struct

e Astructis a collection of variables, possibly of
different types, grouped under a single name for
common reference as a unit.

struct point{ /* with optional tag */
int x; /* member x */
inty; /* membery */

}s

struct point g= {320, 200};

struct point pt;

pt.x = 320; pt.y = 200;

struct

* A structinside a struct (nesting).
struct rect {
struct point ptl; /* lower left */
struct point pt2; /* upper right */
5

struct rect box;/* declare box as a rect */

box.pt2.y

Yy

box.ptl.y

»
»

box.ptl.x X box.pt2.x

struct

/* Find area of a rectangle */
int area = rectarea (box);

int rectarea (struct rect x) {
return (x.pt2.x - x.ptl.x) * (x.pt2.y - x.ptl.y);

J

struct

* Memory allocation for structs

— Two point structs ptl and pt2
«—ptl > <« pt2 >

ptlx | ptly |pt2.x | pty

— One rect struct box containing two point

structs « box
tl pt2

«—0P > <

ptlx | ptly |pt2.x | pty

What can we do with a struct?

e Reference members
box.pt2.x = box.ptl.x + width;

* Assign as a unit
pt2 = ptl;

* Create a pointer to it
struct point *pptl;
pptl = &ptl;

What can we do with a struct?

* Not legal to compare structs

if (ptl ==pt2) ... € INVALID

e Must be done as:
if (ptl.x == pt2.x & & ptl.y == ptl.y) ...

struct and Functions

We can use a struct as any other type with functions

/* check 1f 2 rectangles overlap */
int ptinrect (struct point p, struct rect r)
d
return p.x >= r.ptl.x && p.x <=r.pt2.x
&& p.y >=r.ptl.y && p.y <= r.ptl.y;

Arrays of structs

* Multiple related arrays to store a number of
keywords and their corresponding counts

char * keyword[NKEYS];
int Keycount[NKEYS];

* Can be implemented as an array of structs
struct key {
char *word;
int count;
£5
struct key keytab [NKEYS];

Arrays of structs

* Alternative array of structs implementation

struct key {
char *word;

int count;
} keytab|[NKEYS];

Arrays of structs

 Initialization for an array of structs
struct key {
char *word;
Int count;
; keytab[| ={
“auto”, 0,

“while”, 0
}; /* NKEYS is dynamically derived */

Pointers to structs

* Declare and 1nitialize a pointer to struct
struct point p;
struct point *pp = &p;

* Refer to members of struct p via pointer pp
(*pp)-x and (*pp).y
or

pp->x and pp->y

Pointers to structs

struct string {

int len;

char *cp;
;P
Expression Same as Value / Effect
++p->len ++H(p->len) incr len
*p->cp *(p->cp) value is a char

*p->cp++ *((p->cp)++) value is a char incr cp

Pointers to structs

/* check 1f two rectangles overlap
ptinrect: (pointer version)
if point p 1n rect r, return 1 else return 0

*/

int ptinrect (struct point *pp, struct rect *rp)

d
return pp->x >= rp->ptl. X && pp->Xx <= rp->pt2.x

&& pp->y >=1p->ptl.y && pp->y <= rp->ptl.y;

Review

Declarations/Definitions, K&R pg. 9, 210

A declaration specifies the interpretation to be
given to an identified variable

A definition is a declaration that reserves storage

n C89, declarations/definitions must be made
oefore all executable statements in the same

olock {...}

NOTE: In C99, this requirement is relaxed. All
declarations/definitions must be made before
being used in any executable statements.

Compiler vs Dynamic Allocation of Memory

* If size is known at “compile time” (i.e., it is a
pre-defined constant value):

— Use the compiler to allocate memory
— This is the easiest way
* If size is NOT known at “compile time” (e.g., it
is entered by user at run time):
— You must use dynamic allocation of memory
— Be careful to use malloc() and free() correctly

Compiler Allocated Array

static char *lines[MAXLINE]; /* define array */

/* Static array elements are initialized = NULL for you */

/* No need to free memory allocated for the array lines */
/* (The compiler takes care of all the details for you) */

Dynamically Allocated Array

* |f you had no specification for maximum number
of lines tail had to be able to hold

* |f you only get maximum number (n) at run time:

static char **lines; /* pointer to array of pointers */

lines = (char **) malloc (n * sizeof (char *));

/* You must initialize all pointers in array = NULL */

/* Later, you must free memory allocated for the
lines array after freeing memory for each line */

free ((void *) lines);

lines = NULL;

Static/Dynamic Arrays

 Regardless of how 1ines array is declared —
static or dynamic, refer to it in the same way:

lines[i1] = (char *) malloc (strlen(line)+1);
strcpy (lines[1], line);

printf (“%$s\n’, lines[i++]);

free((void *) lines|[1i]);

lines[1] = NULL;

Compiler Allocated Array of structs

struct pet {
char *type;
char *name;
% /* each instance of struct pet is 8 bytes */
void print_list(struct pet *, int); /* function prototype */

int main () /* array and structs allocated by compiler */{
/* all are automatic — allocated on stack */

struct pet list [] = {"cat”, “fluffy”}, {“dog”, “spot” }};
print_list(list, sizeof list / sizeof(struct pet)); /* size =2 */
return O;

) /* all memory used goes “poof” upon return */

Dynamically Allocated Array of structs

int main () {
intn=2;
/* all structs are in dynamic memory */
struct pet *list = (struct pet *) malloc (n * sizeof(struct pet));
list[0].type = “cat”;
list[0].name = “fluffy”;
list[1].type = “dog”’;
list[1].name = “spot”;
print_list(list, n);
free ((void *) list); /* free memory used for the array */
list = NULL; /* optional - goes “poof” on return */
return O;

Dynamically Allocated Array of structs

int main () {
intn=2;
/* all structs are in dynamic memory */
struct pet *list = (struct pet *) malloc (n * sizeof(struct pet));
struct pet *copy = list;
copy->type = “cat’; /* “real” C programmer’ s way */
copy->name = “fluffy”;
(++copy)->type = “dog’;
copy->name = "spot’;
print_list(list, n);
free ((void *) list); /* free memory used for the array */
return O; /* list and copy go out of scope */

Print Either Array of structs

void print_list(struct pet *list, int size) {
while (size--) {
/* defensive programming — check pointer values */
if (list 1= NULL && list->type = NULL && list->name = NULL)
printf("%s, %s\n", list->type, list->name);
list++;
}
}

Introduction to C99

e (C99 standard relaxes a few of the C89 rules

— // style single line comments may be used

— Variables may be defined anywhere in a block. They do
not need to be defined before all executable code
(useful and helps to enable the next 2 rules)

— Automatic array variables may be dimensioned with a
value known at run time — not just with a constant

— Loop variable may be declared in the initialization
statement of a “for” loop— similar to Java

— New complex and boolean data types are supported

Introduction to C99

gcc supports C99 with the —c99 option flag
C89 code will compile correctly under C99
You aren’ t required to use any C99 features!

You may be able to use C99 to simplify the
code for your particular program

Careful - if there is any requirement for your
code to be C89 compatible for any reason!

Dynamically-sized Arrays (C99)

* |f you have no specification for maximum number
of lines that the lines array has to be able to hold
* |f you only get the value of n at run time:
char *lines [n]; /* cannot be “static’ or “external” */
/* You must initialize all pointers in array = NULL */

/* Normal rules of “block” scope for compiler-allocated
memory apply! DON’ T CALL FREE! */

Table Lookup, K&R 6.6

e struct for a linked list of names/definitions

struct nlist { [* table entry */
struct nlist *next; [/* linktonext */
char *name; /* word name */
char *defn; [* word definition */

b

Table Lookup / Linked Lists

* Array of pointers to null terminated linked
lists of structs defining table entries

nlist

nlist

0

array

0]
[1] 0

niist

[2] 0

3]
[4] 0

Table Lookup / Linked List

* Hash function to select starting array element
unsigned int hash (char *s)

{

for (hashval = 0; *s 1= \0"; s++)
hashval = *s + 31 * hashval;

return hashval % HASHSIZE;

}
* Inlookup (), std code for following a linked list:
for (ptr = head; ptr = NULL; ptr = ptr->next)

Multi-Dimensional Arrays

Declare rectangular multi-dimensional array

char a[2][3]; /* array [row] [column] */

NOTE: char alz2, 3] is INCORRECT!

The rightmost subscript varies fastest as one
looks at how data lies in memory:

a[0][0], a[0]([1], a[0][2], al1]([0], a[l][1l], ...
It is the same as a one dimensional array [2]
with each element being an array [3]

Multi-Dimensional Arrays

 Example of converting a month & day into a day of the

year for either normal or leap years
static char daytab[2][13] = {

(0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
(0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
I
e Use a second row of day counts for leap year rather than
perform a calculation for days in February
daytab[1][1] is31 2> sameasdaytab[0] [1]
daytab[1][2] is29 2> notsame as daytab[0] [2]

Multi-Dimensional Arrays

The array declared as char daytab[2][13] can be
thought of as:

char (daytab [2]) [13]1; /* pg. 53 */

Each one dimensional array element (daytab[0],
daytab[1])is like array name - as if we declared:

char daytab0 [13], daytabl [13];
daytab[0] isin memory first, then daytab[1]

Multi-Dimensional Arrays

+ daytab[0] and daytab[1] are arrays of 13 chars
 Now recall duality of pointers and arrays:
(daytab [0])[n] =2 (*daytab) [n]
(daytab [1])[n] 2 (* (daytab+1)) [n]

.+ daytab iS a pointer to an array of elements each
of which is an array of size 13 chars

Multi-Dimensional Arrays

* But, these two declarations are not allocated memory
the same way:

char daytab[2][13]1; =2 26 char-sized locations

char (*dp) [13]; =2 1 pointer-sized location

* For the second declaration, code must set the pointer
equal to an already defined array of [n] [13] dp
= daytab;
OR

* Use malloc to allocate memory for an array: dp =

(char (*)[13]) malloc(2*13);

Multi-Dimensional Arrays

static char daytab[2][13] = { ... };
daytab[0] [2] == 28 daytab[1l] [2] == 29
Array of 13 chars Array of 13 chars
[(*dp) [2] == 28 (*(dp + 1)) [2] == 29
dp dp = daytab;
1 char (*) [13]| - A pointer to an unspecified number of 13 char arrays

dp = (char (*)[13]) malloc (2*13);

Array of 13 chars Array of 13 chars

(*dp) [2] == 2? (*(dp + 1)) [2] == 27

Multi-Dimensional Arrays

« “Real” C programmers use pointers to
pointers often and multidimensional arrays
rarely

* Avoids worst case for memory allocation

typedef, K&R 6.7

typedef creates a new name for existing type
typedef int Boolean;

typedef char *String;

Does not create a new type in any real sense
No new semantics for the new type name!

Variables declared using new type name
have same properties as variables of original

type

typedef

* Could have used typedef in section 6.5 like this:
typedef struct tnode {
char *word;
Int count;
treeptr left;
treeptr right;
} treenode;
typedef struct tnode *treeptr;

typedef

* Then, could have coded talloc () as follows:
treeptr talloc(void)

{

return (treeptr) malloc(sizeof(treenode));

J

typedef

e Used to provide clearer documentation:
treeptr root;
Versus

struct tnode *root;
* Used to create machine independent variable
types:
typedef int size_t;/* size of types */
typedef int ptrdiff t; /* difference of pointers */

Unions, K&R 6.8

A Union is a variable that may hold objects of
different types (at different times or for
different instances of use)

union u_tag {
int ival;
float fval;
char *sval;

}u;

Unions

* A union will be allocated enough space for the
largest type in the list of possible types

 Same as a struct except all members have a
zero offset from the base address of union

u

ival fval *sval

Unions

 The operations allowed on unions are the
same as operations allowed on structs:

— Access a member of a union
union u_tag x;
X.ival = ... ;

— Assign to union of the same type
union u_tagy;

X=Y,

Unions

— Create a pointer to / take the address of a union
union u_tag x;
union u_tag *px = &x;
— Access a member of a union via a pointer
px->ival = ... ;

Unions

* Program code must know which type of value
has been stored in a union variable and

process using correct member type

* DON’ T store data in a union using one type
and read it back via another type in attempt to
get the value converted between types

x.ival = 12; /* put an int in union */
float z = x.fval; /* don’ t read as float! */

Bit-Fields, K&R 6.9

 Bit fields are used to get a field size other
than 8 bits (char), 16 bits (short on some
machines) or 32 bits (long on most machines)

 Allows us to “pack” data one or more bits at
a time into a larger data item in memory to
save space, e.g. 32 single bit fields to an int

* Can use bit fields instead of using masks,
shifts, and or’ s to manipulate groups of bits

Bit-Fields

e Uses struct form:

struct {
unsigned int flgl : 1; /* called a “bit field” */
unsigned int flg2 : 1; /* ": 1" 2>"1 bit in length " */
unsigned int flg3 : 2; /* ": 2" "2 bits in length" */

} flag; /* variable */

* Field lengths must be an integral number of bits

Bit-Fields

e Access bit fields by member name same as
any struct — just limited number of values

flag.flgl=0; /*or=1; */
flag.flg3=0; /*or=1;=2;=3; */

Bit-Fields

* Minimum size data item is implementation
dependent, as is order of fields in memory

* Don’ t make any assumptions about order!!

 Sample memory allocation:
flags

flags.flg3

flags.flg2 flags.flgl

