Pointers and Arrays

* Declarations of automatic variables:
mtx=1,y=2, z[10];
int *1p; /* 1p 1s a pointer to an int */
Ip=&Xx; /*1pisapointer tointx */
« Read “int *ip~ right to left

Variable 1p 1s a pointer (*) to a variable of type int

Pointers and Memory

 Memory Address, Contents, and Variable Names

OxFF1
OxFF1

OxFF1

054
050
04C

OxFF1028
OxFF1024

0x00 0x00 0x00 0x01
0x00 0x00 0x00 0x02
0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x?? 0x??
0x00 OxFF 0x10 0x54

X

y
z[9]

z[0]
Ip

Operators (& and *)

e Operator ‘& - value of &x is “address of x"

1p = &X; /* 1p now points to x */

e Operator ‘*° = de-references a pointer (indirection)
y = *1p; /* set y = x (the int at address 1p) */
1p = 0; / setxto 0 */
1ip = &z[0]; /* set 1p to address of z[0] */
1p = 3; / set z[0] to 3 */
*ip="*1p+10; /*setz[0]to 13 */

* Note: & and * are unary operators - See K&R pg 53

Pointer Operations

* More pointer operation examples:

*Ip+1; /*add 1 to the int pointed to by 1p */

" *ip+=1; /* adds one to the int pointed to by ip */

same 5 T+¥Ip; /* pre increments int pointed to by 1p */
_ ++(*1p); /* same as above, binds right to left */
1p++ / point to int at pointer 1p, post increment 1p*/

/* binds right to left as *(ip++) */

(*1ip)++; /* post increments int pointed to by 1p */

/* need () - otherwise binds as *(1p++) */

Incrementing Pointers

* A pointer 1s a number corresponding to the
address of the byte used to store the variable

 When you increment a pointer, the address 1s
incremented by the number of bytes used to
store that type of variable

* For example, a char pointer cp declared as:
char *cp;

cpt++; /* byte address is incremented by 1 */

Incrementing Pointers

* For example, an int pointer 1p declared as:
int *1p;

ip++; /* byte address 1s incremented by 4 */

* The 1nt pointer 1s not thought of as being
incremented by 4 - that's hidden from the C
programmer - it's said to be incremented by the
size of the data type that it points at

Pointers as Function Arguments
* DOESN'T WORK * * POINTER VERSION *

swap (1,); i swap (&1, &));
vold swap (int a, int b) iVOld swap (int *pa, int *pb)
{ {

int dummy; 't dummy;

dummy = a; . dummy = *pa;

a=b; | *pa = *pb;

b = dummy; i *pb = dummy;
h E

Declaration and Initialization

Example of Declaration and Initialization:
int a[10]
int *pa = &a[0]; /* initialize pa to point to a[0] */

When we are initializing in the declaration, the *
acts as part of the type for variable pa

When we are initializing pa, we are setting pa (not
*pa) equal to the address after = sign

For normal assignment, we use: pa = &a[0];

Pointers and Arrays

C treats an array name (without a subscript
value) and a pointer in THE SAME WAY

We can write:
pa = &al0];

OR we can write the equivalent:
pa=a;

Array name "a" acts as specially mnitialized
pointer pointing to element 0 of the array

Pointers and Arrays

Array a 1s an unchanging (constant) pointer
a = a+t1; not possible (like writing 7 = 7+1)

defining an array allocates the required
space for contents of all array elements!

defining a pointer allocates memory for the
pointer but not for the data that the pointer
points to!

Pointers and Arrays

* (Given the way incrementing a pointer works,
it s useful for accessing successive elements
of an array that 1t points to:

*pa means same as a[0]
*(pa + 1) means the same as a| 1]
*(pa + m) means the same as ajm]

Pointers and Arrays

» Consider the example:

inti,al |=1{0,2,4,6,8, 10,12, 14, 16, 18};
int *pa = &a[3];

SEEEES

hat 1s the value of *(pa + 3) ? (12)

nat 1s the value of *pa+ 3 ? (9

nat happens when 1 = *pa++ evaluated? (pa=&al4])
nat 1s the value of 1? (6)

nat happens when 1 = ++*pa evaluated? (++a[4])
nat 1s the value of 1? (9)

Pointers and Arrays

« An array name can be used 1n an expression the
same way that a pointer can be 1n an expression
(its actual value cannot be changed permanently)

a+m 1sthe same as &a[m]
if pa =a, *(a + m) 1s the same as *(pa + m)

*(pa + m) can be written as pa|m]

Examples — strlen ()

« We now discuss how “real” C programmers
deal with strings in functions

* We can call strlen() with arguments that are
an array or a pointer to an array of type
char:

strlen (arrayname)
strlen (ptr)
strlen("hello, world")

Examples — strlen

* Here 1s a variant of the way we did strlen ()
int strlen(char s[])
{
Int n;
for (n = 0; s[n]; nt+) /*sum s+n, use as ptr */
: /* for test, and increment n */

return n;

Examples — strlen

e “Real” C programmers use pointers in cases like this:
int strlen(char *s) /* s 1s just a copy of pointer */
{ /* so no real change to string */
char *cp;
for (cp =s; *s ; s++) /* no sum, just incr. pointer */
: /* more efficient */

return s - cp; /* difference of pointers has int value™/

Examples — strlen

« Simplest form yet (See K&R, pg 39)
int strlen (char *s)

d
char *p =s;
while (*p++)
returnp - s - 1;

j

Examples — strcpy

void strcpy (char *s, char *t) /* copy ttos */

d
while (*s++ = *t++) /* stops when *t ="\0" */
; /* look at page 105 examples */

j

* Note: there 1s an assignment statement 1nside the
while () (not just comparison) and the copy stops
AFTER the assignment to *s of the final value 0
from *t

Examples - strcmp

int strcmp (char * s, char * t) /* space after * 1s OK */
d
for (; *s == *t; st++, t++)
if (*s =="\0")
return 0; /*have compared entire string
and found no mismatch */

return *s - *t; /*on the first mismatch, return */
} /* (*s - *t1s <0 1f *s <*tand 1s > 0 1f *s > *t) */

Review Pointers.

intal 1={1,3,5,7,9,11,13,15,17.19}:
int *pa = &a[4],*pb = &a[1];

What 1s the value of: *(a+2)? Same as a[2]

What 1s the value of: pa-pb? 3

What 1s the value of: pb[1]? Same as a[2]

What is the effect of: *pa += 5?7 a[4]+=35

What 1s the effect of: *(pa += 2)?pa = &a[6], value 1s a[6]

What 1s the effect of: *(a +=2)? Illegal, can't modify an
array name such as a

What 1s the value of: pa[3]? Same as a|9]

Valid Pointer Arithmetic

Set one pointer to the value of another pointer of the same
type. If they are of different types, you need to cast.

pa = pb;

Add or subtract a pointer and an integer or an integer
variable:

pa+3

pa—>5

pa+i /* 1 has a type int */

Subtract two pointers to members of same array:
pa—pb Note: Result 1s an integer

Compare two pointers to members of same array:
if (pa <= pb)

Valid Pointer Arithmetic

Assign a pointer to zero (called NULL 1n stdio)
pa=NULL; same as pa=20;

Compare a pointer to zero (called NULL 1n stdio)
If (pa !=NULL); BUT NOT if (pa>NULL)

Note: a NULL pointer doesn't point to anything
(When used as a return value, it indicates failure
of a function that 1s defined to return a pointer)

All other pointer arithmetic is invalid.

— KR p.103: 1t 1s not legal to add two pointers, or to
multiply, divide or shift or mask them, or to add float or
double to them, or except for void * to assign a pointer
of one type to a pointer of another type without a cast.

Valid Pointer Arithmetic

* [f we add new declarations to ones on slide #2,
char s[| = "Hello, world!", *cp = &s[4];

* Which assignments below are valid?:

cp=cp - 3; YES
pa = cp; NO:
(Possible alignment problem, int’s on 4 byte boundaries)
pa =pa+ pb; NO: no adding of pointers
pa = pa + (pa-pb); YES: (pa-pb) is an integer
s[4] = (cp <pa)? 'a". 'b; NO: not members of same type

cp = NULL; YES

Pointer Arrays, K&R 5.6

 Recall that if we define
char a[10];

* We are setting aside space in memory for
the elements of array a, but a can be treated
as a pointer. We can write *a or *(a + 5).

 Now think about the declaration:
char *a[10];

Pointers to Pointers

 What does the array a contain now?
Pointers to char variables or strings!

e Though hard to think about, we can write:
**a /* First char in string pointed to by a[0] */
*(Fat35)+2)
/* Third char 1n string pointed to by a[5] */

Pointers to Pointers

 Now what 1s the use of keeping an array of
pointers to char strings?

« K&R gives an example on p.108:
— Reading 1n a sequence of lines
— Placing them in blocks of memory (e.g. malloc)
— Building an array of pointers to the blocks

— Sorting by moving pointers — not strings

« Example of pointers to unsorted char strings

Pointers to Pointers

char *lineptr[MAXLINES];

lineptr[0] lineptr[1] lineptr[2] lineptr[3] lineptr[4]

\0
L—=—==3 3 b C \0
———————— k| m | \0

Pointers to Pointers

» To 1nitialize the array with fixed values

lineptr

lineptr

char c[]
0]
lineptr[1]
2]

char a[] = “klm”;

char b[] = “abc™;

“def”;
— a;
=b;

/* or = &a|
/* or = &b[
/* or = &c|

I; */
I, */
I; */

Pointers to Pointers

« Examples of pointers to sorted char strings
char *lineptr[MAXLINES];

lineptr[0] lineptr[1] lineptr[2] lineptr[3] lineptr[4]

\O

r

|

|

-

|

v
o
o
—

Pointers to Pointers

* Write out lines in pointer order (easy way)
void writelines(char * lineptr[], int nlines)
{
int 1= 0;
while (1 < nlines)
printf("%s\n", lineptr[1++]);

Pointers to Pointers

* Write out lines in pointer order (efficiently)
void writelines(char * * lineptr, int nlines)
{
while (nlines-- > 0)
printf("%s\n", *lineptr++);

Review of Pointers

/* demo of pointer */
char a[10];
char * p = &a[0];

It is illegal to do: g0 oxmraco0

a=at+l or
&a[0] = &a[0] +1 or
at++

&a[9] :0xfftf dc09

Itis legal todo: o irgesa

p=ptlor
pt+t

a[0]

a[l]

a[9]

Oxftff dc00

/* demo of pointer array */
char *ptr[10];
char ** ptr2ptr = &ptr[0];

It is illegal to do: &ptr[0] :0xfEEF dc00
ptr = ptr+1 or
&ptr[0] = &ptr[0] +1 or

ptr++ &ptr[9] :OxfFff dc24
It is legal to do: &ptr2ptr: OXFEF de5d

ptr2ptr = ptr2ptr + 1 or

ptr2ptr++

ptr[0]

ptr{1]

ptr[9]

Oxffff dc00

Command-line Arguments, K&R 5.10

The main() function can be called with arguments

Must declare them to use them
main (int argc, char *argv|[])

The value of argc 1s the number of char strings in
the array argv[| which 1s an array of ptrs to the
command line tokens separated by white space

Element argv[0] always points to the command
name typed 1n by the user to invoke main

If there are no other arguments, argc = 1

Command-line Arguments

If there are other arguments:

— For example, 1f the program was compiled as echo, and
the user typed

echo hello, world

argc will be 3 (the number of strings in argv[])
argv[0] points to the beginning address of “echo”

argv[1] points to the beginning address of “hello,”

argv[2] points to the beginning address of “world”

Command-line Arguments

* The program can print back the arguments typed in by
the user following the echo command:

int main (int argc, char *argv][])

{ /* envision argc = 3, *argv[0]="“echo”, ...*/
while (--argc > 0)
printf("%s%s", *++argv, (argc>1) 7" ":"");
printf("\n");
return 0;

malloc() and free()

To get a pointer p to a block of memory
that 1s n characters in length, program calls

p = malloc(n);

When it is finished with that memory, the
program returns 1t by calling

free(p);

Sounds simple, huh?

It 1s NOT so simple!

malloc() and free()

« malloc returns a pointer (void *) that points
to a memory block of n bytes

 If you need a pointer to n of a specific type,

you must request a memory block 1n size of

the type and cast pointer returned by malloc
int *p;

p = (int *) malloc(n * sizeof(int));

malloc and free

If 1t can not provide the requested memory,
malloc returns a NULL pointer value

If you dereference a NULL pointer to access
memory =2 System Crash!!

Always check to be sure that the pointer
returned by malloc 1s NOT equal to NULL

If pointer 1s NULL, code must take appropriate
recovery action to handle lack of memory

malloc and free

Call to free does not clear the program’ s pointer
to the memory block, so it is now a “stale” pointer

If program uses pointer after free() by accessing
or setting memory via pointer, 1t could overwrite
data owned by another program > System Crash!

If program calls free again with the same pointer,
it releases memory possibly owned by a different
program now =2 System Crash!

SHOULD set pointer to NULL after calling free()

malloc and free

However, 1f you set the pointer to a memory
block to NULL before calling free, you have
caused the system to lose the memory forever

This 1s called a memory leak!!
If it happens enough times = System Crash!!

MUST not clear or overwrite a pointer to a
memory block before calling free!!

malloc() and free()

 Memory model for malloc() and free()
Before call to malloc() and after call to free():

allocbuf:

In use | Free In use

Free

After call to malloc() and before call to free():

allocbuf:

In use | Free In use

In use

Free

malloc() and free()

* Fragmentation with malloc() and free()
Before call to malloc() for a large memory block:

allocbuf:

In use | Free In use Free | Inuse | Free| In use

malloc can NOT provide a large contiguous block
of memory - even though there 1s theoretically
sufficient free memory! Memory 1s fragmented!!

malloc and free

The malloc memory fragmentation problem
1S not easy to solve!!

Not possible to “defragment” malloc
memory as you would do for a disk

On a disk, the pointers to memory are in the
disk file allocation table and can be changed

With malloc, programs are holding pointers
to memory they own - so can’ t be changed!!

Pointers to Functions, K&R 5.11

* Function prototype with pointer to function
void gsort (... , int (*comp) (void *, void *));

* Function call passing a pointer to function
gsort(..., (int (*) (void *, void *)) strcmp);
This 1s a cast to function pointer of strcmp

* Within gsort(), function 1s called via a pointer
if ((*comp) (v[1], v[left]) <O0) ...

Pointers to Functions

 Initialize a pointer to a function
/* function pointer *fooptr = cast of foo to func ptr */

int (*fooptr) (int *, int*) = (int (*) (int *, int *)) foo;

 Call the function foo via the pointer to it
(*fooptr) (to, from);

