Data Types

- char (character)

8 bits (stored in one byte in memory) unsigned:

```
    \(0 \leq\) char \(\leq 2^{8}-1\)
    \(00000000 \leq\) char \(\leq 11111111\)
    Overflow at \(255 \quad(255+1=0)\)
    Underflow at \(0 \quad(0-1=255)\)
```

signed (if supported in the implementation):
$-2^{7} \leq$ char $\leq 2^{7}-1$
$10000000 \leq$ char ≤ 01111111
Overflow at $127 \quad(127+1=-128)$
Underflow at $-128 \quad(-128-1=127)$

Data Types

- int (integer on our machines)

32 bits (stored in four sequential bytes in memory) unsigned:
$0 \leq$ char $\leq 2^{32}-1$
$0 x 00000000 \leq$ char $\leq 0 x f f f f f f f f$
Overflow at $4294967295 \quad(4294967295+1=0)$
Underflow at $0 \quad(0-1=4294967295)$
signed:
$-2^{31} \leq$ char $\leq 2^{31}-1$
$0 x 80000000 \leq$ char $\leq 0 x 7$ fffffff
Overflow at $2147483647 \quad(2147483647+1=-2147483648)$
Underflow at $-2147483648 \quad(-2147483648-1=2147483647)$

Data Types

- short int (short integer on our machines)

16 bits (stored in two sequential bytes in memory) unsigned:
$0 \leq$ char $\leq 2^{16}-1$
$0 x 0000 \leq$ char $\leq 0 x f f f f$
Overflow at 65535
$(65535+1=0)$
Underflow at 0
($0-1=65535$)
signed:
$-2^{15} \leq$ char $\leq 2^{15}-1$
$0 x 8000 \leq$ char $\leq 0 x 7 \mathrm{fff}$
Overflow at 32767
(32767+1 $=-32768$)
Underflow at -32768
$(-32768-1=32767)$

Data Types

- long int (long integer on our machines, same as int)

32 bits (stored in four sequential bytes in memory) unsigned:
$0 \leq$ char $\leq 2^{32}-1$
$0 x 00000000 \leq$ char $\leq 0 x f f f f$ ffff
Overflow at $4294967295 \quad(4294967295+1=0)$
Underflow at $0 \quad(0-1=4294967295)$
signed:
$-2^{31} \leq$ char $\leq 2^{31}-1$
$0 x 80000000 \leq$ char $\leq 0 x 7$ fff ffff
Overflow at $2147483647 \quad(2147483647+1=-2147483648)$
Underflow at $-2147483648 \quad(-2147483648-1=2147483647)$

Data Types

- float
- 32-bits (stored in four sequential bytes in memory)
- based on the IEEE 754 floating point standard

Data Types

- float, double
- "double" is a "float" with more precision
- Implementation is machine dependent:
- for our machine: float is 4 bytes, double 8 bytes
- Without a co-processor to do floating point computation, it is computationally expensive in software.
- Not often used in real time, embedded systems.
- A cost versus performance tradeoff!

Numbering Systems

- Binary
- Octal (Octal Constant is written 0dd...)

OCTAL	BINARY	OCTAL	BINARY
0	000	4	100
1	001	5	101
2	010	6	110
3	011	7	111

Note: Can't write a decimal value with a leading 0 digit - will be interpreted as octal

Numbering Systems

- Hex (Hex Constant is written 0xdd...)

HEX							
BIN.	HEX	BIN.	HEX	BIN.	HEX	BIN.	
0	0000	4	0100	8	1000	C	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	A	1010	E	1110
3	0011	7	0111	B	1011	F	1111

- DO NOT convert between binary and Hex or Octal by converting to decimal and back!
- Group binary digits by 3 (octal) or 4 (hex) to convert

Examples of the Number System

Decimal Octal Hex 31 --------> 037 ------------> 0x1f

$$
128 \text {-------->0200 ----------> 0x80 }
$$

Numbering Systems

- char Data Type Constants
'a' int value in ASCII code for letter 'a'
' 0 ' int value in ASCII code for number 0
' $\$ b' int value in ASCII code for backspace
‘‘ooo’ octal value 000-377 (0-255 decimal)
' Xxhh ' hex value $0 \mathrm{x} 00-0 \mathrm{xff}$ ($0-255$ decimal)
- Examples

$$
\begin{aligned}
& '^{\prime}=0 \times 61 \\
& ' \backslash 127 \prime=0 \times 57
\end{aligned}
$$

$$
\begin{aligned}
& ‘ 0 '=0 \times 30 \\
& ‘ \times 2 b '=0 \times 2 b
\end{aligned}
$$

Numbering Systems

- Other Data Type Constants

1234
1234L
1234UL
1234.
1234.4F

1234e-2
int
long int
unsigned long int
double (because of decimal point)
float (because of the suffix)
double (because of exponent)

Converting Decimal to Binary

- Divide the decimal number successively by 2 and write down the remainder in binary form:

$$
\text { e.g. } 117_{10}
$$

even	117	1	LSB	(after divide by 2, remainder $=1$)
	$58 \longrightarrow$ odd	0		(after divide by 2 , remainder $=0$)
		1		$($ after divide by 2 , remainder $=1$)
	14	0		(after divide by 2 , remainder $=0$)
	7	1		$($ after divide by 2, remainder $=1$)
	3	1		(after divide by 2 , remainder $=1$)
	1	1		$($ after divide by 2 , remainder $=1$)
	0		MSB	

- Read UP and add any leading 0' s: 01110101

Converting Decimal to Hex

- Method 1: Convert decimal to binary and group the binary digits in groups of 4

$$
\text { e.g. } 117_{10} \rightarrow \underbrace{0111} \underbrace{0101_{2}} \rightarrow 75_{16}
$$

- Method 2: Divide the decimal number successively by 16 and write down the remainder in hex form:

1175 LSB (after divide by 16, remainder $=5$)
$7 \quad 7 \mathrm{MSB}$ (after divide by 16, remainder =7) - Read UP and add any leading 0's: 0x75

Converting Binary to Decimal

- Treat each bit position n that contains a one as adding 2^{n} to the value. Ignore 0 's.

Bit 0	LSB	1	1	$\left(=2^{0}\right)$
Bit 1		0	0	
Bit 2		1	4	$\left(=2^{2}\right)$
Bit 3		1	8	$\left(=2^{3}\right)$
Bit 4		0	0	
Bit 5		1	32	$\left(=2^{5}\right)$
Bit 6		0	0	
Bit 7	MSB	0	$\underline{0}$	
Total			45	

Converting Hex to Decimal

- Treat each digit n as adding 16^{n} to the value.

Digit 0	LSB	0	0
Digit 1		2	$32\left(=2 * 16^{1}\right)$
Digit 2		b	$2816\left(=11 * 16^{2}\right)$
Digit 3	0	0	
Digit 4	0	0	
Digit 5		1	$1048576\left(=1 * 16^{5}\right)$
Digit 6	0	0	
Digit 7	MSB	0	0
Total			1051424

Base for Integer Constants

- Designating the base for an integer constant
- If constant begins with either:

0x It is Hex with a-f as Hex digits
0X It is Hex with A-F as Hex digits

- Otherwise, if constant begins with
$0 \quad$ It is Octal
- Otherwise, it is decimal

Base for Character Constants

- If constant begins with either:

' x	It is Hex with $0-9$ and a-f as Hex digits
' X	It is Hex with $0-9$ and A-F as Hex digits

- Otherwise, if constant begins with ' 0 It is Octal
- Otherwise, it is the ASCII code for a character
‘a’

Signed (Default) Behavior

- By default, int and char variables are signed
- Careful mixing modes when initializing variables!
int i;
char c;
$\mathrm{i}=0 \mathrm{xaa} ;$
i = '\xaa';
$\mathrm{c}=$ '\xaa';
$\mathrm{i}=\mathrm{c}$;
(signed behavior is default)
(signed behavior is default)
($==000000 \mathrm{aa}$) as intended
(== ffff ffaa) sign extends!
($==\mathrm{aa}$) as intended
(==ffff ffaa) sign extends!

Unsigned Behavior

unsigned int i ; (must specify unsigned if wanted) unsigned char c ; (must specify unsigned if wanted)
$\mathrm{i}=0 \mathrm{xaa} ;$
($==000000 \mathrm{aa}$) as intended
$\mathrm{i}=$ ' \backslash хаа’;
(== ffffffaa) char sign extends!
$\mathrm{c}=$ ' \backslash хаа' ; $\quad(==\mathrm{aa})$ as intended
$\mathrm{i}=\mathrm{c}$;
($==000000 \mathrm{aa}$) char sign not extended!

Example to illustrate signed/ unsigned types

void copy_characters(void) \{
char ch;
while ((ch =getchar()) !=EOF) putchar(ch);
$\}$
What happens if ch is defined as unsigned char?
If getchar() $==\mathrm{EOF}$, is this true?

Yes, because "int getchar(void)"
Is this true?

Changing the declaration of ch into int ch; makes it work.

1's Complement

- Flip the value of each bit

All zeroes become one, All ones become zero
~"хаа’ = ' x 55 '
$\sim 10101010=01010101$

- Number anded with its 1 's complement $=0$ 10101010
\& $\underline{01010101}$ 00000000

2's Complement

- Flip the value of each bit and add 1
- It creates the negative of the data value
- ' $\times x 55$ ' $==$ ' x xab'
- $01010101=10101011$
- Number added to its 2 's complement $=0$ 01010101
$+\underline{10101011}$
(1) 00000000 (carry out of MSB is dropped)

Two Special Case Values

- char 0 (or zero of any length)
$-00000000=11111111$
1
$+\quad 1$
$=00000000$
- char $-2^{7}\left(\right.$ or $-2^{\mathrm{n}-1}$ for any length $\left.=\mathrm{n}\right)$
$-10000000=01111111$
$+\quad 1$
+10000000

Bit Manipulation

- Bitwise Operators:

\sim	one's complement (unary not)
$\&$	and
\mid	or
\wedge	xor (exclusive or)
\ll	left shift
\gg	right shift

Binary Logic Tables

Bit Manipulation

unsigned char $\mathrm{n}=$ ' xa 6' ;
n 10100110
$\sim n \quad 01011001$ (1s complement: flip bits)
$\mathrm{n} \mid$ ' X 65 ' 10100110 turn on bit in result if
| $\underline{01100101}$ on in either operand 11100111

Bit Manipulations

n \& ' x 65 ' 10100110 turn on bit in result if | $\underline{01100101}$ on in both operands 00100100
n ^ ' X 65 ' 10100110 turn on bit in result if
| $\underline{01100101}$ on in exactly 1 operand 11000011

Bit Manipulations

$\mathrm{n}=$ ' x 18 '; $00011000 \quad$ (Remember n is unsigned)
$\mathrm{n} \ll 1 \quad 00110000 \quad$ shift 1 to left (like times 2)
$\mathrm{n} \ll 2 \quad 01100000$ shift 2 to left (like times 4)
$\mathrm{n} \ll 4 \quad 10000000$ shift 4 to left
(bits disappear off left end)
$\mathrm{n} \gg 2 \quad 00000110$ shift 2 to right (like / 4)
$\mathrm{n} \gg 400000001$ shift 4 to right
(bits disappear off right end)

Unsigned Right Shift

Bit Manipulations

- ">>" result may be different if n is signed!
- If value of n has sign bit $=0$, works same as last slide
- If value of n has sign bit $=1$, works differently!!
char $\mathrm{n}=$ ' $\backslash \mathrm{xa5}$ ' $^{\prime} ; \quad$ (default is signed)
$\mathrm{n} \quad 10100101$ (sign bit is set)
$\mathrm{n} \gg 211101001$ (bring in 1's from left)

Bit Manipulations

- For signed variable, negative value shifted right by 2 or 4 is still a negative value

$$
\begin{array}{ll}
‘ \backslash x a 5 ' & =10100101 \\
" \backslash \text { xa5'>>2 } & =11101001=' \backslash x e 9 '
\end{array}
$$

- Same result as divide by $4\left(2^{2}=4\right)$
- But, this is not true on all machines

Bit Manipulations

- When dividing a negative value
- Different rounding rules than for positive value
- Remainder must be negative - not positive
- Note that $(-1) / 2=-1$
- Note that $-(1 / 2)=0$

Forcing Groups of Bits Off

- Given char n, how to turn off all bits except the least significant 5 bits:

$$
\mathbf{n}=\mathbf{n} \&{ }^{\prime} \backslash \mathbf{x} 1 \mathbf{f}^{\prime}
$$

$$
\begin{array}{ll}
\mathrm{n}=\text { ' } \mathrm{xa5} 5^{\prime} & 10100101 \\
\mathrm{n} \& ~ ' \mathrm{x} 1 \mathrm{f}^{\prime} & 10100101 \\
& \& \\
& \underline{00011111} \\
& 00000101
\end{array} \text { turn off all bits } \begin{aligned}
& \text { except bottom } 5
\end{aligned}
$$

Forcing Groups of Bits On

- Given n, how to turn on the MS two bits (if already on, leave on).

$$
\mathbf{n}=\mathbf{n} \mid ‘ \mathbf{x c} 0^{\prime}
$$

$$
\mathrm{n}={ }^{\prime} \mathrm{xa} 5^{\prime}
$$

$$
\mathrm{n} \mid \mathrm{Ixc} 0^{\prime}: \quad 10100101
$$

$\underline{11000000}$ turn on MS 2 bits
11100101

String Constants

- String constant: "I am a string."
- An array (a pointer to a string) of char values somewhere ending with $\mathbf{N U L}=' \backslash 0$ '
- " 0 " is not same as ' 0 '. The value " 0 " can't be used in an expression - only in arguments to functions like printf().
- Also have a library with string functions

\#include <string.h>

With these definitions, can use: len $=\operatorname{strlen}(\mathrm{msg})$; where msg is string in a string array

Enumeration Symbolic Constants

- enum boolean \{FALSE, TRUE\};
- Enumerated names assigned values starting from 0
- FALSE $=0$
- TRUE = 1
- Now can declare a variable of type enum boolean: enum boolean x ; x = FALSE;
- Just a shorthand for creating symbolic constants instead of with \#define statements
- Storage requirement is the same as int

Enumeration Symbolic Constants

- If you define months as enum type enum months \{ERR, JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC $\}$;
- Debugger might print value 2 as FEB

Code Example of the enum type

int main()
$\{$
enum month \{ERR, JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC $\}$;
enum month this_month;
this_month = FEB;

const

- "const" declaration is like "final" in Java
- warns compiler that value shouldn't change const char msg[] = "Warning: . . .";
- Commonly used for function arguments int copy(char to[], const char from[]);
- If logic of the copy function attempts to modify the "from" string, compiler will give a warning

Operators

- Arithmetic Operators:
+ Add
- Subtract
* Multiply
/ Divide
\% Modulo (Remainder after division)

$$
\text { e.g. } \quad 5 \% 7=5 \quad 7 \% 7=0 \quad 10 \% 7=3
$$

- Logical Operators:
\&\& logical and
\| logical or
!
Not

Relations / Comparisons

- We call a comparison between two arithmetic expressions a "relation"

$$
\text { ae } 1<=\mathrm{ae} 2
$$

(Comparisons: <, <=, ===, !=, >=, >)

- A relation is evaluated as true or false (1 or 0) based on values of given arithmetic expressions
- if $(\mathrm{i}<\lim -1==\mathrm{j}<\mathrm{k})$
- What's it mean?
- Instead of c != EOF, could write !(c = = EOF)

