
Statements / Blocks

•  An expression becomes a statement when it is
followed by a semicolon
 x = 0;

•  Braces are used to group declarations and
statements into a compound statement
 {
 x = 0;
 y = 1;
 } /* Note: No semicolon after right brace */

if statements

•  Shortcut for “equal and not equal to 0” tests

 if (expression)
same as

 if (expression != 0)

else-if

•  Consider cascading else-if sequence:

 if (i == 1) /* NOTE: Only one will execute */
 statement-1;
 else if (i == 2)
 statement-2;

 …
 else if (i == 49)
 statement-49;
 else
 statement-50; /* Default or "catch-all" */

switch
•  Also have switch statement **LIKE JAVA**

 switch (i) {
 case 1: statement-1;
 break;
 case 2: statement-2;
 break;
 . . .
 case 49: statement-49;
 break;
 default: statement-50;
 }

Loops –while and for
•  This “for” statement”

 for (expr1; expr2; expr3)
 statement;

•  Is equivalent to this “while” statement:
 expr1;
 while (expr2) {
 statement;
 expr3;
 }

for loop

•  Note any part of for loop can be left out.
 for (init; loop-test; increment)

•  If init or increment expression is left out,
just not evaluated (program must initialize
and increment by other means)

•  If loop-test is left out, assumes permanently
true condition and loops forever. (program
must break or goto to end to exit the loop)

do … while

•  The do … while tests at the end of the loop
 do {
 statement(s);
 } while (expression);

•  Executes the statement(s) once even if the
“while” loop expression is false upon entry

•  Used much less often than “for” and
“while”

break and continue

•  The break statement works for:
–  for loop / while loop / do loop and switch.
– Brings you to end of loop or switch statement

ONE LEVEL ONLY.
•  The continue statement works for:

–  for loop / while loop / do loop, but not switch!
–  It causes next iteration of enclosing loop to

begin

Function Prototype

•  Return type, function name, and ()
 int foo ();
 float foo ();

•  Argument List
List of Types and optionally Variable Names

 int foo (int *, int, float);
 int foo (int array[], int i, float j);

Output arguments usually listed first

Function Prototype: Null Argument

•  Must put “void”
 int foo (void);

•  Keeps compiler parameter checking enabled
•  The following is a bad example:

 int foo ();
 x = foo (i, j, k); /* compiler won’t catch! */

Function Declarations

•  Same as function prototype, except:
– Must have variable names in argument list
– Followed by { function statements; } not ;

•  Example:
 int foo (int array[], int i, float j)
 {
 function statements;
 }

C Preprocessor

•  Inclusion of other files – usually .h files
 #include “filename.h”

•  Simple macro substitution
 #define name substitute text

•  Macro substitution with arguments
 #define square(A) ((A)*(A)) enclose in ()s
 n = square(x) + 1; ! n = ((x)*(x)) + 1;

•  Conditional inclusion

Macros

•  Macros do not understand C expressions. They
are only doing precise character substitution.

•  Macro substitution with arguments – bad example
#define square(A) A*A
If you write in program:

 n = square(p+1);
Macro will be replaced by:

 n = p+1*p+1;
Not what you expected

Macros

•  Macro must be defined on a single line
•  Can continue a long definition to the next

line using backslash character (\)
#define exchg(t, x, y) {t d; d = x; x = y;\
y = d;}

•  The \ simply tells compiler the following
line is a continuation of same logical line

Macros

•  This macro invocation
 exchg (char, u, v)

will be turned into the following text string (shown
one statement per line for clarity)

{char d; /* Note: d is defined locally within block */
d = u;
u = v;
v = d; }

Macros

•  Function calls are CALL BY VALUE
•  This is NOT true for Macros, because statements

within a Macro expansion act like in-line code!
•  Frequently used Macro may take more memory

than a function, but does not require call/return
and stack frames! (Macro will usually execute
faster)

Macros

•  Substitutions are not done within quotation marks.
•  If we want to print out the variable makeup of an

expression and then the value (e.g., x/y = 17.2), it
doesn't work to do it like this:
#define dprint(expr) printf("expr = %f\n", expr)
….
dprint(x/y);

•  We want: “x/y = 17.2” printed but, it expands as:
printf ("expr = %f\n", x/y);

Macros
•  Use a special convention with the # character.

#define dprint(expr) printf(#expr " = %g\n", expr)

•  The special form #expr means:

–  Do substitution for the macro “expr”
–  Put quotes around result

•  Now if we write
 dprint(x/y);

•  Then, this expands as:
printf("x/y" " = %g\n", x/y); /* two strings concatenated */

Conditional Inclusion

•  Gives control of when precompiler directives such
as #define or #include are executed

•  It’s done before compilation with conditionals that
are meaningful at that time

•  Conditionals work for any C statements in their
scope, and can be used to drop unneeded code
(and save memory space) under some conditions

Conditional Inclusion

#if (with conditions such as !defined(SYM)
#ifdef SYM (if SYM is defined)
#ifndef SYM (if SYM is not defined)
#elif (else if)
#else (else)
#endif (end scope of originating #if)

Conditional Inclusion

•  A software release might need different .h
header files included for different O/S's

•  Before main() we might define:
 #define SYSV 100
 #define BSD 101

•  For a specific system (say SYSV) we write:
 #define SYSTEM SYSV

Conditional Inclusion
•  Define .h file symbolic constants conditionally:

 #if SYSTEM = = SYSV
 #define HDR "sysv.h"
 #elif SYSTEM = = BSD
 #define HDR "bsd.h"
 #else
 #define HDR "default.h“
 #endif

 #include HDR

Conditional Inclusion

•  We DON’T want to include declarations
contained in a abc.h file twice.

 /* header file: abc.h */
 #ifndef XXX_HDR
 #define XXX_HDR
 … (contents of abc.h file go here)
 #endif /* XXX_HDR */

Recursion
•  Any C function may call itself recursively, either

directly or after intermediate function calls
•  Each time a call is made, a new frame is placed on

the stack, containing passed arguments, a position
to return to, and automatic variables (if any)

 int factorial (int n) {
 if (n > 1) return n * factorial (n – 1);
 return 1;
 }

•  Programmer must ensure the recursion terminates!

Recursion, Stack Frames

•  Stack during recursion:
int result = factorial (3);

factorial (3)

factorial (2)

factorial (1)

3

3

3

2

2 1

Stack
Pointer

Stack
Pointer

Stack
Pointer

Stack
Pointer

Code Example
#include <stdio.h>
int factorial(int);

main(){

 int m, n=3;
 m = factorial(n);
 }
int factorial(int k){

 int ll;
 printf("before factorial function: n=%d\n",k);
 ll = (k > 1) ? k*factorial(k-1): 1;
 printf(" after factorial function: n=%d\n", k);
 return ll;
}

blade64(2)% a.out
before factorial function: n=3
before factorial function: n=2
before factorial function: n=1
 after factorial function: n=1
 after factorial function: n=2
 after factorial function: n=3

Recursion, Performance

•  Time relative to while/for loops
– Calling/creating stack frame takes a lot of time
– Returning/removing stack frame costs time, too

•  Memory relative to while/for loops
– Stack frames eat up memory ! need large

space!
–  In non-virtual memory system ! stack

overflow?
•  Rarely used in hard real-time and/or

embedded systems for these reasons

