Statements / Blocks

* An expression becomes a statement when 1t 1s
followed by a semicolon

x = 0;

 Braces are used to group declarations and
statements 1nto a compound statement

d
x = 0;
y=1
} /* Note: No semicolon after right brace */

if statements

* Shortcut for “equal and not equal to 0” tests

if (expression)

SAINC adS

if (expression != ()

else-if

* Consider cascading else-1f sequence:

if 1==1) /* NOTE: Only one will execute */
statement-1;

else if (1==2)
statement-2;

else if (1==49)
statement-49;
else
statement-50; /* Default or "catch-all" */

switch

* Also have switch statement **LIKE JAVA**
switch (1) {
case 1: statement-1;
break;
case 2: statement-2;
break;

case 49: statement-49;
break;
default: statement-50;

h

Loops —while and for

e This “for” statement™
for (expr,; expr,; expr;)
statement;
 Is equivalent to this “while” statement:
expry;
while (expr,) {
statement;
eXprs;

for loop

* Note any part of for loop can be left out.
for (init; loop-test; increment)

 If init or increment expression 1s left out,
just not evaluated (program must initialize
and increment by other means)

 If loop-test is left out, assumes permanently
true condition and loops forever. (program
must break or goto to end to exit the loop)

do ... while

The do ... while tests at the end of the loop
do {
statement(s);
+ while (expression);

Executes the statement(s) once even if the
“while” loop expression 1s false upon entry

Used much less often than “for” and
“while”

break and continue

 The break statement works for:
— for loop / while loop / do loop and switch.

— Brings you to end of loop or switch statement
ONE LEVEL ONLY.

* The continue statement works for:
— for loop / while loop / do loop, but not switch!

— It causes next iteration of enclosing loop to
begin

Function Prototype

* Return type, function name, and ()
int foo ();
float foo ();

* Argument List
List of Types and optionally Variable Names
int foo (int *, int, float);
int foo (int array[], int 1, float j);
Output arguments usually listed first

Function Prototype: Null Argument

* Must put “void”
int foo (void);
» Keeps compiler parameter checking enabled
* The following 1s a bad example:
int foo ();

x = foo (1, J, k); /* compiler won’t catch! */

Function Declarations

* Same as function prototype, except:
— Must have variable names in argument list
— Followed by { function statements; } not ;
« Example:
int foo (int array[], int 1, float j)

d

function statements:

C Preprocessor

Inclusion of other files — usually .h files
#include “filename.h”

Simple macro substitution
#define name substitute text

Macro substitution with arguments
#define square(A) ((A)*(A)) enclose n ()s
n=square(x)+1; =2 n=(X)*X))+1;

Conditional inclusion

Macros

« Macros do not understand C expressions. They
are only doing precise character substitution.

* Macro substitution with arguments — bad example
#define square(A) A*A
If you write in program:
n = square(p+1);
Macro will be replaced by:
n=pt+1*p+l;
Not what you expected

Macros

* Macro must be defined on a single line

* Can continue a long definition to the next
line using backslash character (\)

#define exchg(t,x,y) {t d;d =x; x=y;\
y =d;}

* The \ simply tells compiler the following
line 1s a continuation of same logical line

Macros

 This macro invocation
exchg (char, u, v)

will be turned into the following text string (shown
one statement per line for clarity)
{char d; /* Note: d is defined locally within block */
d=nu;
u=v;

v=d; }

Macros

 Function calls are CALL BY VALUE

e This 1s NOT true for Macros, because statements
within a Macro expansion act like in-line code!

* Frequently used Macro may take more memory
than a function, but does not require call/return
and stack frames! (Macro will usually execute
faster)

Macros

Substitutions are not done within quotation marks.

If we want to print out the variable makeup of an
expression and then the value (e.g., x/y =17.2), 1t
doesn't work to do 1t like this:

#define dprint(expr) printf("expr = %f\n"', expr)

dprint(x/y);
We want: “x/y = 17.2” printed but, it expands as:
printf ("expr = %f\n", x/y);

Macros

« Use a special convention with the # character.

#define dprint(expr) printf(#expr " = %g\n"', expr)

* The special form #expr means:
— Do substitution for the macro “expr”
— Put quotes around result

* Now if we write
dprint(x/y);
* Then, this expands as:
printf("x/y" " = %g\n"', x/y); /* two strings concatenated */

Conditional Inclusion

* (Gives control of when precompiler directives such
as #define or #include are executed

e It’s done before compilation with conditionals that
are meaningful at that time

e Conditionals work for any C statements in their
scope, and can be used to drop unneeded code
(and save memory space) under some conditions

Conditional Inclusion

#1f (with conditions such as !defined(SYM)

#ifdef SYM (1if SYM 1s defined)
#itndef SYM (1f SYM 1s not defined)
#elif (else 1f)

#else (else)

#endif (end scope of originating #if)

Conditional Inclusion

* A software release might need different .h
header files included for different O/S's

* Before main() we might define:
#define SYSV 100
#define BSD 101

* For a specific system (say SYSV) we write:
#define SYSTEM SYSV

Conditional Inclusion

* Define .h file symbolic constants conditionally:
#1f SYSTEM == SYSV

#define HDR "sysv.h"
#elif SYSTEM == BSD
#define HDR "bsd.h"
telse

#define HDR "default.h*
#endif

#include HDR

Conditional Inclusion

e We DON’T want to include declarations
contained 1n a abc.h file twice.

/* header file: abc.h */
#ifndef XXX HDR
#define XXX HDR

... (contents of abc.h file go here)
#endif /* XXX HDR */

Recursion

« Any C function may call itself recursively, either
directly or after intermediate function calls

* Each time a call 1s made, a new frame 1s placed on
the stack, containing passed arguments, a position
to return to, and automatic variables (if any)

int factorial (int n) {
if (m > 1) return n * factorial (n — 1);
return 1;

)

* Programmer must ensure the recursion terminates!

Recursion, Stack Frames

 Stack during recursion: Stack

Pointer

int result = factorial (3);

Stack
Pointer

factorial (3)

Stack 3
Pointer

factorial (2)

Stack 2 3

Pointer

factorial (1)

Code Example

#include <stdio.h>

int factorial(int); blade64(2)% a.out

before factorial function: n=3
main(){ before factorial function: n=2
before factorial function: n=1
after factorial function: n=1
after factorial function: n=2
} after factorial function: n=3

int m, n=3;
m = factorial(n);

int factorial(int k) {
int 11;
printf("before factorial function: n=%d\n",k);
I1=(k>1)?k*factorial(k-1): 1;
printf(" after factorial function: n=%d\n", k);
return 11;

Recursion, Performance

* Time relative to while/for loops
— Calling/creating stack frame takes a lot of time
— Returning/removing stack frame costs time, too

* Memory relative to while/for loops

— Stack frames eat up memory > need large
space!

— In non-virtual memory system > stack
overflow?

« Rarely used 1n hard real-time and/or
embedded systems for these reasons

