
Pointers and Arrays

•  Declarations of automatic variables:
 int x = 1, y = 2, z[10];
 int *ip; /* ip is a pointer to an int */
 ip = &x; /* ip is a pointer to int x */

•  Read “int *ip” right to left
Variable ip is a pointer (*) to a variable of type int

Pointers and Memory
•  Memory Address, Contents, and Variable Names

 0xFF1054 x
 0xFF1050 y
 0xFF104C z[9]
 … … …
 0xFF1028 z[0]
 0xFF1024 ip

0x00 0x00 0x00 0x01

0x00 0x00 0x00 0x02

0x?? 0x?? 0x?? 0x??

0x?? 0x?? 0x?? 0x??

0x00 0xFF 0x10 0x54

Operators (& and *)
•  Operator ‘&’ ! value of &x is “address of x"

ip = &x; /* ip now points to x */

•  Operator ‘*’ ! de-references a pointer (indirection)
y = *ip; /* set y = x (the int at address ip) */
ip = 0; / set x to 0 */
ip = &z[0]; /* set ip to address of z[0] */
ip = 3; / set z[0] to 3 */
*ip = *ip + 10; /* set z[0] to 13 */

•  Note: & and * are unary operators - See K&R pg 53

Pointer Operations

•  More pointer operation examples:
ip + 1; / add 1 to the int pointed to by ip */
ip += 1; / adds one to the int pointed to by ip */
++*ip; /* pre increments int pointed to by ip */
++(*ip); /* same as above, binds right to left */
ip++ / point to int at pointer ip, post increment ip*/

 /* binds right to left as *(ip++) */
(*ip)++; /* post increments int pointed to by ip */

 /* need () - otherwise binds as *(ip++) */

same

Incrementing Pointers
•  A pointer is a number corresponding to the

address of the byte used to store the variable

•  When you increment a pointer, the address is
incremented by the number of bytes used to
store that type of variable

•  For example, a char pointer cp declared as:
char *cp;
cp++; /* byte address is incremented by 1 */

Incrementing Pointers
•  For example, an int pointer ip declared as:

int *ip;
ip++; /* byte address is incremented by 4 */

•  The int pointer is not thought of as being

incremented by 4 - that's hidden from the C
programmer - it's said to be incremented by the
size of the data type that it points at

Pointers as Function Arguments
* DOESN'T WORK * * POINTER VERSION *
 swap (i, j); swap (&i, &j);

 … …
void swap (int a, int b) void swap (int *pa, int *pb)
{ {
 int dummy; int dummy;
 dummy = a; dummy = *pa;
 a = b; *pa = *pb;
 b = dummy; *pb = dummy;
} }

Declaration and Initialization
•  Example of Declaration and Initialization:

int a[10]
int *pa = &a[0]; /* initialize pa to point to a[0] */

•  When we are initializing in the declaration, the *
acts as part of the type for variable pa

•  When we are initializing pa, we are setting pa (not
*pa) equal to the address after = sign

•  For normal assignment, we use: pa = &a[0];

Pointers and Arrays
•  C treats an array name (without a subscript

value) and a pointer in THE SAME WAY

•  We can write:
pa = &a[0];

•  OR we can write the equivalent:

pa = a;

•  Array name "a" acts as specially initialized
pointer pointing to element 0 of the array

Pointers and Arrays
•  Array a is an unchanging (constant) pointer

•  a = a+1; not possible (like writing 7 = 7+1)

•  defining an array allocates the required

space for contents of all array elements!

•  defining a pointer allocates memory for the
pointer but not for the data that the pointer
points to!

Pointers and Arrays

•  Given the way incrementing a pointer works,
it’s useful for accessing successive elements
of an array that it points to:
 *pa means same as a[0]
 *(pa + 1) means the same as a[1]
 *(pa + m) means the same as a[m]

Pointers and Arrays
•  Consider the example:

 int i, a[] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18};
 int *pa = &a[3];
 What is the value of *(pa + 3) ? (12)
 What is the value of *pa + 3 ? (9)
 What happens when i = *pa++ evaluated? (pa=&a[4])
 What is the value of i? (6)
 What happens when i = ++*pa evaluated? (++a[4])
 What is the value of i? (9)

Pointers and Arrays

•  An array name can be used in an expression the
same way that a pointer can be in an expression
(its actual value cannot be changed permanently)
 a + m is the same as &a[m]

 if pa = a, *(a + m) is the same as *(pa + m)

 *(pa + m) can be written as pa[m]

Examples – strlen ()
•  We now discuss how “real” C programmers

deal with strings in functions

•  We can call strlen() with arguments that are
an array or a pointer to an array of type
char:
 strlen (arrayname)
 strlen (ptr)
 strlen("hello, world")

Examples – strlen

•  Here is a variant of the way we did strlen ()
 int strlen(char s[])
 {
 int n;
 for (n = 0; s[n]; n++) /*sum s+n, use as ptr */
 ; /* for test, and increment n */
 return n;
 }

Examples – strlen
•  “Real” C programmers use pointers in cases like this:

 int strlen(char *s) /* s is just a copy of pointer */
 { /* so no real change to string */
 char *cp;
 for (cp = s; *s ; s++) /* no sum, just incr. pointer */
 ; /* more efficient */
 return s - cp; /* difference of pointers has int value*/
 }

Examples – strlen

•  Simplest form yet (See K&R, pg 39)
 int strlen (char *s)
 {
 char *p = s;
 while (*p++)
 ;
 return p - s - 1;
 }

Examples – strcpy
 void strcpy (char *s, char *t) /* copy t to s */
 {
 while (*s++ = *t++) /* stops when *t = '\0' */
 ; /* look at page 105 examples */
 }

•  Note: there is an assignment statement inside the
while () (not just comparison) and the copy stops
AFTER the assignment to *s of the final value 0
from *t

Examples - strcmp

int strcmp (char * s, char * t) /* space after * is OK */
{

 for (; *s == *t; s++, t++)
 if (*s == '\0')
 return 0; /*have compared entire string

 and found no mismatch */
 return *s - *t; /*on the first mismatch, return */

} /* (*s - *t is < 0 if *s < *t and is > 0 if *s > *t) */

Review Pointers.
 int a[] ={1,3,5,7,9,11,13,15,17,19};
 int *pa = &a[4],*pb = &a[1];

What is the value of: *(a + 2)? Same as a[2]
What is the value of: pa - pb? 3
What is the value of: pb[1]? Same as a[2]
What is the effect of: *pa += 5? a[4] += 5
What is the effect of: *(pa += 2)? pa = &a[6], value is a[6]
What is the effect of: *(a += 2)? Illegal, can't modify an

 array name such as a
What is the value of: pa[3]? Same as a[9]

Valid Pointer Arithmetic
•  Set one pointer to the value of another pointer of the same

type. If they are of different types, you need to cast.
pa = pb;

•  Add or subtract a pointer and an integer or an integer

variable:
pa + 3
pa – 5
pa + i /* i has a type int */

•  Subtract two pointers to members of same array:

pa – pb Note: Result is an integer

•  Compare two pointers to members of same array:
if (pa <= pb)

Valid Pointer Arithmetic
• Assign a pointer to zero (called NULL in stdio)

pa = NULL; same as pa = 0;

• Compare a pointer to zero (called NULL in stdio)
If (pa != NULL); BUT NOT if (pa > NULL)

• Note: a NULL pointer doesn't point to anything
(When used as a return value, it indicates failure
of a function that is defined to return a pointer)

• All other pointer arithmetic is invalid.
– KR p.103: it is not legal to add two pointers, or to

multiply, divide or shift or mask them, or to add float or
double to them, or except for void * to assign a pointer
of one type to a pointer of another type without a cast.

Valid Pointer Arithmetic
•  If we add new declarations to ones on slide #2,

 char s[] = "Hello, world!", *cp = &s[4];

•  Which assignments below are valid?:
cp = cp - 3; YES
pa = cp; NO:

 (Possible alignment problem, int’s on 4 byte boundaries)
pa = pa + pb; NO: no adding of pointers
pa = pa + (pa-pb); YES: (pa-pb) is an integer
s[4] = (cp < pa)? 'a': 'b'; NO: not members of same type
cp = NULL; YES

Pointer Arrays, K&R 5.6
•  Recall that if we define

 char a[10];

•  We are setting aside space in memory for
the elements of array a, but a can be treated
as a pointer. We can write *a or *(a + 5).

•  Now think about the declaration:
 char *a[10];

Pointers to Pointers

•  What does the array a contain now?
 Pointers to char variables or strings!

•  Though hard to think about, we can write:
 **a /* First char in string pointed to by a[0] */
 ((a + 5) + 2)
 /* Third char in string pointed to by a[5] */

Pointers to Pointers

•  Now what is the use of keeping an array of
pointers to char strings?

•  K&R gives an example on p.108:
– Reading in a sequence of lines
– Placing them in blocks of memory (e.g. malloc)
– Building an array of pointers to the blocks
– Sorting by moving pointers – not strings

Pointers to Pointers

•  Example of pointers to unsorted char strings
 char *lineptr[MAXLINES];

lineptr[0] lineptr[1] lineptr[2] lineptr[3] lineptr[4]

d e f \0

a b c

. . .

k l m \0

\0

Pointers to Pointers

•  To initialize the array with fixed values
char a[] = “klm”;
char b[] = “abc”;
char c[] = “def”;
lineptr[0] = a; /* or = &a[0]; */
lineptr[1] = b; /* or = &b[0]; */
lineptr[2] = c; /* or = &c[0]; */

Pointers to Pointers

•  Examples of pointers to sorted char strings
 char *lineptr[MAXLINES];

lineptr[0] lineptr[1] lineptr[2] lineptr[3] lineptr[4]

d e f \0

a b c

. . .

k l m \0

\0

Pointers to Pointers

•  Write out lines in pointer order (easy way)
 void writelines(char * lineptr[], int nlines)
 {
 int i = 0;
 while (i < nlines)

 printf("%s\n", lineptr[i++]);
 }

Pointers to Pointers

•  Write out lines in pointer order (efficiently)
 void writelines(char * * lineptr, int nlines)
 {
 while (nlines-- > 0)

 printf("%s\n", *lineptr++);
 }

Review of Pointers
/* demo of pointer */
char a[10];
char * p = &a[0];

It is illegal to do:
 a = a+1 or
 &a[0] = &a[0] +1 or
 a++

It is legal to do:
 p = p+1 or
 p++

/* demo of pointer array */
char *ptr[10];
char ** ptr2ptr = &ptr[0];

It is illegal to do:
 ptr = ptr+1 or
 &ptr[0] = &ptr[0] +1 or
 ptr++

It is legal to do:
 ptr2ptr = ptr2ptr + 1 or
 ptr2ptr++

 ptr[0]

 ptr[1]

 ….

&ptr[0] :0xffff dc00

 ptr[9] &ptr[9] :0xffff dc24

 ….

0xffff dc00

 ….

&ptr2ptr: 0xffff dc5d

 ….

 ….

 a[0]

 a[1]

 ….

&a[0] :0xffff dc00

 a[9] &a[9] :0xffff dc09

 ….

0xffff dc00

 ….

&p: 0xffff dc5d

 ….

 ….

Command-line Arguments, K&R 5.10
•  The main() function can be called with arguments

•  Must declare them to use them

 main (int argc, char *argv[])

•  The value of argc is the number of char strings in
the array argv[] which is an array of ptrs to the
command line tokens separated by white space

•  Element argv[0] always points to the command
name typed in by the user to invoke main

•  If there are no other arguments, argc = 1

Command-line Arguments

•  If there are other arguments:
–  For example, if the program was compiled as echo, and

the user typed
 echo hello, world

•  argc will be 3 (the number of strings in argv[])
•  argv[0] points to the beginning address of “echo”
•  argv[1] points to the beginning address of “hello,”
•  argv[2] points to the beginning address of “world”

Command-line Arguments
•  The program can print back the arguments typed in by

the user following the echo command:

 int main (int argc, char *argv[])
 { /* envision argc = 3, *argv[0]=“echo”, …*/
 while (--argc > 0)
 printf("%s%s", *++argv, (argc > 1) ? " " : "");
 printf("\n");
 return 0;
 }

malloc() and free()
•  To get a pointer p to a block of memory

that is n characters in length, program calls
p = malloc(n);

•  When it is finished with that memory, the

program returns it by calling
free(p);

•  Sounds simple, huh?

•  It is NOT so simple!

malloc() and free()

•  malloc returns a pointer (void *) that points
to a memory block of n bytes

•  If you need a pointer to n of a specific type,
you must request a memory block in size of
the type and cast pointer returned by malloc
int *p;
p = (int *) malloc(n * sizeof(int));

malloc and free

•  If it can not provide the requested memory,
malloc returns a NULL pointer value

•  If you dereference a NULL pointer to access
memory ! System Crash!!

•  Always check to be sure that the pointer
returned by malloc is NOT equal to NULL

•  If pointer is NULL, code must take appropriate
recovery action to handle lack of memory

malloc and free

•  Call to free does not clear the program’s pointer
to the memory block, so it is now a “stale” pointer

•  If program uses pointer after free() by accessing
or setting memory via pointer, it could overwrite
data owned by another program ! System Crash!

•  If program calls free again with the same pointer,
it releases memory possibly owned by a different
program now ! System Crash!

•  SHOULD set pointer to NULL after calling free()

malloc and free

•  However, if you set the pointer to a memory
block to NULL before calling free, you have
caused the system to lose the memory forever

•  This is called a memory leak!!
•  If it happens enough times ! System Crash!!
•  MUST not clear or overwrite a pointer to a

memory block before calling free!!

malloc() and free()

•  Memory model for malloc() and free()
Before call to malloc() and after call to free():

allocbuf:

After call to malloc() and before call to free():

allocbuf:

In use

In use

Free

Free

In use Free

In use In use Free

malloc() and free()

•  Fragmentation with malloc() and free()
Before call to malloc() for a large memory block:

allocbuf:

malloc can NOT provide a large contiguous block
of memory - even though there is theoretically
sufficient free memory! Memory is fragmented!!

In use Free In use Free In use Free In use

malloc and free
•  The malloc memory fragmentation problem

is not easy to solve!!

•  Not possible to “defragment” malloc
memory as you would do for a disk

•  On a disk, the pointers to memory are in the
disk file allocation table and can be changed

•  With malloc, programs are holding pointers
to memory they own - so can’t be changed!!

Pointers to Functions, K&R 5.11

•  Function prototype with pointer to function
void qsort (… , int (*comp) (void *, void *));

•  Function call passing a pointer to function
qsort(… , (int (*) (void *, void *)) strcmp);
This is a cast to function pointer of strcmp

•  Within qsort(), function is called via a pointer
if ((*comp) (v[i], v[left]) < 0) …

Pointers to Functions

•  Initialize a pointer to a function
 /* function pointer *fooptr = cast of foo to func ptr */

 int (*fooptr) (int *, int*) = (int (*) (int *, int *)) foo;

•  Call the function foo via the pointer to it
 (*fooptr) (to, from);

