the IEEE 754 floating point standard 

   + 1.f x 2e 

1 8 bits 23 bits 
sign exponent  e fraction  f 



Data Types 
•  float, double 

–  “double” is a “float” with more precision 
–  Implementation is machine dependent: 

•  for our machine: float is 4 bytes, double 8 bytes 

•  Without a co-processor to do floating point 
computation, it is computationally 
expensive in software.   
– Not often used in real time, embedded systems.  
– A cost versus performance tradeoff!  



Numbering Systems 
•  Binary 

•  Octal  (Octal Constant is written 0dd…) 
OCTAL  BINARY    OCTAL     BINARY 

 0  000   4      100 
 1  001   5      101 
 2  010   6      110 
 3  011    7      111 

Note: Can’t write a decimal value with a 
leading 0 digit – will be interpreted as octal 



Numbering Systems 
•  Hex  (Hex Constant is written 0xdd…) 
   

 HEX BIN.  HEX  BIN.  HEX  BIN.  HEX  BIN. 
 0   0000     4  0100     8  1000     C  1100 
 1   0001     5  0101     9  1001     D  1101 
 2   0010     6  0110     A  1010     E  1110 

 3   0011     7  0111     B  1011     F  1111 
 

•  DO NOT convert between binary and Hex or 
Octal by converting to decimal and back!  
–  Group binary digits by 3 (octal) or 4 (hex) to convert 
 



Examples of the Number System 

Decimal         Octal                  Hex  
     31 --------> 037 -----------> 0x1f 
 
    128 -------->0200 ----------> 0x80 



Numbering Systems 

•  char Data Type Constants 
‘a’  int value in ASCII code for letter ‘a’ 
‘0’  int value in ASCII code for number 0 
‘\b’  int value in ASCII code for backspace 
‘\ooo’  octal value 000-377  (0-255 decimal) 
‘\xhh’  hex value  0x00-0xff (0-255 decimal) 

•  Examples 
‘a’   = 0x61                      ‘0’ = 0x30 
‘\127’ = 0x57                  ‘\x2b’ = 0x2b 
 
 



Numbering Systems 

•  Other Data Type Constants 
1234   int 
1234L   long int 
1234UL   unsigned long int 
1234.   double (because of decimal point) 
1234.4F   float (because of the suffix) 
1234e-2   double (because of exponent) 



Converting Decimal to Binary 
•  Divide the decimal number successively by 2 and 

write down the remainder in binary form: 
       e.g. 11710 

 117   1   LSB   (after divide by 2, remainder =1) 
 58   0             (after divide by 2, remainder =0) 
 29   1             (after divide by 2, remainder =1) 
 14   0             (after divide by 2, remainder =0) 
   7   1             (after divide by 2, remainder =1) 
   3   1             (after divide by 2, remainder =1) 
   1   1             (after divide by 2, remainder =1) 

       0                           0  MSB   

•  Read UP and add any leading 0’s:  01110101 

odd 
even 



Converting Decimal to Hex 

•  Method 1: Convert decimal to binary and 
group the binary digits in groups of 4 

         e.g. 11710  ! 0111 01012 ! 7516  
•  Method 2: Divide the decimal number 

successively by 16 and write down the 
remainder in hex form: 
    117     5   LSB  (after divide by 16, remainder =5) 
      7             7   MSB (after divide by 16, remainder =7) 
– Read UP and add any leading 0’s:  0x75 

      

 
        



Converting Binary to Decimal 

•  Treat each bit position n that contains a one 
as adding 2n to the value.  Ignore 0’s. 

 Bit 0  LSB  1    1  (= 20) 
 Bit 1   0    0 
 Bit 2   1    4  (= 22) 
 Bit 3   1    8  (= 23) 
 Bit 4   0    0 
 Bit 5   1  32  (= 25) 
 Bit 6   0    0   
 Bit 7  MSB  0    0 
 Total    45 



Converting Hex to Decimal 

•  Treat each digit n as adding 16n to the value.   

 Digit 0  LSB  0              0  
 Digit 1   2            32   (=   2 * 161) 
 Digit 2   b        2816   (= 11 * 162) 
 Digit 3   0              0 
 Digit 4   0              0 
 Digit 5   1  1048576   (=   1 * 165) 
 Digit 6   0              0  
 Digit 7  MSB  0              0 
 Total    1051424 



Base for Integer Constants 

•  Designating the base for an integer constant 
•  If constant begins with either: 

0x   It is Hex with a-f as Hex digits 
0X  It is Hex with A-F as Hex digits 

•  Otherwise, if constant begins with 
0   It is Octal 

•  Otherwise, it is decimal 



Base for Character Constants 

•  If constant begins with either: 
‘\x  It is Hex with 0-9 and a-f as Hex digits 
‘\X  It is Hex with 0-9 and A-F as Hex digits 

•  Otherwise, if constant begins with 
‘\0  It is Octal 

•  Otherwise, it is the ASCII code for a 
character 

     ‘a’ 



Signed (Default) Behavior 

•  By default, int and char variables are signed 
•  Careful mixing modes when initializing 

variables! 
int i;      (signed behavior is default) 
char c;   (signed behavior is default) 
i = 0xaa;   (== 000000aa) as intended 
i = ‘\xaa’;  (== ffff ffaa)   sign extends! 
c = ‘\xaa’;  (== aa) as intended 
i = c;                  (==ffff ffaa) sign extends! 
 



Unsigned Behavior 

unsigned int i;    (must specify unsigned if wanted) 
unsigned char c; (must specify unsigned if wanted) 
i = 0xaa;     (== 000000aa) as intended 
i = ‘\xaa’;    (== ffffffaa) char sign extends! 
c = ‘\xaa’;    (== aa) as intended 
i = c;              (==0000 00aa) char sign not extended! 
 



Example to illustrate signed/
unsigned types 

void copy_characters(void){ 
  char ch; 
  while ((ch =getchar()) != EOF) 
     putchar(ch); 
} 

If getchar() == EOF,  
is this true? 

What happens if ch  
is defined as  
unsigned char?  
Is this true? 

Changing the declaration of ch into int ch; makes it work. 
Yes, because “int getchar(void)”   No 



1’s Complement 
•  Flip the value of each bit 

All zeroes become one, All ones become zero 
~ ‘\xaa’  == ‘\x55’ 
~10101010 == 01010101 

•  Number anded with its 1’s complement = 0 
  10101010 

&  01010101 
  00000000 



2’s Complement 
•  Flip the value of each bit and add 1 
•  It creates the negative of the data value 

- ‘\x55’ == ‘\xab’ 
- 01010101 == 10101011 

•  Number added to its 2’s complement = 0 
  01010101 
 +  10101011 

   (1) 00000000  (carry out of MSB is 
dropped) 



Two Special Case Values 
•  char 0 (or zero of any length) 

-00000000  = 11111111 
    +               1 
    = 00000000 

•  char -27 (or -2n-1 for any length = n) 
-10000000  = 01111111  

    +               1 
    = 10000000 



Bit Manipulation 
•  Bitwise Operators:  

 ~  one’s complement (unary not) 
 &  and 
 |   or  
 ^  xor (exclusive or) 
 <<  left shift 
 >>  right shift 



Binary Logic Tables 

AND 0 1 

0 

1 1 

0 

0 

0 
NOT 

0 

0 

1 

1 

OR 0 1 

0 

1 1 

0 

1 

1 

ADD 0 1 

0 

1 0  
Carry 1 

0 

1 

1 

XOR 0 1 

0 

1 

1 0 

0 1 Operands 

Results 



Bit Manipulation 
unsigned char n = ‘\xa6’; 

 n    10100110  
  

 ~n     01011001  (1s complement: flip bits) 
 

 n | ‘\x65’ 10100110  turn on bit in result if  
          |   01100101  on in either operand 
     11100111 



Bit Manipulations 

n & ‘\x65’10100110  turn on bit in result if 
            |  01100101  on in both operands 
   00100100 

n ^ ‘\x65’ 10100110  turn on bit in result if 
            |  01100101  on in exactly 1 operand 
   11000011 

 



Bit Manipulations 
 n = ‘\x18’; 00011000   (Remember n is unsigned) 
 n << 1  00110000  shift 1 to left (like times 2) 
 n << 2  01100000  shift 2 to left (like times 4) 
 n << 4  10000000  shift 4 to left 

    (bits disappear off left end) 
 n >> 2  00000110  shift 2 to right (like / 4) 
 n >> 4  00000001  shift 4 to right  

    (bits disappear off right end) 

Unsigned Right Shift      0 



Bit Manipulations 
•  “>>” result may be different if n is signed!  

–  If value of n has sign bit = 0, works same as last slide 
–  If value of n has sign bit = 1, works differently!! 

 char n = ‘\xa5’;  (default is signed) 
 n   10100101  (sign bit is set) 
 n >>2  11101001  (bring in 1’s from left) 
 



Bit Manipulations 

•  For signed variable, negative value shifted 
right by 2 or 4 is still a negative value 
  ‘\xa5’       =10100101 
  ‘\xa5’ >> 2  = 11101001 = ‘\xe9’ 

•  Same result as divide by 4 (22 = 4) 
•  But, this is not true on all machines 



Bit Manipulations 

•  When dividing a negative value 
– Different rounding rules than for positive value 
– Remainder must be negative - not positive 

 
•  Note that (-1)/2 = -1 

 
•  Note that -(1/2) =  0 



Forcing Groups of Bits Off 

•  Given char n, how to turn off all bits except 
the least significant 5 bits:   

  n = n & ‘\x1f’ 
 

 n = ‘\xa5’  10100101  
 n & ‘\x1f’  10100101 
     &  00011111  turn off all bits  
    00000101  except bottom 5 



Forcing Groups of Bits On 

•  Given n, how to turn on the MS two bits (if 
already on, leave on).   

  n = n | ‘\xc0’ 
  
 n = '\xa5' 
 n | '\xc0':  10100101 
               |  11000000  turn on MS 2 bits 
    11100101 



String Constants 
•  String constant:  “I am a string.” 

–  An array (a pointer to a string) of char values 
somewhere ending with NUL = '\0’ 

–  "0" is not same as '0'.  The value "0" can't be used in an 
expression - only in arguments to functions like printf().   

•  Also have a library with string functions 
  #include <string.h>    

  With these definitions, can use:  len = strlen(msg);  
 where msg is string in a string array 



Enumeration Symbolic Constants 
•  enum boolean {FALSE, TRUE}; 

–  Enumerated names assigned values starting from 0 
•  FALSE = 0 
•  TRUE   = 1 

•  Now can declare a variable of type enum boolean: 
enum boolean x; 
x = FALSE;  

•  Just a shorthand for creating symbolic constants 
instead of with #define statements 

•  Storage requirement is the same as int 



Enumeration Symbolic Constants 

•  If you define months as enum type 
  enum months {ERR, JAN, FEB, MAR, 
        APR, MAY, JUN, JUL, 
        AUG, SEP, OCT, NOV, 
        DEC}; 

•  Debugger might print value 2 as FEB 



Code Example of the enum type 
int main() 
{ 
     enum month {ERR, JAN, FEB, MAR, APR, MAY, JUN,  

                       JUL, AUG, SEP, OCT, NOV, DEC}; 
     enum month this_month; 
 
      this_month = FEB; 
      … 
      … 
} 
 
 



const 

•  "const" declaration is like "final" in Java  
– warns compiler that value shouldn't change 

      const char msg[ ] = "Warning: . . ."; 
– Commonly used for function arguments 

    int copy(char to[ ], const char from[ ]); 
 

•  If logic of the copy function attempts to 
modify the “from” string, compiler will 
give a warning 
 



Operators 
•  Arithmetic Operators: 

+   Add 
-   Subtract 
*   Multiply 
/   Divide 
%  Modulo (Remainder after division ) 
      e.g.    5%7 = 5      7%7 = 0     10%7 = 3 

•  Logical Operators: 
&&  logical and 
||    logical or 
!    Not 
 



Relations / Comparisons 
•  We call a comparison between two arithmetic 

expressions a "relation"  
ae1 <= ae2   (Comparisons:  <, <=, = =, !=, >=, >  ) 

 
•  A relation is evaluated as true or false (1 or 0) 

based on values of given arithmetic expressions 
 

•  if ( i < lim-1 = = j < k)    
–  What's it mean?  
 

•  Instead of c != EOF, could write !(c = = EOF) 


