EUCLID'S ELEMENTS OF GEOMETRY

The Greek text of J.L. Heiberg (1883-1885)
from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883-1885
edited, and provided with a modern English translation, by Richard Fitzpatrick

First edition - 2007
Revised and corrected - 2008

ISBN 978-0-6151-7984-1

Contents

Introduction 4
Book 1 5
Book 2 49
Book 3 69
Book 4 109
Book 5 129
Book 6 155
Book 7 193
Book 8 227
Book 9 253
Book 10 281
Book 11 423
Book 12 471
Book 13 505
Greek-English Lexicon 539

Introduction

Euclid's Elements is by far the most famous mathematical work of classical antiquity, and also has the distinction of being the world's oldest continuously used mathematical textbook. Little is known about the author, beyond the fact that he lived in Alexandria around 300 BCE. The main subjects of the work are geometry, proportion, and number theory.

Most of the theorems appearing in the Elements were not discovered by Euclid himself, but were the work of earlier Greek mathematicians such as Pythagoras (and his school), Hippocrates of Chios, Theaetetus of Athens, and Eudoxus of Cnidos. However, Euclid is generally credited with arranging these theorems in a logical manner, so as to demonstrate (admittedly, not always with the rigour demanded by modern mathematics) that they necessarily follow from five simple axioms. Euclid is also credited with devising a number of particularly ingenious proofs of previously discovered theorems: e.g., Theorem 48 in Book 1.

The geometrical constructions employed in the Elements are restricted to those which can be achieved using a straight-rule and a compass. Furthermore, empirical proofs by means of measurement are strictly forbidden: i.e., any comparison of two magnitudes is restricted to saying that the magnitudes are either equal, or that one is greater than the other.

The Elements consists of thirteen books. Book 1 outlines the fundamental propositions of plane geometry, including the three cases in which triangles are congruent, various theorems involving parallel lines, the theorem regarding the sum of the angles in a triangle, and the Pythagorean theorem. Book 2 is commonly said to deal with "geometric algebra", since most of the theorems contained within it have simple algebraic interpretations. Book 3 investigates circles and their properties, and includes theorems on tangents and inscribed angles. Book 4 is concerned with regular polygons inscribed in, and circumscribed around, circles. Book 5 develops the arithmetic theory of proportion. Book 6 applies the theory of proportion to plane geometry, and contains theorems on similar figures. Book 7 deals with elementary number theory: e.g., prime numbers, greatest common denominators, etc. Book 8 is concerned with geometric series. Book 9 contains various applications of results in the previous two books, and includes theorems on the infinitude of prime numbers, as well as the sum of a geometric series. Book 10 attempts to classify incommensurable (i.e., irrational) magnitudes using the so-called "method of exhaustion", an ancient precursor to integration. Book 11 deals with the fundamental propositions of three-dimensional geometry. Book 12 calculates the relative volumes of cones, pyramids, cylinders, and spheres using the method of exhaustion. Finally, Book 13 investigates the five so-called Platonic solids.

This edition of Euclid's Elements presents the definitive Greek text-i.e., that edited by J.L. Heiberg (1883-1885)-accompanied by a modern English translation, as well as a Greek-English lexicon. Neither the spurious books 14 and 15, nor the extensive scholia which have been added to the Elements over the centuries, are included. The aim of the translation is to make the mathematical argument as clear and unambiguous as possible, whilst still adhering closely to the meaning of the original Greek. Text within square parenthesis (in both Greek and English) indicates material identified by Heiberg as being later interpolations to the original text (some particularly obvious or unhelpful interpolations have been omitted altogether). Text within round parenthesis (in English) indicates material which is implied, but not actually present, in the Greek text.

My thanks to Mariusz Wodzicki (Berkeley) for typesetting advice, and to Sam Watson \& Jonathan Fenno (U. Mississippi), and Gregory Wong (UCSD) for pointing out a number of errors in Book 1.

ELEMENTS BOOK 1

Fundamentals of Plane Geometry Involving Straight-Lines

${ }^{\circ}$ Opor．

เร＇．Kévtpov ס̀̀ toũ xúx入ou tò $\sigma \eta \mu \varepsilon i ̃ o v ~ \varkappa \alpha \lambda \varepsilon і ̃ \tau \alpha . ~ . ~$

 xúxiov．

 xúx入ou と̀ $\sigma \tau i v$.

 हैخov үตvías．

Definitions

1．A point is that of which there is no part．
2．And a line is a length without breadth．
3．And the extremities of a line are points．
4．A straight－line is（any）one which lies evenly with points on itself．

5．And a surface is that which has length and breadth only．

6．And the extremities of a surface are lines．
7．A plane surface is（any）one which lies evenly with the straight－lines on itself．

8．And a plane angle is the inclination of the lines to one another，when two lines in a plane meet one another， and are not lying in a straight－line．

9．And when the lines containing the angle are straight then the angle is called rectilinear．

10．And when a straight－line stood upon（another） straight－line makes adjacent angles（which are）equal to one another，each of the equal angles is a right－angle，and the former straight－line is called a perpendicular to that upon which it stands．

11．An obtuse angle is one greater than a right－angle．
12．And an acute angle（is）one less than a right－angle．
13．A boundary is that which is the extremity of some－ thing．

14．A figure is that which is contained by some bound－ ary or boundaries．

15．A circle is a plane figure contained by a single line ［which is called a circumference］，（such that）all of the straight－lines radiating towards［the circumference］from one point amongst those lying inside the figure are equal to one another．

16．And the point is called the center of the circle．
17．And a diameter of the circle is any straight－line， being drawn through the center，and terminated in each direction by the circumference of the circle．（And）any such（straight－line）also cuts the circle in half．${ }^{\dagger}$

18．And a semi－circle is the figure contained by the diameter and the circumference cuts off by it．And the center of the semi－circle is the same（point）as（the center of）the circle．

19．Rectilinear figures are those（figures）contained by straight－lines：trilateral figures being those contained by three straight－lines，quadrilateral by four，and multi－ lateral by more than four．

20．And of the trilateral figures：an equilateral trian－ gle is that having three equal sides，an isosceles（triangle） that having only two equal sides，and a scalene（triangle） that having three unequal sides．
$\chi \beta^{\prime}$. T $̀ \nu \delta$ ठ̀̀ тєтр $\alpha \pi \lambda \varepsilon u ́ p \omega \nu ~ \sigma \chi \eta \mu \alpha ́ \tau \omega \nu ~ \tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu o \nu ~ \mu \varepsilon ́ v ~$

21. And further of the trilateral figures: a right-angled triangle is that having a right-angle, an obtuse-angled (triangle) that having an obtuse angle, and an acuteangled (triangle) that having three acute angles.
22. And of the quadrilateral figures: a square is that which is right-angled and equilateral, a rectangle that which is right-angled but not equilateral, a rhombus that which is equilateral but not right-angled, and a rhomboid that having opposite sides and angles equal to one another which is neither right-angled nor equilateral. And let quadrilateral figures besides these be called trapezia.
23. Parallel lines are straight-lines which, being in the same plane, and being produced to infinity in each direction, meet with one another in neither (of these directions).
${ }^{\dagger}$ This should really be counted as a postulate, rather than as part of a definition.

Aitń $\mu \alpha \tau \alpha$.

Postulates

1. Let it have been postulated ${ }^{\dagger}$ to draw a straight-line from any point to any point.
2. And to produce a finite straight-line continuously in a straight-line.
3. And to draw a circle with any center and radius.
4. And that all right-angles are equal to one another.
5. And that if a straight-line falling across two (other) straight-lines makes internal angles on the same side (of itself whose sum is) less than two right-angles, then the two (other) straight-lines, being produced to infinity, meet on that side (of the original straight-line) that the (sum of the internal angles) is less than two right-angles (and do not meet on the other side). \ddagger
[^0]
Kowaì eैvvolal.

 غ̇ $\sigma \tau \iota \nu$ ’̋ $\sigma \alpha$.

ε^{\prime}. Kaì tò ö λ ov toũ $\mu \varepsilon ́ p o u s ~ \mu \varepsilon і ̈ \zeta o ́ v ~[\varepsilon ̉ \sigma \tau เ \nu] . ~$

Common Notions

1. Things equal to the same thing are also equal to one another.
2. And if equal things are added to equal things then the wholes are equal.
3. And if equal things are subtracted from equal things then the remainders are equal. ${ }^{\dagger}$
4. And things coinciding with one another are equal to one another.
5. And the whole [is] greater than the part.

[^1]an inequality of the same type.

α^{\prime}.

 iఠó $\pi \lambda \varepsilon \cup p o v ~ \sigma \cup \sigma \tau \eta ́ \sigma \alpha \sigma \vartheta \alpha l$.

 $\sigma \cup \sigma \tau \eta \dot{\gamma} \alpha \sigma \vartheta \alpha$.

 عiбiv.

 $\pi o เ ท ̃ \sigma \alpha l$.

Proposition 1

To construct an equilateral triangle on a given finite straight-line.

Let $A B$ be the given finite straight-line.
So it is required to construct an equilateral triangle on the straight-line $A B$.

Let the circle $B C D$ with center A and radius $A B$ have been drawn [Post. 3], and again let the circle $A C E$ with center B and radius $B A$ have been drawn [Post. 3]. And let the straight-lines $C A$ and $C B$ have been joined from the point C, where the circles cut one another, ${ }^{\dagger}$ to the points A and B (respectively) [Post. 1].

And since the point A is the center of the circle $C D B$, $A C$ is equal to $A B$ [Def. 1.15]. Again, since the point B is the center of the circle $C A E, B C$ is equal to $B A$ [Def. 1.15]. But $C A$ was also shown (to be) equal to $A B$. Thus, $C A$ and $C B$ are each equal to $A B$. But things equal to the same thing are also equal to one another [C.N. 1]. Thus, $C A$ is also equal to $C B$. Thus, the three (straightlines) $C A, A B$, and $B C$ are equal to one another.

Thus, the triangle $A B C$ is equilateral, and has been constructed on the given finite straight-line $A B$. (Which is) the very thing it was required to do.
${ }^{\dagger}$ The assumption that the circles do indeed cut one another should be counted as an additional postulate. There is also an implicit assumption that two straight-lines cannot share a common segment.

$$
\beta^{\prime} .
$$

Proposition 2^{\dagger}

To place a straight-line equal to a given straight-line at a given point (as an extremity).

Let A be the given point, and $B C$ the given straightline. So it is required to place a straight-line at point A equal to the given straight-line $B C$.

For let the straight-line $A B$ have been joined from point A to point B [Post. 1], and let the equilateral triangle $D A B$ have been been constructed upon it [Prop. 1.1].

And let the straight-lines $A E$ and $B F$ have been produced in a straight-line with $D A$ and $D B$ (respectively) [Post. 2]. And let the circle $C G H$ with center B and radius $B C$ have been drawn [Post. 3], and again let the circle $G K L$ with center D and radius $D G$ have been drawn [Post. 3].

Therefore, since the point B is the center of (the circle) $C G H, B C$ is equal to $B G$ [Def. 1.15]. Again, since the point D is the center of the circle $G K L, D L$ is equal to $D G$ [Def. 1.15]. And within these, $D A$ is equal to $D B$. Thus, the remainder $A L$ is equal to the remainder $B G$ [C.N. 3]. But $B C$ was also shown (to be) equal to $B G$. Thus, $A L$ and $B C$ are each equal to $B G$. But things equal to the same thing are also equal to one another [C.N. 1]. Thus, $A L$ is also equal to $B C$.

Thus, the straight-line $A L$, equal to the given straightline $B C$, has been placed at the given point A. (Which is) the very thing it was required to do.
${ }^{\dagger}$ This proposition admits of a number of different cases, depending on the relative positions of the point A and the line $B C$. In such situations, Euclid invariably only considers one particular case-usually, the most difficult-and leaves the remaining cases as exercises for the reader.

$$
\gamma^{\prime}
$$

 ó $\Delta \mathrm{EZ}$.

Proposition 3

For two given unequal straight-lines, to cut off from the greater a straight-line equal to the lesser.

Let $A B$ and C be the two given unequal straight-lines, of which let the greater be $A B$. So it is required to cut off a straight-line equal to the lesser C from the greater $A B$.

Let the line $A D$, equal to the straight-line C, have been placed at point A [Prop. 1.2]. And let the circle $D E F$ have been drawn with center A and radius $A D$ [Post. 3].

Δ ט́o $\alpha \not \rho \alpha$ ठov

δ^{\prime}.

 $\dot{\eta}$ ठ̀̀ ú $\pi o ̀ ~ А Г В ~ \tau \tilde{n}$ ú $\pi o ̀ \Delta Z E$.
’Ечapuo弓ouévou $\gamma \grave{\alpha}$ тоũ $\mathrm{AB} \mathrm{\Gamma}$ трıү'́vou ह́nì tò $\Delta \mathrm{EZ}$

And since point A is the center of circle $D E F, A E$ is equal to $A D$ [Def. 1.15]. But, C is also equal to $A D$. Thus, $A E$ and C are each equal to $A D$. So $A E$ is also equal to C [C.N. 1].

Thus, for two given unequal straight-lines, $A B$ and C, the (straight-line) $A E$, equal to the lesser C, has been cut off from the greater $A B$. (Which is) the very thing it was required to do.

Proposition 4

If two triangles have two sides equal to two sides, respectively, and have the angle(s) enclosed by the equal straight-lines equal, then they will also have the base equal to the base, and the triangle will be equal to the triangle, and the remaining angles subtended by the equal sides will be equal to the corresponding remaining angles.

Let $A B C$ and $D E F$ be two triangles having the two sides $A B$ and $A C$ equal to the two sides $D E$ and $D F$, respectively. (That is) $A B$ to $D E$, and $A C$ to $D F$. And (let) the angle $B A C$ (be) equal to the angle $E D F$. I say that the base $B C$ is also equal to the base $E F$, and triangle $A B C$ will be equal to triangle $D E F$, and the remaining angles subtended by the equal sides will be equal to the corresponding remaining angles. (That is) $A B C$ to $D E F$, and $A C B$ to $D F E$.

For if triangle $A B C$ is applied to triangle $D E F,{ }^{\dagger}$ the point A being placed on the point D, and the straight-line

 $\mathrm{A} \Gamma \mathrm{B}$ 七ñ ن́nò $\Delta \mathrm{ZE}$.

$A B$ on $D E$, then the point B will also coincide with E, on account of $A B$ being equal to $D E$. So (because of) $A B$ coinciding with $D E$, the straight-line $A C$ will also coincide with $D F$, on account of the angle $B A C$ being equal to $E D F$. So the point C will also coincide with the point F, again on account of $A C$ being equal to $D F$. But, point B certainly also coincided with point E, so that the base $B C$ will coincide with the base $E F$. For if B coincides with E, and C with F, and the base $B C$ does not coincide with $E F$, then two straight-lines will encompass an area. The very thing is impossible [Post. 1]. \ddagger Thus, the base $B C$ will coincide with $E F$, and will be equal to it [C.N. 4]. So the whole triangle $A B C$ will coincide with the whole triangle $D E F$, and will be equal to it [C.N. 4]. And the remaining angles will coincide with the remaining angles, and will be equal to them [C.N. 4]. (That is) $A B C$ to $D E F$, and $A C B$ to $D F E$ [C.N. 4].

Thus, if two triangles have two sides equal to two sides, respectively, and have the angle(s) enclosed by the equal straight-line equal, then they will also have the base equal to the base, and the triangle will be equal to the triangle, and the remaining angles subtended by the equal sides will be equal to the corresponding remaining angles. (Which is) the very thing it was required to show.
\dagger The application of one figure to another should be counted as an additional postulate.
\ddagger Since Post. 1 implicitly assumes that the straight-line joining two given points is unique.

$$
\varepsilon^{\prime}
$$

 úлò ВГЕ.

Proposition 5

For isosceles triangles, the angles at the base are equal to one another, and if the equal sides are produced then the angles under the base will be equal to one another.

Let $A B C$ be an isosceles triangle having the side $A B$ equal to the side $A C$, and let the straight-lines $B D$ and $C E$ have been produced in a straight-line with $A B$ and $A C$ (respectively) [Post. 2]. I say that the angle $A B C$ is equal to $A C B$, and (angle) $C B D$ to $B C E$.

For let the point F have been taken at random on $B D$, and let $A G$ have been cut off from the greater $A E$, equal

 ह̇兀

 סєi̋ α 人.

$$
\varsigma^{\prime}
$$

 हैठovtal.

 $\tau \tilde{n}$ ن́ $\pi o ̀ ~ A \Gamma B ~ \gamma \omega v i ́ \alpha \cdot \lambda \varepsilon ́ \gamma \omega$, ơ $\tau \iota ~ \varkappa \alpha \grave{l} \pi \lambda \varepsilon \cup p \alpha ̀ \dot{\eta} A B \pi \lambda \varepsilon \cup p \tilde{\alpha} \tau \tilde{n}$

to the lesser $A F$ [Prop. 1.3]. Also, let the straight-lines $F C$ and $G B$ have been joined [Post. 1].

In fact, since $A F$ is equal to $A G$, and $A B$ to $A C$, the two (straight-lines) $F A, A C$ are equal to the two (straight-lines) $G A, A B$, respectively. They also encompass a common angle, $F A G$. Thus, the base $F C$ is equal to the base $G B$, and the triangle $A F C$ will be equal to the triangle $A G B$, and the remaining angles subtendend by the equal sides will be equal to the corresponding remaining angles [Prop. 1.4]. (That is) $A C F$ to $A B G$, and $A F C$ to $A G B$. And since the whole of $A F$ is equal to the whole of $A G$, within which $A B$ is equal to $A C$, the remainder $B F$ is thus equal to the remainder $C G$ [C.N. 3]. But $F C$ was also shown (to be) equal to $G B$. So the two (straightlines) $B F, F C$ are equal to the two (straight-lines) $C G$, $G B$, respectively, and the angle $B F C$ (is) equal to the angle $C G B$, and the base $B C$ is common to them. Thus, the triangle $B F C$ will be equal to the triangle $C G B$, and the remaining angles subtended by the equal sides will be equal to the corresponding remaining angles [Prop. 1.4]. Thus, $F B C$ is equal to $G C B$, and $B C F$ to $C B G$. Therefore, since the whole angle $A B G$ was shown (to be) equal to the whole angle $A C F$, within which $C B G$ is equal to $B C F$, the remainder $A B C$ is thus equal to the remainder $A C B$ [C.N. 3]. And they are at the base of triangle $A B C$. And $F B C$ was also shown (to be) equal to $G C B$. And they are under the base.

Thus, for isosceles triangles, the angles at the base are equal to one another, and if the equal sides are produced then the angles under the base will be equal to one another. (Which is) the very thing it was required to show.

Proposition 6

If a triangle has two angles equal to one another then the sides subtending the equal angles will also be equal to one another.

Let $A B C$ be a triangle having the angle $A B C$ equal to the angle $A C B$. I say that side $A B$ is also equal to side $A C$.

For if $A B$ is unequal to $A C$ then one of them is greater. Let $A B$ be greater. And let $D B$, equal to the lesser $A C$, have been cut off from the greater $A B$ [Prop. 1.3]. And let $D C$ have been joined [Post. 1].

Therefore, since $D B$ is equal to $A C$, and $B C$ (is) common, the two sides $D B, B C$ are equal to the two sides $A C, C B$, respectively, and the angle $D B C$ is equal to the angle $A C B$. Thus, the base $D C$ is equal to the base $A B$, and the triangle $D B C$ will be equal to the triangle $A C B$ [Prop. 1.4], the lesser to the greater. The very notion (is) absurd [C.N. 5]. Thus, $A B$ is not unequal to $A C$. Thus, (it is) equal. ${ }^{\dagger}$

Thus, if a triangle has two angles equal to one another then the sides subtending the equal angles will also be equal to one another. (Which is) the very thing it was required to show.

Abstract

${ }^{\dagger}$ Here, use is made of the previously unmentioned common notion that if two quantities are not unequal then they must be equal. Later on, use is made of the closely related common notion that if two quantities are not greater than or less than one another, respectively, then they must be equal to one another.

$$
\zeta^{\prime} .
$$

 $\sigma \alpha \nu \alpha \cup ̉ \tau n ̃ ~ t o ̀ ~ B, ~ x \alpha i ̀ ~ \varepsilon ่ \pi \varepsilon \zeta \varepsilon u ́ \chi \vartheta \omega ~ \dot{\eta} \Gamma \Delta$.

Proposition 7

On the same straight-line, two other straight-lines equal, respectively, to two (given) straight-lines (which meet) cannot be constructed (meeting) at a different point on the same side (of the straight-line), but having the same ends as the given straight-lines.

For, if possible, let the two straight-lines $A C, C B$, equal to two other straight-lines $A D, D B$, respectively, have been constructed on the same straight-line $A B$, meeting at different points, C and D, on the same side (of $A B$), and having the same ends (on $A B$). So $C A$ is equal to $D A$, having the same end A as it, and $C B$ is equal to $D B$, having the same end B as it. And let $C D$ have been joined [Post. 1].

Therefore, since $A C$ is equal to $A D$, the angle $A C D$ is also equal to angle $A D C$ [Prop. 1.5]. Thus, $A D C$ (is) greater than $D C B$ [C.N. 5]. Thus, $C D B$ is much greater than $D C B$ [C.N. 5]. Again, since $C B$ is equal to $D B$, the angle $C D B$ is also equal to angle $D C B$ [Prop. 1.5]. But it was shown that the former (angle) is also much greater

$$
\eta^{\prime} .
$$

’È̀v $\delta u ́ o ~ \tau p i ́ \gamma \omega v \alpha ~ \tau \alpha ̀ s ~ \delta u ́ o ~ \pi \lambda \varepsilon u p \alpha ̀ s ~[\tau \alpha i ̃ s] ~ \delta u ́ o ~ \pi \lambda \varepsilon u p \alpha u ̃ s ~$

 દủvะเฮั้ $\pi \varepsilon \rho เ \varepsilon \chi \circ \mu \varepsilon ́ \nu \eta \nu$.

 $\alpha u ̉ \tau \alpha ̀ \mu \varepsilon ́ p \eta ~ \tau \grave{\alpha} \alpha u ̋ \tau \alpha ̀ \pi \varepsilon ́ p \alpha \tau \alpha$ है $\chi o \cup \sigma \alpha l$. oủ $\sigma u v i ́ \sigma \tau \alpha \nu \tau \alpha l$ ठé.
 oủx غ̇ч др

(than the latter). The very thing is impossible.
Thus, on the same straight-line, two other straightlines equal, respectively, to two (given) straight-lines (which meet) cannot be constructed (meeting) at a different point on the same side (of the straight-line), but having the same ends as the given straight-lines. (Which is) the very thing it was required to show.

Proposition 8

If two triangles have two sides equal to two sides, respectively, and also have the base equal to the base, then they will also have equal the angles encompassed by the equal straight-lines.

Let $A B C$ and $D E F$ be two triangles having the two sides $A B$ and $A C$ equal to the two sides $D E$ and $D F$, respectively. (That is) $A B$ to $D E$, and $A C$ to $D F$. Let them also have the base $B C$ equal to the base $E F$. I say that the angle $B A C$ is also equal to the angle $E D F$.

For if triangle $A B C$ is applied to triangle $D E F$, the point B being placed on point E, and the straight-line $B C$ on $E F$, then point C will also coincide with F, on account of $B C$ being equal to $E F$. So (because of) $B C$ coinciding with $E F$, (the sides) $B A$ and $C A$ will also coincide with $E D$ and $D F$ (respectively). For if base $B C$ coincides with base $E F$, but the sides $A B$ and $A C$ do not coincide with $E D$ and $D F$ (respectively), but miss like $E G$ and $G F$ (in the above figure), then we will have constructed upon the same straight-line, two other straightlines equal, respectively, to two (given) straight-lines, and (meeting) at a different point on the same side (of the straight-line), but having the same ends. But (such straight-lines) cannot be constructed [Prop. 1.7]. Thus, the base $B C$ being applied to the base $E F$, the sides $B A$ and $A C$ cannot not coincide with $E D$ and $D F$ (respectively). Thus, they will coincide. So the angle $B A C$ will also coincide with angle $E D F$, and will be equal to it [C.N. 4].

Thus, if two triangles have two sides equal to two side, respectively, and have the base equal to the base,

ϑ^{\prime}.

 $\delta \grave{\eta} \alpha \cup ๋ \tau \grave{\eta} \nu \delta i ́ \chi \alpha \tau \varepsilon \mu \varepsilon \tau ั$.

 ن́兀ò тñs AZ عúvعías.

$$
\therefore^{\prime} .
$$

then they will also have equal the angles encompassed by the equal straight-lines. (Which is) the very thing it was required to show.

Proposition 9

To cut a given rectilinear angle in half.

Let $B A C$ be the given rectilinear angle. So it is required to cut it in half.

Let the point D have been taken at random on $A B$, and let $A E$, equal to $A D$, have been cut off from $A C$ [Prop. 1.3], and let $D E$ have been joined. And let the equilateral triangle $D E F$ have been constructed upon $D E$ [Prop. 1.1], and let $A F$ have been joined. I say that the angle $B A C$ has been cut in half by the straight-line $A F$.

For since $A D$ is equal to $A E$, and $A F$ is common, the two (straight-lines) $D A, A F$ are equal to the two (straight-lines) $E A, A F$, respectively. And the base $D F$ is equal to the base $E F$. Thus, angle $D A F$ is equal to angle $E A F$ [Prop. 1.8].

Thus, the given rectilinear angle $B A C$ has been cut in half by the straight-line $A F$. (Which is) the very thing it was required to do.

Proposition 10

To cut a given finite straight-line in half.
Let $A B$ be the given finite straight-line. So it is required to cut the finite straight-line $A B$ in half.

Let the equilateral triangle $A B C$ have been constructed upon ($A B$) [Prop. 1.1], and let the angle $A C B$ have been cut in half by the straight-line $C D$ [Prop. 1.9]. I say that the straight-line $A B$ has been cut in half at point D.

For since $A C$ is equal to $C B$, and $C D$ (is) common,

 $\chi \alpha \tau \alpha ̀$ 七ò $\Delta \cdot$ ő $\pi \varepsilon \rho$ ع̌ $\delta \varepsilon \iota ~ \pi о เ ท ̃ \sigma \alpha เ . ~$
$i \alpha^{\prime}$.

the two (straight-lines) $A C, C D$ are equal to the two (straight-lines) $B C, C D$, respectively. And the angle $A C D$ is equal to the angle $B C D$. Thus, the base $A D$ is equal to the base $B D$ [Prop. 1.4].

Thus, the given finite straight-line $A B$ has been cut in half at (point) D. (Which is) the very thing it was required to do.

Proposition 11

To draw a straight-line at right-angles to a given straight-line from a given point on it.

Let $A B$ be the given straight-line, and C the given point on it. So it is required to draw a straight-line from the point C at right-angles to the straight-line $A B$.

Let the point D be have been taken at random on $A C$, and let $C E$ be made equal to $C D$ [Prop. 1.3], and let the equilateral triangle $F D E$ have been constructed on $D E$ [Prop. 1.1], and let $F C$ have been joined. I say that the straight-line $F C$ has been drawn at right-angles to the given straight-line $A B$ from the given point C on it.

For since $D C$ is equal to $C E$, and $C F$ is common, the two (straight-lines) $D C, C F$ are equal to the two (straight-lines), $E C, C F$, respectively. And the base $D F$ is equal to the base $F E$. Thus, the angle $D C F$ is equal to the angle $E C F$ [Prop. 1.8], and they are adjacent. But when a straight-line stood on a(nother) straight-line

${ }^{\prime} \beta^{\prime}$.

 ад $\gamma \alpha \gamma \varepsilon i ̃$.

 $\eta_{\eta} \varkappa$ बа। $\dot{\eta} \Gamma \Theta$.
'Enei $\gamma \dot{\alpha} \mathrm{p}$ 亿̋бn

makes the adjacent angles equal to one another, each of the equal angles is a right-angle [Def. 1.10]. Thus, each of the (angles) $D C F$ and $F C E$ is a right-angle.

Thus, the straight-line $C F$ has been drawn at rightangles to the given straight-line $A B$ from the given point C on it. (Which is) the very thing it was required to do.

Proposition 12

To draw a straight-line perpendicular to a given infinite straight-line from a given point which is not on it.

Let $A B$ be the given infinite straight-line and C the given point, which is not on $(A B)$. So it is required to draw a straight-line perpendicular to the given infinite straight-line $A B$ from the given point C, which is not on (AB).

For let point D have been taken at random on the other side (to C) of the straight-line $A B$, and let the circle $E F G$ have been drawn with center C and radius $C D$ [Post. 3], and let the straight-line $E G$ have been cut in half at (point) H [Prop. 1.10], and let the straightlines $C G, C H$, and $C E$ have been joined. I say that the (straight-line) $C H$ has been drawn perpendicular to the given infinite straight-line $A B$ from the given point C, which is not on $(A B)$.

For since $G H$ is equal to $H E$, and $H C$ (is) common, the two (straight-lines) $G H, H C$ are equal to the two (straight-lines) $E H, H C$, respectively, and the base $C G$ is equal to the base $C E$. Thus, the angle $C H G$ is equal to the angle $E H C$ [Prop. 1.8], and they are adjacent. But when a straight-line stood on a(nother) straight-line makes the adjacent angles equal to one another, each of the equal angles is a right-angle, and the former straightline is called a perpendicular to that upon which it stands [Def. 1.10].

Thus, the (straight-line) CH has been drawn perpendicular to the given infinite straight-line $A B$ from the

$$
' \gamma^{\prime} \text {. }
$$

 $\gamma \omega v i ́ \alpha \varsigma ~ \pi o เ \varepsilon i ́ t \omega ~ \tau \alpha ̀ \varsigma ~ i ́ \pi o ̀ ~ Г В А, ~ А В ~ A \cdot ~ \lambda e ̀ \gamma \omega, ~ o ̈ \tau \iota ~ \alpha i ~ u ́ \pi o ̀ ~ Г В А, ~$ $\mathrm{AB} \Delta$ rcuvíal ${ }^{2}$ tol

given point C, which is not on $(A B)$. (Which is) the very thing it was required to do.

Proposition 13

If a straight-line stood on a(nother) straight-line makes angles, it will certainly either make two rightangles, or (angles whose sum is) equal to two rightangles.

For let some straight-line $A B$ stood on the straightline $C D$ make the angles $C B A$ and $A B D$. I say that the angles $C B A$ and $A B D$ are certainly either two rightangles, or (have a sum) equal to two right-angles.

In fact, if $C B A$ is equal to $A B D$ then they are two right-angles [Def. 1.10]. But, if not, let $B E$ have been drawn from the point B at right-angles to [the straightline] $C D$ [Prop. 1.11]. Thus, $C B E$ and $E B D$ are two right-angles. And since $C B E$ is equal to the two (angles) $C B A$ and $A B E$, let $E B D$ have been added to both. Thus, the (sum of the angles) $C B E$ and $E B D$ is equal to the (sum of the) three (angles) $C B A, A B E$, and $E B D$ [C.N. 2]. Again, since $D B A$ is equal to the two (angles) $D B E$ and $E B A$, let $A B C$ have been added to both. Thus, the (sum of the angles) $D B A$ and $A B C$ is equal to the (sum of the) three (angles) $D B E, E B A$, and $A B C$ [C.N. 2]. But (the sum of) $C B E$ and $E B D$ was also shown (to be) equal to the (sum of the) same three (angles). And things equal to the same thing are also equal to one another [C.N. 1]. Therefore, (the sum of) $C B E$ and $E B D$ is also equal to (the sum of) $D B A$ and $A B C$. But, (the sum of) $C B E$ and $E B D$ is two right-angles. Thus, (the sum of) $A B D$ and $A B C$ is also equal to two right-angles.

Thus, if a straight-line stood on a(nother) straightline makes angles, it will certainly either make two rightangles, or (angles whose sum is) equal to two rightangles. (Which is) the very thing it was required to show.

$1 \delta^{\prime}$.

 દย่งยโั๙ા.

 غ̀ π^{\prime} عưvzías $\dot{\eta}$ BE.

เモ'.

Proposition 14

If two straight-lines, not lying on the same side, make adjacent angles (whose sum is) equal to two right-angles with some straight-line, at a point on it, then the two straight-lines will be straight-on (with respect) to one another.

For let two straight-lines $B C$ and $B D$, not lying on the same side, make adjacent angles $A B C$ and $A B D$ (whose sum is) equal to two right-angles with some straight-line $A B$, at the point B on it. I say that $B D$ is straight-on with respect to $C B$.

For if $B D$ is not straight-on to $B C$ then let $B E$ be straight-on to $C B$.

Therefore, since the straight-line $A B$ stands on the straight-line $C B E$, the (sum of the) angles $A B C$ and $A B E$ is thus equal to two right-angles [Prop. 1.13]. But (the sum of) $A B C$ and $A B D$ is also equal to two rightangles. Thus, (the sum of angles) $C B A$ and $A B E$ is equal to (the sum of angles) $C B A$ and $A B D$ [C.N. 1]. Let (angle) $C B A$ have been subtracted from both. Thus, the remainder $A B E$ is equal to the remainder $A B D$ [C.N. 3], the lesser to the greater. The very thing is impossible. Thus, $B E$ is not straight-on with respect to $C B$. Similarly, we can show that neither (is) any other (straightline) than $B D$. Thus, $C B$ is straight-on with respect to $B D$.

Thus, if two straight-lines, not lying on the same side, make adjacent angles (whose sum is) equal to two rightangles with some straight-line, at a point on it, then the two straight-lines will be straight-on (with respect) to one another. (Which is) the very thing it was required to show.

Proposition 15

If two straight-lines cut one another then they make the vertically opposite angles equal to one another.

 únò $\Delta \mathrm{EB}, \dot{\eta}$ đ̀̀ ú ù̀ $\Gamma \mathrm{EB}$ rñ újò $\mathrm{AE} \Delta$.

 $\gamma \omega v i ́ \alpha s ~ \pi o เ o u ̃ \sigma \alpha ~ \tau \grave{\alpha} \varsigma ~ i ́ \pi o ̀ ~ \Gamma E A, ~ A E \Delta, ~ \alpha i ~ \alpha ̋ p \alpha ~ ن ́ \pi o ̀ ~ Г Е А, ~ А Е \Delta ~$

ε^{\prime}.

 $\mu \varepsilon i \zeta \omega \nu$ ह̇бтiv.

 ن́лò ГВА, ВАГ ү $\omega \nu \iota \widetilde{\omega} \nu$.

For let the two straight-lines $A B$ and $C D$ cut one another at the point E. I say that angle $A E C$ is equal to (angle) $D E B$, and (angle) $C E B$ to (angle) $A E D$.

For since the straight-line $A E$ stands on the straightline $C D$, making the angles $C E A$ and $A E D$, the (sum of the) angles $C E A$ and $A E D$ is thus equal to two rightangles [Prop. 1.13]. Again, since the straight-line $D E$ stands on the straight-line $A B$, making the angles $A E D$ and $D E B$, the (sum of the) angles $A E D$ and $D E B$ is thus equal to two right-angles [Prop. 1.13]. But (the sum of) $C E A$ and $A E D$ was also shown (to be) equal to two right-angles. Thus, (the sum of) $C E A$ and $A E D$ is equal to (the sum of) $A E D$ and $D E B$ [C.N. 1]. Let $A E D$ have been subtracted from both. Thus, the remainder $C E A$ is equal to the remainder $B E D$ [C.N. 3]. Similarly, it can be shown that $C E B$ and $D E A$ are also equal.

Thus, if two straight-lines cut one another then they make the vertically opposite angles equal to one another. (Which is) the very thing it was required to show.

Proposition 16

For any triangle, when one of the sides is produced, the external angle is greater than each of the internal and opposite angles.

Let $A B C$ be a triangle, and let one of its sides $B C$ have been produced to D. I say that the external angle $A C D$ is greater than each of the internal and opposite angles, $C B A$ and $B A C$.

Let the (straight-line) $A C$ have been cut in half at (point) E [Prop. 1.10]. And $B E$ being joined, let it have been produced in a straight-line to (point) $F .^{\dagger}$ And let $E F$ be made equal to $B E$ [Prop. 1.3], and let $F C$ have been joined, and let $A C$ have been drawn through to (point) G.

Therefore, since $A E$ is equal to $E C$, and $B E$ to $E F$, the two (straight-lines) $A E, E B$ are equal to the two

(straight-lines) $C E, E F$, respectively. Also, angle $A E B$ is equal to angle $F E C$, for (they are) vertically opposite [Prop. 1.15]. Thus, the base $A B$ is equal to the base $F C$, and the triangle $A B E$ is equal to the triangle $F E C$, and the remaining angles subtended by the equal sides are equal to the corresponding remaining angles [Prop. 1.4]. Thus, $B A E$ is equal to $E C F$. But $E C D$ is greater than $E C F$. Thus, $A C D$ is greater than $B A E$. Similarly, by having cut $B C$ in half, it can be shown (that) $B C G$-that is to say, $A C D$-(is) also greater than $A B C$.

Thus, for any triangle, when one of the sides is produced, the external angle is greater than each of the internal and opposite angles. (Which is) the very thing it was required to show.
${ }^{\dagger}$ The implicit assumption that the point F lies in the interior of the angle $A B C$ should be counted as an additional postulate.
! ל'.
 $\varepsilon i \sigma \iota \pi \alpha ́ \nu \tau \tilde{n} \mu \varepsilon \tau \alpha \lambda \alpha \mu \beta \alpha \nu O ́ \mu \varepsilon \nu \alpha \downarrow$.

 $\beta \alpha \nu o ́ \mu \varepsilon v \alpha l$.

Proposition 17

For any triangle, (the sum of) two angles taken together in any (possible way) is less than two right-angles.

Let $A B C$ be a triangle. I say that (the sum of) two angles of triangle $A B C$ taken together in any (possible way) is less than two right-angles.

$$
i n^{\prime} \text {. }
$$

 ínoteível.

 $\dot{\eta} \mathrm{A} \Delta$, x $\alpha \grave{\imath}$ ह̇ $\pi \varepsilon \zeta \varepsilon \cup ́ \chi \vartheta \omega \dot{\eta} \mathrm{~B} \Delta$.

เv'.

 $\pi \lambda \varepsilon \cup p \alpha ̀$ Úлотєíveเ.
 $\gamma \omega v i ́ \alpha \nu \tau \eta ̃ s ~ i ́ \pi o ̀ ~ В Г А \cdot ~ \lambda \varepsilon ́ \gamma \omega, ~ o ̈ \tau \iota ~ x \alpha i ~ \pi \lambda \varepsilon u p \alpha ̀ ~ \dot{\eta} А \Gamma \pi \lambda \varepsilon u p a ̃ \varsigma$ $\tau \tilde{\eta} s \mathrm{AB} \mu \varepsilon$ í $\omega \nu$ ह̇のтiv.

For let $B C$ have been produced to D.
And since the angle $A C D$ is external to triangle $A B C$, it is greater than the internal and opposite angle $A B C$ [Prop. 1.16]. Let $A C B$ have been added to both. Thus, the (sum of the angles) $A C D$ and $A C B$ is greater than the (sum of the angles) $A B C$ and $B C A$. But, (the sum of) $A C D$ and $A C B$ is equal to two right-angles [Prop. 1.13]. Thus, (the sum of) $A B C$ and $B C A$ is less than two rightangles. Similarly, we can show that (the sum of) $B A C$ and $A C B$ is also less than two right-angles, and further (that the sum of) $C A B$ and $A B C$ (is less than two rightangles).

Thus, for any triangle, (the sum of) two angles taken together in any (possible way) is less than two rightangles. (Which is) the very thing it was required to show.

Proposition 18

In any triangle, the greater side subtends the greater angle.

For let $A B C$ be a triangle having side $A C$ greater than $A B$. I say that angle $A B C$ is also greater than $B C A$.

For since $A C$ is greater than $A B$, let $A D$ be made equal to $A B$ [Prop. 1.3], and let $B D$ have been joined.

And since angle $A D B$ is external to triangle $B C D$, it is greater than the internal and opposite (angle) $D C B$ [Prop. 1.16]. But $A D B$ (is) equal to $A B D$, since side $A B$ is also equal to side $A D$ [Prop. 1.5]. Thus, $A B D$ is also greater than $A C B$. Thus, $A B C$ is much greater than $A C B$.

Thus, in any triangle, the greater side subtends the greater angle. (Which is) the very thing it was required to show.

Proposition 19

In any triangle, the greater angle is subtended by the greater side.

Let $A B C$ be a triangle having the angle $A B C$ greater than $B C A$. I say that side $A C$ is also greater than side $A B$.

x^{\prime}.

 عiซ॰ $\pi \alpha ́ \nu \tau \eta \mu \varepsilon \tau \alpha \lambda \alpha \mu \beta \alpha \nu o ́ \mu \varepsilon \nu \alpha \iota$.

 $\tau \tilde{\eta} \varsigma \mathrm{A} \Gamma$, $\alpha i \quad \delta \grave{̀} \mathrm{~B} \mathrm{\Gamma}, \Gamma \mathrm{~A} \tau \tilde{\eta} \varsigma \mathrm{AB}$.

For if not, $A C$ is certainly either equal to, or less than, $A B$. In fact, $A C$ is not equal to $A B$. For then angle $A B C$ would also have been equal to $A C B$ [Prop. 1.5]. But it is not. Thus, $A C$ is not equal to $A B$. Neither, indeed, is $A C$ less than $A B$. For then angle $A B C$ would also have been less than $A C B$ [Prop. 1.18]. But it is not. Thus, $A C$ is not less than $A B$. But it was shown that $(A C)$ is not equal (to $A B$) either. Thus, $A C$ is greater than $A B$.

Thus, in any triangle, the greater angle is subtended by the greater side. (Which is) the very thing it was required to show.

Proposition 20

In any triangle, (the sum of) two sides taken together in any (possible way) is greater than the remaining (side).

For let $A B C$ be a triangle. I say that in triangle $A B C$ (the sum of) two sides taken together in any (possible way) is greater than the remaining (side). (So), (the sum of) $B A$ and $A C$ (is greater) than $B C$, (the sum of) $A B$
 そ̋ŋ $\dot{\eta} \mathrm{A} \Delta$, x α è $\pi \varepsilon \zeta \varepsilon \cup ́ \chi \vartheta \omega \dot{\eta} \Delta \Gamma$.

 $\alpha i ~ \delta e ̀ ~ В \Gamma, ~ Г А ~ \tau \tilde{ŋ} ऽ ~ А В . ~$

$\chi \alpha^{\prime}$.

 ठغ̀ $\gamma \omega v i ́ \alpha \nu \pi \varepsilon \rho เ \varepsilon ́ \xi o u \sigma レ$.

 $\alpha i \mathrm{~B} \Delta, \Delta \Gamma \cdot \lambda \varepsilon ́ \gamma \omega$, ötı $\alpha i \mathrm{~B} \Delta, \Delta \Gamma \tau \widetilde{\omega} \nu \lambda o \iota \pi \widetilde{\omega} \nu$ тои̃ тpıүต́vou

 αi ठúo $\pi \lambda \varepsilon \cup p \alpha i ̀ ~ \tau \tilde{\eta} \varsigma \lambda o เ \pi n ̃ s ~ \mu \varepsilon i \zeta o v e ́ s ~ \varepsilon i \sigma เ \nu, ~ \tau o u ̃ ~ A B E ~ \alpha " p \alpha ~$

and $B C$ than $A C$, and (the sum of) $B C$ and $C A$ than $A B$.

For let $B A$ have been drawn through to point D, and let $A D$ be made equal to $C A$ [Prop. 1.3], and let $D C$ have been joined.

Therefore, since $D A$ is equal to $A C$, the angle $A D C$ is also equal to $A C D$ [Prop. 1.5]. Thus, $B C D$ is greater than $A D C$. And since $D C B$ is a triangle having the angle $B C D$ greater than $B D C$, and the greater angle subtends the greater side [Prop. 1.19], $D B$ is thus greater than $B C$. But $D A$ is equal to $A C$. Thus, (the sum of) $B A$ and $A C$ is greater than $B C$. Similarly, we can show that (the sum of) $A B$ and $B C$ is also greater than $C A$, and (the sum of) $B C$ and $C A$ than $A B$.

Thus, in any triangle, (the sum of) two sides taken together in any (possible way) is greater than the remaining (side). (Which is) the very thing it was required to show.

Proposition 21

If two internal straight-lines are constructed on one of the sides of a triangle, from its ends, the constructed (straight-lines) will be less than the two remaining sides of the triangle, but will encompass a greater angle.

For let the two internal straight-lines $B D$ and $D C$ have been constructed on one of the sides $B C$ of the triangle $A B C$, from its ends B and C (respectively). I say that $B D$ and $D C$ are less than the (sum of the) two remaining sides of the triangle $B A$ and $A C$, but encompass an angle $B D C$ greater than $B A C$.

For let $B D$ have been drawn through to E. And since in any triangle (the sum of any) two sides is greater than the remaining (side) [Prop. 1.20], in triangle $A B E$ the (sum of the) two sides $A B$ and $A E$ is thus greater than $B E$. Let $E C$ have been added to both. Thus, (the sum of) $B A$ and $A C$ is greater than (the sum of) $B E$ and $E C$. Again, since in triangle $C E D$ the (sum of the) two sides $C E$ and $E D$ is greater than $C D$, let $D B$ have been added to both. Thus, (the sum of) $C E$ and $E B$ is greater than (the sum of) $C D$ and $D B$. But, (the sum of) $B A$ and $A C$ was shown (to be) greater than (the sum of) $B E$ and $E C$. Thus, (the sum of) $B A$ and $A C$ is much greater than

 тñs únò ВАГ.

$\chi \beta^{\prime}$.

 $\mu \varepsilon i \zeta o v \alpha s ~ \varepsilon i ̃ \alpha \alpha \iota ~ \pi \alpha ́ \nu \tau \eta ~ \mu \varepsilon \tau \alpha \lambda \alpha \mu \beta \alpha \nu o \mu \varepsilon ́ v \alpha s ~[\delta ı \alpha ̀ ~ \tau o ̀ ~ \chi \alpha i ̀ ~ \pi \alpha \nu \tau o ̀ s ~$
 $\mu \varepsilon \tau \alpha \lambda \alpha \mu \beta \alpha \nu o \mu \varepsilon ́ v \alpha c]$.

 KZH.

(the sum of) $B D$ and $D C$.
Again, since in any triangle the external angle is greater than the internal and opposite (angles) [Prop. 1.16], in triangle $C D E$ the external angle $B D C$ is thus greater than $C E D$. Accordingly, for the same (reason), the external angle $C E B$ of the triangle $A B E$ is also greater than $B A C$. But, $B D C$ was shown (to be) greater than $C E B$. Thus, $B D C$ is much greater than $B A C$.

Thus, if two internal straight-lines are constructed on one of the sides of a triangle, from its ends, the constructed (straight-lines) are less than the two remaining sides of the triangle, but encompass a greater angle. (Which is) the very thing it was required to show.

Proposition 22

To construct a triangle from three straight-lines which are equal to three given [straight-lines]. It is necessary for (the sum of) two (of the straight-lines) taken together in any (possible way) to be greater than the remaining (one), [on account of the (fact that) in any triangle (the sum of) two sides taken together in any (possible way) is greater than the remaining (one) [Prop. 1.20]].

Let A, B, and C be the three given straight-lines, of which let (the sum of) two taken together in any (possible way) be greater than the remaining (one). (Thus), (the sum of) A and B (is greater) than C, (the sum of) A and C than B, and also (the sum of) B and C than A. So it is required to construct a triangle from (straight-lines) equal to A, B, and C.

Let some straight-line $D E$ be set out, terminated at D, and infinite in the direction of E. And let $D F$ made equal to A, and $F G$ equal to B, and $G H$ equal to C [Prop. 1.3]. And let the circle $D K L$ have been drawn with center F and radius $F D$. Again, let the circle $K L H$ have been drawn with center G and radius $G H$. And let $K F$ and $K G$ have been joined. I say that the triangle $K F G$ has
 દ̇бтi тoũ $\Lambda \mathrm{K} \Theta$ xúx

 $\sigma \cup \nu \varepsilon ́ \sigma \tau \alpha \tau \alpha l$ tò $\mathrm{KZH} \cdot$ öл $\tau \rho$ है $\delta \varepsilon \iota ~ \pi o เ ท ̃ \sigma \alpha l . ~$

$$
x \gamma^{\prime}
$$

 $\sigma \cup \sigma \tau \eta \dot{\sigma} \alpha \sigma \vartheta \alpha$.

 ย̌兀ぃ $\tau \grave{\eta} \nu \Delta \mathrm{E} \tau \tilde{n} \mathrm{ZH}$.

 $\pi o เ \eta ̃ \sigma \alpha$.
been constructed from three straight-lines equal to A, B, and C.

For since point F is the center of the circle $D K L, F D$ is equal to $F K$. But, $F D$ is equal to A. Thus, $K F$ is also equal to A. Again, since point G is the center of the circle $L K H, G H$ is equal to $G K$. But, $G H$ is equal to C. Thus, $K G$ is also equal to C. And $F G$ is also equal to B. Thus, the three straight-lines $K F, F G$, and $G K$ are equal to A, B, and C (respectively).

Thus, the triangle $K F G$ has been constructed from the three straight-lines $K F, F G$, and $G K$, which are equal to the three given straight-lines A, B, and C (respectively). (Which is) the very thing it was required to do.

Proposition 23

To construct a rectilinear angle equal to a given rectilinear angle at a (given) point on a given straight-line.

Let $A B$ be the given straight-line, A the (given) point on it, and $D C E$ the given rectilinear angle. So it is required to construct a rectilinear angle equal to the given rectilinear angle $D C E$ at the (given) point A on the given straight-line $A B$.

Let the points D and E have been taken at random on each of the (straight-lines) $C D$ and $C E$ (respectively), and let $D E$ have been joined. And let the triangle $A F G$ have been constructed from three straight-lines which are equal to $C D, D E$, and $C E$, such that $C D$ is equal to $A F$, $C E$ to $A G$, and further $D E$ to $F G$ [Prop. 1.22].

Therefore, since the two (straight-lines) $D C, C E$ are equal to the two (straight-lines) $F A, A G$, respectively, and the base $D E$ is equal to the base $F G$, the angle $D C E$ is thus equal to the angle $F A G$ [Prop. 1.8].

Thus, the rectilinear angle $F A G$, equal to the given rectilinear angle $D C E$, has been constructed at the (given) point A on the given straight-line $A B$. (Which

$\chi \delta^{\prime}$.

 ZH.

 $\mu \varepsilon i \zeta \omega \nu$ व̈p α каi $\dot{\eta}$ ВГ $\tau \tilde{\eta} \varsigma$ EZ.

is) the very thing it was required to do.

Proposition 24

If two triangles have two sides equal to two sides, respectively, but (one) has the angle encompassed by the equal straight-lines greater than the (corresponding) angle (in the other), then (the former triangle) will also have a base greater than the base (of the latter).

Let $A B C$ and $D E F$ be two triangles having the two sides $A B$ and $A C$ equal to the two sides $D E$ and $D F$, respectively. (That is), $A B$ (equal) to $D E$, and $A C$ to $D F$. Let them also have the angle at A greater than the angle at D. I say that the base $B C$ is also greater than the base $E F$.

For since angle $B A C$ is greater than angle $E D F$, let (angle) $E D G$, equal to angle $B A C$, have been constructed at the point D on the straight-line $D E$ [Prop. 1.23]. And let $D G$ be made equal to either of $A C$ or $D F$ [Prop. 1.3], and let $E G$ and $F G$ have been joined.

Therefore, since $A B$ is equal to $D E$ and $A C$ to $D G$, the two (straight-lines) $B A, A C$ are equal to the two (straight-lines) $E D, D G$, respectively. Also the angle $B A C$ is equal to the angle $E D G$. Thus, the base $B C$ is equal to the base $E G$ [Prop. 1.4]. Again, since $D F$ is equal to $D G$, angle $D G F$ is also equal to angle $D F G$ [Prop. 1.5]. Thus, $D F G$ (is) greater than $E G F$. Thus, $E F G$ is much greater than $E G F$. And since triangle $E F G$ has angle $E F G$ greater than $E G F$, and the greater angle is subtended by the greater side [Prop. 1.19], side $E G$ (is) thus also greater than $E F$. But $E G$ (is) equal to $B C$. Thus, $B C$ (is) also greater than $E F$.

Thus, if two triangles have two sides equal to two sides, respectively, but (one) has the angle encompassed by the equal straight-lines greater than the (corresponding) angle (in the other), then (the former triangle) will also have a base greater than the base (of the latter).

```
\(\chi \varepsilon^{\prime}\).
```


 $\beta \alpha ́ \sigma \iota \varsigma ~ \delta \varepsilon ̀ ~ \dot{\eta}$ ВГ $\beta \dot{\alpha} \sigma \varepsilon \omega \varsigma ~ \tau \tilde{\eta} \varsigma \mathrm{EZ} \mu \varepsilon i \zeta \omega \nu$ है $\sigma \tau \omega \cdot \lambda \varepsilon ́ \gamma \omega$, o้тı x α

$$
\chi G^{\prime}
$$

 $\gamma \omega v i \alpha$.

(Which is) the very thing it was required to show.

Proposition 25

If two triangles have two sides equal to two sides, respectively, but (one) has a base greater than the base (of the other), then (the former triangle) will also have the angle encompassed by the equal straight-lines greater than the (corresponding) angle (in the latter).

Let $A B C$ and $D E F$ be two triangles having the two sides $A B$ and $A C$ equal to the two sides $D E$ and $D F$, respectively (That is), $A B$ (equal) to $D E$, and $A C$ to $D F$. And let the base $B C$ be greater than the base $E F$. I say that angle $B A C$ is also greater than $E D F$.

For if not, $(B A C)$ is certainly either equal to, or less than, $(E D F)$. In fact, $B A C$ is not equal to $E D F$. For then the base $B C$ would also have been equal to the base $E F$ [Prop. 1.4]. But it is not. Thus, angle $B A C$ is not equal to $E D F$. Neither, indeed, is $B A C$ less than $E D F$. For then the base $B C$ would also have been less than the base $E F$ [Prop. 1.24]. But it is not. Thus, angle $B A C$ is not less than $E D F$. But it was shown that ($B A C$ is) not equal (to $E D F$) either. Thus, $B A C$ is greater than $E D F$.

Thus, if two triangles have two sides equal to two sides, respectively, but (one) has a base greater than the base (of the other), then (the former triangle) will also have the angle encompassed by the equal straight-lines greater than the (corresponding) angle (in the latter). (Which is) the very thing it was required to show.

Proposition 26

If two triangles have two angles equal to two angles, respectively, and one side equal to one side-in fact, either that by the equal angles, or that subtending one of the equal angles-then (the triangles) will also have the remaining sides equal to the [corresponding] remaining sides, and the remaining angle (equal) to the remaining angle.

Ei $\gamma \dot{\alpha} \rho \alpha^{\alpha} \nu \iota \sigma o ́ s ~ \varepsilon ̇ \sigma \tau \iota \nu \dot{\eta} \mathrm{AB} \tau \tilde{n} \Delta \mathrm{E}, \mu i \alpha \alpha$ 人 $\tau \widetilde{\omega} \nu \mu \varepsilon i \zeta \omega \nu$

 $\Delta \mathrm{EZ}$ трıү⿳㇒⿵⺆⿻日乚㇒兀

Let $A B C$ and $D E F$ be two triangles having the two angles $A B C$ and $B C A$ equal to the two（angles）$D E F$ and $E F D$ ，respectively．（That is）$A B C$（equal）to $D E F$ ， and $B C A$ to $E F D$ ．And let them also have one side equal to one side．First of all，the（side）by the equal angles． （That is）$B C$（equal）to $E F$ ．I say that they will have the remaining sides equal to the corresponding remain－ ing sides．（That is）$A B$（equal）to $D E$ ，and $A C$ to $D F$ ． And（they will have）the remaining angle（equal）to the remaining angle．（That is）$B A C$（equal）to $E D F$ ．

For if $A B$ is unequal to $D E$ then one of them is greater．Let $A B$ be greater，and let $B G$ be made equal to $D E$［Prop．1．3］，and let $G C$ have been joined．

Therefore，since $B G$ is equal to $D E$ ，and $B C$ to $E F$ ， the two（straight－lines）$G B, B C^{\dagger}$ are equal to the two （straight－lines）$D E, E F$ ，respectively．And angle $G B C$ is equal to angle $D E F$ ．Thus，the base $G C$ is equal to the base $D F$ ，and triangle $G B C$ is equal to triangle $D E F$ ， and the remaining angles subtended by the equal sides will be equal to the（corresponding）remaining angles ［Prop．1．4］．Thus，$G C B$（is equal）to $D F E$ ．But，$D F E$ was assumed（to be）equal to $B C A$ ．Thus，$B C G$ is also equal to $B C A$ ，the lesser to the greater．The very thing （is）impossible．Thus，$A B$ is not unequal to $D E$ ．Thus， （it is）equal．And $B C$ is also equal to $E F$ ．So the two （straight－lines）$A B, B C$ are equal to the two（straight－ lines）$D E, E F$ ，respectively．And angle $A B C$ is equal to angle $D E F$ ．Thus，the base $A C$ is equal to the base $D F$ ， and the remaining angle $B A C$ is equal to the remaining angle $E D F$［Prop．1．4］．

But，again，let the sides subtending the equal angles be equal：for instance，（let）$A B$（be equal）to $D E$ ．Again， I say that the remaining sides will be equal to the remain－ ing sides．（That is）$A C$（equal）to $D F$ ，and $B C$ to $E F$ ． Furthermore，the remaining angle $B A C$ is equal to the remaining angle $E D F$ ．

For if $B C$ is unequal to $E F$ then one of them is greater．If possible，let $B C$ be greater．And let $B H$ be made equal to $E F$［Prop．1．3］，and let $A H$ have been joined．And since $B H$ is equal to $E F$ ，and $A B$ to $D E$ ， the two（straight－lines）$A B, B H$ are equal to the two

 ú $\pi o ̀ ~ B A \Gamma ~ \tau \tilde{n} \lambda o l \pi n ̀ ~ \gamma \omega v i ́ \alpha ~ \tau n ̃ ~ u ́ \pi o ̀ ~ E \Delta Z ~ \breve{\sigma} \eta$.

${ }^{\dagger}$ The Greek text has " $B G, B C$ ", which is obviously a mistake.

$$
x \zeta^{\prime} .
$$

’Еฝ̀⿱
 ยひ่ทยĩal.

 $\pi о เ$ ít $\cdot \lambda \varepsilon ́ \gamma \omega$, ơтı $\pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o ́ s ~ \varepsilon ̇ \sigma \tau \iota \nu ~ \dot{\eta} \mathrm{AB} \tau \tilde{\eta} \Gamma \Delta$.

 HEZ $\dot{\eta}$ ย̇x vavtiov tñ ن́ ùò EZH• öл $\Delta \Gamma$ غ่x $\beta \alpha \lambda \lambda o ́ \mu \varepsilon \nu \alpha l ~ \sigma u \mu \pi \varepsilon \sigma o u ̃ v \tau \alpha l ~ \varepsilon ̇ \pi i ~ \tau \grave{\alpha} \mathrm{~B}, \Delta \mu \varepsilon ́ p \eta$. ó μ oí $\omega \varsigma$
(straight-lines) $D E, E F$, respectively. And the angles they encompass (are also equal). Thus, the base $A H$ is equal to the base $D F$, and the triangle $A B H$ is equal to the triangle $D E F$, and the remaining angles subtended by the equal sides will be equal to the (corresponding) remaining angles [Prop. 1.4]. Thus, angle $B H A$ is equal to $E F D$. But, $E F D$ is equal to $B C A$. So, in triangle $A H C$, the external angle $B H A$ is equal to the internal and opposite angle $B C A$. The very thing (is) impossible [Prop. 1.16]. Thus, $B C$ is not unequal to $E F$. Thus, (it is) equal. And $A B$ is also equal to $D E$. So the two (straight-lines) $A B, B C$ are equal to the two (straightlines) $D E, E F$, respectively. And they encompass equal angles. Thus, the base $A C$ is equal to the base $D F$, and triangle $A B C$ (is) equal to triangle $D E F$, and the remaining angle $B A C$ (is) equal to the remaining angle $E D F$ [Prop. 1.4].

Thus, if two triangles have two angles equal to two angles, respectively, and one side equal to one side-in fact, either that by the equal angles, or that subtending one of the equal angles-then (the triangles) will also have the remaining sides equal to the (corresponding) remaining sides, and the remaining angle (equal) to the remaining angle. (Which is) the very thing it was required to show.

Proposition 27

If a straight-line falling across two straight-lines makes the alternate angles equal to one another then the (two) straight-lines will be parallel to one another.

For let the straight-line $E F$, falling across the two straight-lines $A B$ and $C D$, make the alternate angles $A E F$ and $E F D$ equal to one another. I say that $A B$ and $C D$ are parallel.

For if not, being produced, $A B$ and $C D$ will certainly meet together: either in the direction of B and D, or (in the direction) of A and C [Def. 1.23]. Let them have been produced, and let them meet together in the direction of B and D at (point) G. So, for the triangle

 $\dot{\eta} \mathrm{AB} \tau \tilde{\eta} \Gamma \Delta$.

 EZ $\tau \grave{\eta} \nu$ ह̉x

 őtı $\pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o ́ \varsigma ~ \varepsilon ̇ \sigma \tau \iota \nu ~ \dot{\eta} \mathrm{AB} \tau \tilde{n} \Gamma \Delta$.

 $\mathrm{AB} \tau \tilde{n} \Gamma \Delta$.

 ह̇ $\sigma \tau i \nu \dot{\eta} \mathrm{AB} \tau \tilde{n} \Gamma \Delta$.

$G E F$, the external angle $A E F$ is equal to the interior and opposite (angle) $E F G$. The very thing is impossible [Prop. 1.16]. Thus, being produced, $A B$ and $C D$ will not meet together in the direction of B and D. Similarly, it can be shown that neither (will they meet together) in (the direction of) A and C. But (straight-lines) meeting in neither direction are parallel [Def. 1.23]. Thus, $A B$ and $C D$ are parallel.

Thus, if a straight-line falling across two straight-lines makes the alternate angles equal to one another then the (two) straight-lines will be parallel (to one another). (Which is) the very thing it was required to show.

Proposition 28

If a straight-line falling across two straight-lines makes the external angle equal to the internal and opposite angle on the same side, or (makes) the (sum of the) internal (angles) on the same side equal to two rightangles, then the (two) straight-lines will be parallel to one another.

For let $E F$, falling across the two straight-lines $A B$ and $C D$, make the external angle $E G B$ equal to the internal and opposite angle $G H D$, or the (sum of the) internal (angles) on the same side, $B G H$ and $G H D$, equal to two right-angles. I say that $A B$ is parallel to $C D$.

For since (in the first case) $E G B$ is equal to $G H D$, but $E G B$ is equal to $A G H$ [Prop. 1.15], $A G H$ is thus also equal to $G H D$. And they are alternate (angles). Thus, $A B$ is parallel to $C D$ [Prop. 1.27].

Again, since (in the second case, the sum of) $B G H$ and $G H D$ is equal to two right-angles, and (the sum of) $A G H$ and $B G H$ is also equal to two right-angles [Prop. 1.13], (the sum of) $A G H$ and $B G H$ is thus equal to (the sum of) $B G H$ and $G H D$. Let $B G H$ have been subtracted from both. Thus, the remainder $A G H$ is equal to the remainder $G H D$. And they are alternate (angles). Thus, $A B$ is parallel to $C D$ [Prop. 1.27].

$\chi \vartheta^{\prime}$.

 ै $\sigma \alpha \varsigma$.

 $\mu \varepsilon i \zeta o v e ́ s ~ \varepsilon i \sigma t \nu . ~ \alpha ̀ \lambda \lambda \alpha ̀ ~ \alpha i ~ u ́ \pi o ̀ ~ A H \Theta, ~ B H \Theta ~ \delta u \sigma i ̀ ~ o ̉ p \vartheta \alpha i ̃ s ~ \imath ̋ \sigma \alpha l ~$

Thus, if a straight-line falling across two straight-lines makes the external angle equal to the internal and opposite angle on the same side, or (makes) the (sum of the) internal (angles) on the same side equal to two rightangles, then the (two) straight-lines will be parallel (to one another). (Which is) the very thing it was required to show.

Proposition 29

A straight-line falling across parallel straight-lines makes the alternate angles equal to one another, the external (angle) equal to the internal and opposite (angle), and the (sum of the) internal (angles) on the same side equal to two right-angles.

For let the straight-line $E F$ fall across the parallel straight-lines $A B$ and $C D$. I say that it makes the alternate angles, $A G H$ and $G H D$, equal, the external angle $E G B$ equal to the internal and opposite (angle) $G H D$, and the (sum of the) internal (angles) on the same side, $B G H$ and $G H D$, equal to two right-angles.

For if $A G H$ is unequal to $G H D$ then one of them is greater. Let $A G H$ be greater. Let $B G H$ have been added to both. Thus, (the sum of) $A G H$ and $B G H$ is greater than (the sum of) $B G H$ and $G H D$. But, (the sum of) $A G H$ and $B G H$ is equal to two right-angles [Prop 1.13]. Thus, (the sum of) $B G H$ and $G H D$ is [also] less than two right-angles. But (straight-lines) being produced to infinity from (internal angles whose sum is) less than two right-angles meet together [Post. 5]. Thus, $A B$ and $C D$, being produced to infinity, will meet together. But they do not meet, on account of them (initially) being assumed parallel (to one another) [Def. 1.23]. Thus, $A G H$ is not unequal to $G H D$. Thus, (it is) equal. But, $A G H$ is equal to $E G B$ [Prop. 1.15]. And $E G B$ is thus also equal to $G H D$. Let $B G H$ be added to both. Thus, (the sum of) $E G B$ and $B G H$ is equal to (the sum of) $B G H$ and $G H D$. But, (the sum of) $E G B$ and $B G H$ is equal to two right-

λ^{\prime}.

入ol.

"E $\sigma \tau \omega \dot{\varepsilon} x \alpha \tau \varepsilon ́ \rho \alpha \tau \widetilde{\omega} \nu \mathrm{AB}, \Gamma \Delta \tau \tilde{n} \mathrm{EZ} \pi \alpha \rho \alpha \dot{\lambda} \lambda \eta \lambda o \varsigma \cdot \lambda \varepsilon ́ \gamma \omega$, ötı x $\alpha \dot{\eta} \dot{\eta} \mathrm{AB} \tau \tilde{n} \Gamma \Delta$ ह̇ $\sigma \tau \iota \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o \varsigma$.
'Euлıा

 «$p \alpha$ ध̇бтiv $\dot{\eta} \mathrm{AB} \tau \tilde{n} \Gamma \Delta$.

$\lambda \alpha^{\prime}$.

angles [Prop. 1.13]. Thus, (the sum of) $B G H$ and $G H D$ is also equal to two right-angles.

Thus, a straight-line falling across parallel straightlines makes the alternate angles equal to one another, the external (angle) equal to the internal and opposite (angle), and the (sum of the) internal (angles) on the same side equal to two right-angles. (Which is) the very thing it was required to show.

Proposition 30

(Straight-lines) parallel to the same straight-line are also parallel to one another.

Let each of the (straight-lines) $A B$ and $C D$ be parallel to $E F$. I say that $A B$ is also parallel to $C D$.

For let the straight-line $G K$ fall across $(A B, C D$, and $E F)$.

And since the straight-line $G K$ has fallen across the parallel straight-lines $A B$ and $E F$, (angle) $A G K$ (is) thus equal to $G H F$ [Prop. 1.29]. Again, since the straight-line $G K$ has fallen across the parallel straight-lines $E F$ and $C D$, (angle) $G H F$ is equal to $G K D$ [Prop. 1.29]. But $A G K$ was also shown (to be) equal to $G H F$. Thus, $A G K$ is also equal to $G K D$. And they are alternate (angles). Thus, $A B$ is parallel to $C D$ [Prop. 1.27].
[Thus, (straight-lines) parallel to the same straightline are also parallel to one another.] (Which is) the very thing it was required to show.

Proposition 31

To draw a straight-line parallel to a given straight-line, through a given point.

Let A be the given point, and $B C$ the given straightline. So it is required to draw a straight-line parallel to the straight-line $B C$, through the point A.

Let the point D have been taken a random on $B C$, and let $A D$ have been joined. And let (angle) $D A E$, equal to angle $A D C$, have been constructed on the straight-line

 $\pi o เ \tilde{\eta} \sigma \alpha l$.

$$
\lambda \beta^{\prime}
$$

 $\dot{\eta}$ ГЕ.

 ВАГ, АВГ.
$D A$ at the point A on it [Prop. 1.23]. And let the straightline $A F$ have been produced in a straight-line with $E A$.

And since the straight-line $A D$, (in) falling across the two straight-lines $B C$ and $E F$, has made the alternate angles $E A D$ and $A D C$ equal to one another, $E A F$ is thus parallel to $B C$ [Prop. 1.27].

Thus, the straight-line $E A F$ has been drawn parallel to the given straight-line $B C$, through the given point A. (Which is) the very thing it was required to do.

Proposition 32

In any triangle, (if) one of the sides (is) produced (then) the external angle is equal to the (sum of the) two internal and opposite (angles), and the (sum of the) three internal angles of the triangle is equal to two right-angles.

Let $A B C$ be a triangle, and let one of its sides $B C$ have been produced to D. I say that the external angle $A C D$ is equal to the (sum of the) two internal and opposite angles $C A B$ and $A B C$, and the (sum of the) three internal angles of the triangle- $A B C, B C A$, and $C A B-$ is equal to two right-angles.

For let $C E$ have been drawn through point C parallel to the straight-line $A B$ [Prop. 1.31].

And since $A B$ is parallel to $C E$, and $A C$ has fallen across them, the alternate angles $B A C$ and $A C E$ are equal to one another [Prop. 1.29]. Again, since $A B$ is parallel to $C E$, and the straight-line $B D$ has fallen across them, the external angle $E C D$ is equal to the internal and opposite (angle) $A B C$ [Prop. 1.29]. But $A C E$ was also shown (to be) equal to $B A C$. Thus, the whole an-
 трıбì т $\alpha i \varsigma ~ \cup ́ \pi o ̀ ~ А В Г, ~ В Г А, ~ Г А В ~ i ̋ \sigma \alpha ı ~ \varepsilon i \sigma i v . ~ \alpha ̀ \lambda \lambda ’ ~ \alpha i ~ ن ́ \pi o ̀ ~ А Г \Delta, ~$

 $\beta \lambda \eta \vartheta \varepsilon i ́ \sigma \eta s \dot{\eta}$ ह̉xtòs $\gamma \omega v i ́ \alpha ~ \delta u \sigma i ̀ ~ \tau \alpha i ̃ \varsigma ~ ह ̉ v t o ̀ s ~ x \alpha i ̀ ~ \alpha ̉ \pi \varepsilon v \alpha \nu \tau i ́ o v ~$

$$
\lambda \gamma^{\prime}
$$

 ВГ Δ трıү⿳㇒⿵冂人

gle $A C D$ is equal to the（sum of the）two internal and opposite（angles）$B A C$ and $A B C$ ．

Let $A C B$ have been added to both．Thus，（the sum of）$A C D$ and $A C B$ is equal to the（sum of the）three （angles）$A B C, B C A$ ，and $C A B$ ．But，（the sum of）$A C D$ and $A C B$ is equal to two right－angles［Prop．1．13］．Thus， （the sum of）$A C B, C B A$ ，and $C A B$ is also equal to two right－angles．

Thus，in any triangle，（if）one of the sides（is）pro－ duced（then）the external angle is equal to the（sum of the）two internal and opposite（angles），and the（sum of the）three internal angles of the triangle is equal to two right－angles．（Which is）the very thing it was required to show．

Proposition 33

Straight－lines joining equal and parallel（straight－ lines）on the same sides are themselves also equal and parallel．

Let $A B$ and $C D$ be equal and parallel（straight－lines）， and let the straight－lines $A C$ and $B D$ join them on the same sides．I say that $A C$ and $B D$ are also equal and parallel．

Let $B C$ have been joined．And since $A B$ is paral－ lel to $C D$ ，and $B C$ has fallen across them，the alter－ nate angles $A B C$ and $B C D$ are equal to one another ［Prop．1．29］．And since $A B$ is equal to $C D$ ，and $B C$ is common，the two（straight－lines）$A B, B C$ are equal to the two（straight－lines）$D C, C B .^{\dagger}$ And the angle $A B C$ is equal to the angle $B C D$ ．Thus，the base $A C$ is equal to the base $B D$ ，and triangle $A B C$ is equal to triangle $D C B^{\ddagger}$ ，and the remaining angles will be equal to the corresponding remaining angles subtended by the equal sides［Prop．1．4］．Thus，angle $A C B$ is equal to $C B D$ ． Also，since the straight－line $B C$ ，（in）falling across the two straight－lines $A C$ and $B D$ ，has made the alternate angles（ $A C B$ and $C B D$ ）equal to one another，$A C$ is thus parallel to $B D$［Prop．1．27］．And（ $A C$ ）was also shown （to be）equal to（ $B D$ ）．

Thus，straight－lines joining equal and parallel（straight－
${ }^{\dagger}$ The Greek text has＂$B C, C D$＂，which is obviously a mistake．
\ddagger The Greek text has＂$D C B$＂，which is obviously a mistake．
$\lambda \delta^{\prime}$.

 тદ́น $\mu \varepsilon เ$ ．

 と̇のてív．

lines）on the same sides are themselves also equal and parallel．（Which is）the very thing it was required to show．

Proposition 34

In parallelogrammic figures the opposite sides and angles are equal to one another，and a diagonal cuts them in half．

Let $A C D B$ be a parallelogrammic figure，and $B C$ its diagonal．I say that for parallelogram $A C D B$ ，the oppo－ site sides and angles are equal to one another，and the diagonal $B C$ cuts it in half．

For since $A B$ is parallel to $C D$ ，and the straight－line $B C$ has fallen across them，the alternate angles $A B C$ and $B C D$ are equal to one another［Prop．1．29］．Again，since $A C$ is parallel to $B D$ ，and $B C$ has fallen across them， the alternate angles $A C B$ and $C B D$ are equal to one another［Prop．1．29］．So $A B C$ and $B C D$ are two tri－ angles having the two angles $A B C$ and $B C A$ equal to the two（angles）$B C D$ and $C B D$ ，respectively，and one side equal to one side－the（one）by the equal angles and common to them，（namely）BC．Thus，they will also have the remaining sides equal to the corresponding re－ maining（sides），and the remaining angle（equal）to the remaining angle［Prop．1．26］．Thus，side $A B$ is equal to $C D$ ，and $A C$ to $B D$ ．Furthermore，angle $B A C$ is equal to $C D B$ ．And since angle $A B C$ is equal to $B C D$ ，and $C B D$ to $A C B$ ，the whole（angle）$A B D$ is thus equal to the whole（angle）$A C D$ ．And $B A C$ was also shown（to be）equal to $C D B$ ．

Thus，in parallelogrammic figures the opposite sides and angles are equal to one another．

And，I also say that a diagonal cuts them in half．For since $A B$ is equal to $C D$ ，and $B C$（is）common，the two （straight－lines）$A B, B C$ are equal to the two（straight－ lines）$D C, C B^{\dagger}$ ，respectively．And angle $A B C$ is equal to angle $B C D$ ．Thus，the base $A C$（is）also equal to $D B$ ，
${ }^{\dagger}$ The Greek text has " $C D, B C$ ", which is obviously a mistake.
₹ The Greek text has " $A B C D$ ", which is obviously a mistake.
$\lambda \varepsilon^{\prime}$.

 доүра́цию.

 ג̀ φ nр

 ЕВГZ тар $\alpha \lambda \lambda \eta \lambda о ү \rho \alpha ́ \mu \mu \varphi$ औ̋боv ह̇ $\sigma \tau i v$.

 סєї̧al.
and triangle $A B C$ is equal to triangle $B C D$ [Prop. 1.4].
Thus, the diagonal $B C$ cuts the parallelogram $A C D B^{\ddagger}$ in half. (Which is) the very thing it was required to show.

Proposition 35

Parallelograms which are on the same base and between the same parallels are equal ${ }^{\dagger}$ to one another.

Let $A B C D$ and $E B C F$ be parallelograms on the same base $B C$, and between the same parallels $A F$ and $B C$. I say that $A B C D$ is equal to parallelogram $E B C F$.

For since $A B C D$ is a parallelogram, $A D$ is equal to $B C$ [Prop. 1.34]. So, for the same (reasons), $E F$ is also equal to $B C$. So $A D$ is also equal to $E F$. And $D E$ is common. Thus, the whole (straight-line) $A E$ is equal to the whole (straight-line) $D F$. And $A B$ is also equal to $D C$. So the two (straight-lines) $E A, A B$ are equal to the two (straight-lines) $F D, D C$, respectively. And angle $F D C$ is equal to angle $E A B$, the external to the internal [Prop. 1.29]. Thus, the base $E B$ is equal to the base $F C$, and triangle $E A B$ will be equal to triangle $D F C$ [Prop. 1.4]. Let $D G E$ have been taken away from both. Thus, the remaining trapezium $A B G D$ is equal to the remaining trapezium $E G C F$. Let triangle $G B C$ have been added to both. Thus, the whole parallelogram $A B C D$ is equal to the whole parallelogram $E B C F$.

Thus, parallelograms which are on the same base and between the same parallels are equal to one another. (Which is) the very thing it was required to show.
${ }^{\dagger}$ Here, for the first time, "equal" means "equal in area", rather than "congruent".

$$
\lambda \varepsilon^{\prime}
$$

Proposition 36

Parallelograms which are on equal bases and between the same parallels are equal to one another.

Let $A B C D$ and $E F G H$ be parallelograms which are on the equal bases $B C$ and $F G$, and (are) between the same parallels $A H$ and $B G$. I say that the parallelogram
$\lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu о \nu \tau \widetilde{\tau}$ ЕZHЄ.

 ठєi̧̋al.

$$
\lambda \zeta^{\prime} .
$$

${ }^{\prime} E \sigma \tau \omega \tau \rho i ́ \gamma \omega v \alpha \tau \dot{\alpha} \mathrm{AB} \mathrm{\Gamma}, \Delta \mathrm{~B} \Gamma$ ह́лì $\tau \tilde{\eta} \varsigma \alpha \cup ̉ \tau \tilde{\eta} \varsigma \beta \alpha ́ \sigma \varepsilon \omega \varsigma \tau \tilde{\eta} \varsigma$

$A B C D$ is equal to $E F G H$.

For let $B E$ and $C H$ have been joined. And since $B C$ is equal to $F G$, but $F G$ is equal to $E H$ [Prop. 1.34], $B C$ is thus equal to $E H$. And they are also parallel, and $E B$ and $H C$ join them. But (straight-lines) joining equal and parallel (straight-lines) on the same sides are (themselves) equal and parallel [Prop. 1.33] [thus, $E B$ and $H C$ are also equal and parallel]. Thus, $E B C H$ is a parallelogram [Prop. 1.34], and is equal to $A B C D$. For it has the same base, $B C$, as $(A B C D)$, and is between the same parallels, $B C$ and $A H$, as ($A B C D$) [Prop. 1.35]. So, for the same (reasons), $E F G H$ is also equal to the same (parallelogram) $E B C H$ [Prop. 1.34]. So that the parallelogram $A B C D$ is also equal to $E F G H$.

Thus, parallelograms which are on equal bases and between the same parallels are equal to one another. (Which is) the very thing it was required to show.

Proposition 37

Triangles which are on the same base and between the same parallels are equal to one another.

Let $A B C$ and $D B C$ be triangles on the same base $B C$, and between the same parallels $A D$ and $B C$. I say that triangle $A B C$ is equal to triangle $D B C$.

Let $A D$ have been produced in both directions to E and F, and let the (straight-line) $B E$ have been drawn through B parallel to $C A$ [Prop. 1.31], and let the (straight-line) $C F$ have been drawn through C parallel to $B D$ [Prop. 1.31]. Thus, $E B C A$ and $D B C F$ are both parallelograms, and are equal. For they are on the same base $B C$, and between the same parallels $B C$ and $E F$ [Prop. 1.35]. And the triangle $A B C$ is half of the parallelogram $E B C A$. For the diagonal $A B$ cuts the latter in

${ }^{\dagger}$ This is an additional common notion.

$$
\lambda \eta^{\prime}
$$

 НВГА $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda о \gamma \rho \alpha ́ \alpha \mu о u ~ \eta ̆ \mu ı \sigma u ~ t o ̀ ~ А В Г ~ \tau р i ́ \gamma \omega v o v . ~ \dot{\eta}$ үàp

$\lambda \vartheta^{\prime}$.

half [Prop. 1.34]. And the triangle $D B C$ (is) half of the parallelogram $D B C F$. For the diagonal $D C$ cuts the latter in half [Prop. 1.34]. [And the halves of equal things are equal to one another. $]^{\dagger}$ Thus, triangle $A B C$ is equal to triangle $D B C$.

Thus, triangles which are on the same base and between the same parallels are equal to one another. (Which is) the very thing it was required to show.

Proposition 38

Triangles which are on equal bases and between the same parallels are equal to one another.

Let $A B C$ and $D E F$ be triangles on the equal bases $B C$ and $E F$, and between the same parallels $B F$ and $A D$. I say that triangle $A B C$ is equal to triangle $D E F$.

For let $A D$ have been produced in both directions to G and H, and let the (straight-line) $B G$ have been drawn through B parallel to $C A$ [Prop. 1.31], and let the (straight-line) $F H$ have been drawn through F parallel to $D E$ [Prop. 1.31]. Thus, $G B C A$ and $D E F H$ are each parallelograms. And $G B C A$ is equal to $D E F H$. For they are on the equal bases $B C$ and $E F$, and between the same parallels $B F$ and $G H$ [Prop. 1.36]. And triangle $A B C$ is half of the parallelogram $G B C A$. For the diagonal $A B$ cuts the latter in half [Prop. 1.34]. And triangle $F E D$ (is) half of parallelogram $D E F H$. For the diagonal $D F$ cuts the latter in half. [And the halves of equal things are equal to one another.] Thus, triangle $A B C$ is equal to triangle $D E F$.

Thus, triangles which are on equal bases and between the same parallels are equal to one another. (Which is) the very thing it was required to show.

Proposition 39

Equal triangles which are on the same base, and on the same side, are also between the same parallels.

Let $A B C$ and $D B C$ be equal triangles which are on the same base $B C$, and on the same side (of it). I say that

 $\mathrm{A} \Delta \tilde{n}_{\mathrm{n}} \mathrm{B} \Gamma$.

 $\pi \alpha \rho \alpha \dot{\alpha} \lambda \eta \lambda о \varsigma$.

$$
\mu^{\prime}
$$

 $\mu \varepsilon ́ p \eta ~ x \alpha i ̀ ~ \varepsilon ้ \nu ~ \tau \alpha i ̃ s ~ \alpha u ̉ \tau \alpha i ̃ s ~ \pi \alpha p \alpha \lambda \lambda \dot{n} \lambda o l s ~ \varepsilon ُ \sigma \tau i ้ \nu . ~$

 $\pi \alpha p \alpha \lambda \lambda$ ŋ́ λ ols ε ध̇ $\sigma \tau$.
 $\mathrm{A} \Delta \tau \tilde{n} \mathrm{BE}$.

they are also between the same parallels.

For let $A D$ have been joined. I say that $A D$ and $B C$ are parallel.

For, if not, let $A E$ have been drawn through point A parallel to the straight-line $B C$ [Prop. 1.31], and let $E C$ have been joined. Thus, triangle $A B C$ is equal to triangle $E B C$. For it is on the same base as it, $B C$, and between the same parallels [Prop. 1.37]. But $A B C$ is equal to $D B C$. Thus, $D B C$ is also equal to $E B C$, the greater to the lesser. The very thing is impossible. Thus, $A E$ is not parallel to $B C$. Similarly, we can show that neither (is) any other (straight-line) than $A D$. Thus, $A D$ is parallel to $B C$.

Thus, equal triangles which are on the same base, and on the same side, are also between the same parallels. (Which is) the very thing it was required to show.

Proposition 40^{\dagger}

Equal triangles which are on equal bases, and on the same side, are also between the same parallels.

Let $A B C$ and $C D E$ be equal triangles on the equal bases $B C$ and $C E$ (respectively), and on the same side (of $B E$). I say that they are also between the same parallels.

For let $A D$ have been joined. I say that $A D$ is parallel to $B E$.

For if not, let $A F$ have been drawn through A parallel to $B E$ [Prop. 1.31], and let $F E$ have been joined. Thus, triangle $A B C$ is equal to triangle $F C E$. For they are on equal bases, $B C$ and $C E$, and between the same parallels, $B E$ and $A F$ [Prop. 1.38]. But, triangle $A B C$ is equal

 $\dot{\eta} \mathrm{A} \Delta \alpha \alpha_{\alpha} \alpha \tilde{n} \mathrm{BE}$ धं $\sigma \tau \iota \pi \alpha \rho \alpha \lambda \lambda \eta \lambda$ оऽ.

 ठєi̧̋al.
to [triangle] $D C E$. Thus, [triangle] $D C E$ is also equal to triangle $F C E$, the greater to the lesser. The very thing is impossible. Thus, $A F$ is not parallel to $B E$. Similarly, we can show that neither (is) any other (straight-line) than $A D$. Thus, $A D$ is parallel to $B E$.

Thus, equal triangles which are on equal bases, and on the same side, are also between the same parallels. (Which is) the very thing it was required to show.
${ }^{\dagger}$ This whole proposition is regarded by Heiberg as a relatively early interpolation to the original text.

$\mu \alpha^{\prime}$.

 тò $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda$ ó $ү \rho \alpha \mu \mu \circ \nu$ тои̃ трเүढ́vou.

 АВГ $\Delta \pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu о \nu$ тои̃ ВЕГ трıү'́vou.

 $\dot{\alpha} \lambda \lambda \dot{\alpha}$ тò $\mathrm{AB} \Gamma \Delta \pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu \circ \nu \delta \iota \pi \lambda \alpha \dot{\sigma} เ o ́ v$ ह̇ $\sigma \tau \iota$ то̃̃ $\mathrm{AB} \mathrm{\Gamma}$

 бьл入人́бเоv.

$$
\mu \beta^{\prime}
$$

Proposition 41

If a parallelogram has the same base as a triangle, and is between the same parallels, then the parallelogram is double (the area) of the triangle.

For let parallelogram $A B C D$ have the same base $B C$ as triangle $E B C$, and let it be between the same parallels, $B C$ and $A E$. I say that parallelogram $A B C D$ is double (the area) of triangle $B E C$.

For let $A C$ have been joined. So triangle $A B C$ is equal to triangle $E B C$. For it is on the same base, $B C$, as $(E B C)$, and between the same parallels, $B C$ and $A E$ [Prop. 1.37]. But, parallelogram $A B C D$ is double (the area) of triangle $A B C$. For the diagonal $A C$ cuts the former in half [Prop. 1.34]. So parallelogram $A B C D$ is also double (the area) of triangle $E B C$.

Thus, if a parallelogram has the same base as a triangle, and is between the same parallels, then the parallelogram is double (the area) of the triangle. (Which is) the very thing it was required to show.

Proposition 42

To construct a parallelogram equal to a given triangle in a given rectilinear angle.

Let $A B C$ be the given triangle, and D the given rectilinear angle. So it is required to construct a parallelogram equal to triangle $A B C$ in the rectilinear angle D.

 бovะíon $\tau \tilde{n} \Delta$.

$$
\mu \gamma^{\prime}
$$

П $\alpha \tau$ тòऽ $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda о \gamma \rho \alpha ́ \mu \mu \circ \cup \tau \widetilde{\omega} \nu \pi \varepsilon \rho \grave{\tau} \tau \grave{\nu} \nu \delta \iota \alpha ́ \mu \varepsilon \tau \rho o \nu \pi \alpha-$

"Ебтш $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu о \nu ~ \tau o ̀ ~ А В Г \Delta, ~ \delta \iota \alpha ́ \mu \varepsilon \tau р о \varsigma ~ \delta e ̀ ~$
 $\tau \dot{\alpha} \mathrm{E} \Theta, \mathrm{ZH}$, $\tau \grave{\alpha}$ δ è $\lambda \varepsilon \gamma o ́ \mu \varepsilon v \alpha \pi \alpha \rho \alpha \pi \lambda n \rho \omega ́ \mu \alpha \tau \alpha \tau \dot{\alpha} \mathrm{BK}, \mathrm{K} \Delta \cdot$
 $\pi \lambda \eta \rho \dot{\rho} \mu \alpha \tau$.

Let $B C$ have been cut in half at E [Prop. 1.10], and let $A E$ have been joined. And let (angle) $C E F$, equal to angle D, have been constructed at the point E on the straight-line $E C$ [Prop. 1.23]. And let $A G$ have been drawn through A parallel to $E C$ [Prop. 1.31], and let $C G$ have been drawn through C parallel to $E F$ [Prop. 1.31]. Thus, $F E C G$ is a parallelogram. And since $B E$ is equal to $E C$, triangle $A B E$ is also equal to triangle $A E C$. For they are on the equal bases, $B E$ and $E C$, and between the same parallels, $B C$ and $A G$ [Prop. 1.38]. Thus, triangle $A B C$ is double (the area) of triangle $A E C$. And parallelogram $F E C G$ is also double (the area) of triangle $A E C$. For it has the same base as ($A E C$), and is between the same parallels as ($A E C$) [Prop. 1.41]. Thus, parallelogram $F E C G$ is equal to triangle $A B C$. ($F E C G$) also has the angle $C E F$ equal to the given (angle) D.

Thus, parallelogram $F E C G$, equal to the given triangle $A B C$, has been constructed in the angle $C E F$, which is equal to D. (Which is) the very thing it was required to do.

Proposition 43

For any parallelogram, the complements of the parallelograms about the diagonal are equal to one another.

Let $A B C D$ be a parallelogram, and $A C$ its diagonal. And let $E H$ and $F G$ be the parallelograms about $A C$, and $B K$ and $K D$ the so-called complements (about $A C$). I say that the complement $B K$ is equal to the complement $K D$.

For since $A B C D$ is a parallelogram, and $A C$ its diagonal, triangle $A B C$ is equal to triangle $A C D$ [Prop. 1.34]. Again, since $E H$ is a parallelogram, and $A K$ is its diagonal, triangle $A E K$ is equal to triangle $A H K$ [Prop. 1.34]. So, for the same (reasons), triangle $K F C$ is also equal to (triangle) $K G C$. Therefore, since triangle $A E K$ is equal to triangle $A H K$, and $K F C$ to $K G C$, triangle $A E K$ plus $K G C$ is equal to triangle $A H K$ plus $K F C$. And the whole triangle $A B C$ is also equal to the whole (triangle) $A D C$. Thus, the remaining complement $B K$ is equal to
$\pi \lambda \eta \rho \omega ́ \mu \alpha \tau i ́$ ह̇ $\sigma \tau \iota \nu$ ’ैбov.

$$
\mu \delta^{\prime}
$$

 $\mu \varphi$.

 tò $\Gamma, \dot{\eta} \delta \varepsilon ̀ ~ \delta o \vartheta \varepsilon i ̃ \sigma \alpha ~ \gamma \omega v i ́ \alpha ~ \varepsilon u ̉ \vartheta u ́ \gamma \rho \alpha \mu \mu o \varsigma ~ \dot{\eta} \Delta \cdot \delta \varepsilon 亢 ̃ ~ \delta \grave{\eta} \pi \alpha \rho \alpha ̀$

the remaining complement $K D$.

Thus, for any parallelogramic figure, the complements of the parallelograms about the diagonal are equal to one another. (Which is) the very thing it was required to show.

Proposition 44

To apply a parallelogram equal to a given triangle to a given straight-line in a given rectilinear angle.

Let $A B$ be the given straight-line, C the given triangle, and D the given rectilinear angle. So it is required to apply a parallelogram equal to the given triangle C to the given straight-line $A B$ in an angle equal to (angle) D.

Let the parallelogram $B E F G$, equal to the triangle C, have been constructed in the angle $E B G$, which is equal to D [Prop. 1.42]. And let it have been placed so that $B E$ is straight-on to $A B .^{\dagger}$ And let $F G$ have been drawn through to H, and let $A H$ have been drawn through A parallel to either of $B G$ or $E F$ [Prop. 1.31], and let $H B$ have been joined. And since the straight-line $H F$ falls across the parallels $A H$ and $E F$, the (sum of the) angles $A H F$ and $H F E$ is thus equal to two right-angles

 $\alpha i \quad \Theta A, H B$ غ̇лi $\tau \dot{\alpha} \Lambda, M$ $\sigma \eta \mu \varepsilon i ̃ \alpha . ~ \pi \alpha p \alpha \lambda \lambda \eta \lambda o ́ \gamma p \alpha \mu \mu o \nu \alpha \not p \alpha$
 $\pi \alpha p \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu \alpha \mu \varepsilon ̀ v ~ \tau \alpha ̀ ~ A H, ~ M E, ~ \tau \grave{\alpha} \delta \varepsilon ̀ ~ \lambda \varepsilon \gamma o ́ \mu \varepsilon v \alpha \alpha \pi \alpha \alpha-$

${ }^{\dagger}$ This can be achieved using Props. 1.3, 1.23, and 1.31.

$\mu \varepsilon^{\prime}$.

 ү ω vía $\tau \tilde{n} \mathrm{E}$.
${ }^{3} \mathrm{E} \tau \varepsilon \zeta \varepsilon \cup ́ \chi \vartheta \omega \dot{\eta} \Delta \mathrm{~B}$, x $\alpha \grave{\imath} \sigma \cup \nu \varepsilon \sigma \tau \alpha \dot{\tau} \omega \tau \widetilde{\varphi} \mathrm{AB} \Delta \tau \rho \downarrow \gamma \omega \dot{\nu} \omega$

[Prop. 1.29]. Thus, (the sum of) $B H G$ and $G F E$ is less than two right-angles. And (straight-lines) produced to infinity from (internal angles whose sum is) less than two right-angles meet together [Post. 5]. Thus, being produced, $H B$ and $F E$ will meet together. Let them have been produced, and let them meet together at K. And let $K L$ have been drawn through point K parallel to either of $E A$ or $F H$ [Prop. 1.31]. And let $H A$ and $G B$ have been produced to points L and M (respectively). Thus, $H L K F$ is a parallelogram, and $H K$ its diagonal. And $A G$ and $M E$ (are) parallelograms, and $L B$ and $B F$ the so-called complements, about $H K$. Thus, $L B$ is equal to $B F$ [Prop. 1.43]. But, $B F$ is equal to triangle C. Thus, $L B$ is also equal to C. Also, since angle $G B E$ is equal to $A B M$ [Prop. 1.15], but $G B E$ is equal to $D, A B M$ is thus also equal to angle D.

Thus, the parallelogram $L B$, equal to the given triangle C, has been applied to the given straight-line $A B$ in the angle $A B M$, which is equal to D. (Which is) the very thing it was required to do.

Proposition 45

To construct a parallelogram equal to a given rectilinear figure in a given rectilinear angle.

Let $A B C D$ be the given rectilinear figure, ${ }^{\dagger}$ and E the given rectilinear angle. So it is required to construct a parallelogram equal to the rectilinear figure $A B C D$ in the given angle E.

Let $D B$ have been joined, and let the parallelogram $F H$, equal to the triangle $A B D$, have been constructed in the angle $H K F$, which is equal to E [Prop. 1.42]. And let the parallelogram $G M$, equal to the triangle $D B C$, have been applied to the straight-line $G H$ in the angle $G H M$, which is equal to E [Prop. 1.44]. And since angle E is equal to each of (angles) $H K F$ and $G H M$, (angle) $H K F$ is thus also equal to $G H M$. Let $K H G$ have been added to both. Thus, (the sum of) $F K H$ and $K H G$ is equal to (the sum of) $K H G$ and $G H M$. But, (the sum of) $F K H$ and $K H G$ is equal to two right-angles [Prop. 1.29]. Thus, (the sum of) $K H G$ and $G H M$ is also equal to two right-angles. So two straight-lines, $K H$ and $H M$, not lying on the same side, make adjacent angles with some straight-line $G H$, at the point H on it, (whose sum is) equal to two right-angles. Thus, $K H$ is straight-on to $H M$ [Prop. 1.14]. And since the straightline $H G$ falls across the parallels $K M$ and $F G$, the alternate angles $M H G$ and $H G F$ are equal to one another [Prop. 1.29]. Let $H G L$ have been added to both. Thus, (the sum of) $M H G$ and $H G L$ is equal to (the sum of)

 غ̇бтiv ̂̋ซov.

$H G F$ and $H G L$. But, (the sum of) $M H G$ and $H G L$ is equal to two right-angles [Prop. 1.29]. Thus, (the sum of) $H G F$ and $H G L$ is also equal to two right-angles. Thus, $F G$ is straight-on to $G L$ [Prop. 1.14]. And since $F K$ is equal and parallel to $H G$ [Prop. 1.34], but also $H G$ to $M L$ [Prop. 1.34], $K F$ is thus also equal and parallel to $M L$ [Prop. 1.30]. And the straight-lines $K M$ and $F L$ join them. Thus, $K M$ and $F L$ are equal and parallel as well [Prop. 1.33]. Thus, KFLM is a parallelogram. And since triangle $A B D$ is equal to parallelogram $F H$, and $D B C$ to $G M$, the whole rectilinear figure $A B C D$ is thus equal to the whole parallelogram $K F L M$.

Thus, the parallelogram $K F L M$, equal to the given rectilinear figure $A B C D$, has been constructed in the angle $F K M$, which is equal to the given (angle) E. (Which is) the very thing it was required to do.
${ }^{\dagger}$ The proof is only given for a four-sided figure. However, the extension to many-sided figures is trivial.

$$
\mu \xi^{\prime}
$$

 $\tau \tilde{n} \Delta \mathrm{E}, \dot{\eta}$ ठ̀̀ $\mathrm{A} \Delta \tau \tilde{n} \mathrm{BE} . \dot{\alpha} \lambda \lambda \dot{\alpha} \dot{\eta} \mathrm{AB} \tau \tilde{n} \mathrm{~A} \Delta$ ह̇ $\sigma \tau \iota ้$ ้ै σ.

Proposition 46

To describe a square on a given straight-line.
Let $A B$ be the given straight-line. So it is required to describe a square on the straight-line $A B$.

Let $A C$ have been drawn at right-angles to the straight-line $A B$ from the point A on it [Prop. 1.11], and let $A D$ have been made equal to $A B$ [Prop. 1.3]. And let $D E$ have been drawn through point D parallel to $A B$ [Prop. 1.31], and let $B E$ have been drawn through point B parallel to $A D$ [Prop. 1.31]. Thus, $A D E B$ is a parallelogram. Therefore, $A B$ is equal to $D E$, and $A D$ to $B E$ [Prop. 1.34]. But, $A B$ is equal to $A D$. Thus, the four (sides) $B A, A D, D E$, and $E B$ are equal to one another. Thus, the parallelogram $A D E B$ is equilateral. So I say that (it is) also right-angled. For since the straight-line

$\mu \zeta^{\prime}$.

 траүढ́vols.

$A D$ falls across the parallels $A B$ and $D E$, the (sum of the) angles $B A D$ and $A D E$ is equal to two right-angles [Prop. 1.29]. But $B A D$ (is a) right-angle. Thus, $A D E$ (is) also a right-angle. And for parallelogrammic figures, the opposite sides and angles are equal to one another [Prop. 1.34]. Thus, each of the opposite angles $A B E$ and $B E D$ (are) also right-angles. Thus, $A D E B$ is rightangled. And it was also shown (to be) equilateral.

Thus, $(A D E B)$ is a square [Def. 1.22]. And it is described on the straight-line $A B$. (Which is) the very thing it was required to do.

Proposition 47

In right-angled triangles, the square on the side subtending the right-angle is equal to the (sum of the) squares on the sides containing the right-angle.

Let $A B C$ be a right-angled triangle having the angle $B A C$ a right-angle. I say that the square on $B C$ is equal to the (sum of the) squares on $B A$ and $A C$.

For let the square $B D E C$ have been described on $B C$, and (the squares) $G B$ and $H C$ on $A B$ and $A C$ (respectively) [Prop. 1.46]. And let $A L$ have been drawn through point A parallel to either of $B D$ or $C E$ [Prop. 1.31]. And let $A D$ and $F C$ have been joined. And since angles $B A C$ and $B A G$ are each right-angles, then two straight-lines $A C$ and $A G$, not lying on the same side, make the adjacent angles with some straight-line $B A$, at the point A on it, (whose sum is) equal to two right-angles. Thus, $C A$ is straight-on to $A G$ [Prop. 1.14]. So, for the same (reasons), $B A$ is also straight-on to $A H$. And since angle $D B C$ is equal to $F B A$, for (they are) both right-angles, let $A B C$ have been added to both. Thus, the whole (angle) $D B A$ is equal to the whole (angle) $F B C$. And since $D B$ is equal to $B C$, and $F B$ to $B A$, the two (straight-lines) $D B, B A$ are equal to the

 $\pi \lambda \varepsilon \cup р \omega ั ้ ~ \tau \varepsilon \tau р \alpha \gamma(\omega)$ vos.

[^2]two (straight-lines) $C B, B F,{ }^{\dagger}$ respectively. And angle $D B A$ (is) equal to angle $F B C$. Thus, the base $A D$ [is] equal to the base $F C$, and the triangle $A B D$ is equal to the triangle $F B C$ [Prop. 1.4]. And parallelogram $B L$ [is] double (the area) of triangle $A B D$. For they have the same base, $B D$, and are between the same parallels, $B D$ and $A L$ [Prop. 1.41]. And square $G B$ is double (the area) of triangle $F B C$. For again they have the same base, $F B$, and are between the same parallels, $F B$ and $G C$ [Prop. 1.41]. [And the doubles of equal things are equal to one another. $]^{\ddagger}$ Thus, the parallelogram $B L$ is also equal to the square $G B$. So, similarly, $A E$ and $B K$ being joined, the parallelogram $C L$ can be shown (to be) equal to the square $H C$. Thus, the whole square $B D E C$ is equal to the (sum of the) two squares $G B$ and $H C$. And the square $B D E C$ is described on $B C$, and the (squares) $G B$ and $H C$ on $B A$ and $A C$ (respectively). Thus, the square on the side $B C$ is equal to the (sum of the) squares on the sides $B A$ and $A C$.

Thus, in right-angled triangles, the square on the side subtending the right-angle is equal to the (sum of the) squares on the sides surrounding the right-[angle]. (Which is) the very thing it was required to show.

$\mu \eta^{\prime}$.

 $\tau \varepsilon \tau \rho \alpha ́ \gamma \omega \nu \circ \nu$ ้̋ $\sigma o \nu$ है $\sigma \tau \omega$ тоїऽ $\alpha \pi o ̀ \tau \widetilde{\omega} \nu \mathrm{BA}, ~ А \Gamma ~ \pi \lambda \varepsilon \cup \rho \widetilde{\omega} \nu \tau \varepsilon-$

 $\tau \varepsilon \tau \rho \alpha \gamma \omega ́ v o l s, \dot{\eta} \pi \varepsilon \rho เ \varepsilon \chi \circ \mu \varepsilon ́ v \eta ~ \gamma \omega v i ́ \alpha ~ \cup ́ \pi o ̀ ~ \tau \widetilde{\omega} \nu \lambda о \iota \widetilde{\omega} \nu$ тоũ

Proposition 48

If the square on one of the sides of a triangle is equal to the (sum of the) squares on the two remaining sides of the triangle then the angle contained by the two remaining sides of the triangle is a right-angle.

For let the square on one of the sides, $B C$, of triangle $A B C$ be equal to the (sum of the) squares on the sides $B A$ and $A C$. I say that angle $B A C$ is a right-angle.

For let $A D$ have been drawn from point A at rightangles to the straight-line $A C$ [Prop. 1.11], and let $A D$ have been made equal to $B A$ [Prop. 1.3], and let $D C$ have been joined. Since $D A$ is equal to $A B$, the square on $D A$ is thus also equal to the square on $A B .^{\dagger}$ Let the square on $A C$ have been added to both. Thus, the (sum of the) squares on $D A$ and $A C$ is equal to the (sum of the) squares on $B A$ and $A C$. But, the (square) on $D C$ is equal to the (sum of the squares) on $D A$ and $A C$. For angle $D A C$ is a right-angle [Prop. 1.47]. But, the (square) on $B C$ is equal to (sum of the squares) on $B A$ and $A C$. For (that) was assumed. Thus, the square on $D C$ is equal to the square on $B C$. So side $D C$ is also equal to (side) $B C$. And since $D A$ is equal to $A B$, and $A C$ (is) common, the two (straight-lines) $D A, A C$ are equal to the two (straight-lines) $B A, A C$. And the base $D C$ is equal to the base $B C$. Thus, angle $D A C$ [is] equal to angle $B A C$ [Prop. 1.8]. But $D A C$ is a right-angle. Thus, $B A C$ is also a right-angle.

Thus, if the square on one of the sides of a triangle is equal to the (sum of the) squares on the remaining two sides of the triangle then the angle contained by the remaining two sides of the triangle is a right-angle. (Which is) the very thing it was required to show.

[^3]
[^0]: ${ }^{\dagger}$ The Greek present perfect tense indicates a past action with present significance. Hence, the 3rd-person present perfect imperative ${ }^{\prime} H \iota \tau \dot{\eta} \sigma \vartheta \vartheta \omega$ could be translated as "let it be postulated", in the sense "let it stand as postulated", but not "let the postulate be now brought forward". The literal translation "let it have been postulated" sounds awkward in English, but more accurately captures the meaning of the Greek.
 ₹ This postulate effectively specifies that we are dealing with the geometry of flat, rather than curved, space.

[^1]: ${ }^{\dagger}$ As an obvious extension of C.N.s $2 \& 3$-if equal things are added or subtracted from the two sides of an inequality then the inequality remains

[^2]: † The Greek text has " $F B, B C$ ", which is obviously a mistake.
 \ddagger This is an additional common notion.

[^3]: ${ }^{\dagger}$ Here, use is made of the additional common notion that the squares of equal things are themselves equal. Later on, the inverse notion is used.

