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Pell’s Equation and History

Pell’s Equation

The quadratic Diophantine equation of the form

x2 − dy2 = ±1

where d is a positive square free integer is called a Pell’s equation.

In this presentation, we focus separately on the equations of the
form

x2 − dy2 = 1 and x2 − dy2 = −1.

The name Pell’s equation comes from Euler who in a letter to
Goldbach confused the name of William Brouncker, the first
mathematician who gave an algorithm to solve the equation, with
that of the English mathematician John Pell(1 March 1611-12
December 1685).
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Exercises, Part I

Find(if any) a solution to the following equations:

1 x2 − 8y2 = 1

2 x2 − 13y2 = 1

3 x2 − 13y2 = −1

4 x2 − 58y2 = 1(To do for homework)

5 x2 − 58y2 = −1(To do for homework)

6 x2 − 58y2 ± 1(To do for homework: Here find a solution that
is different from those found in (4) and (5) )

A solution to equation (1) is given by (3,1) and a solution to (2) is
given by (649,180). Equation (3) on the other does not have any
solution: it is not solvable.
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Infinitude of solutions

Lemma

If (a, b) is a solution to x2 − dy2 = 1 where a > 1 and b ≥ 1, then
(x , y) such that

x + y
√
d = (a + b

√
d)n

for n = 1, 2, 3, 4, . . . , is also a solution.

Similarly, if (c, d) is a solution to x2 − dy2 = −1 where c > 1 and
d ≥ 1, then (x , y) such that

x + y
√
d = (c + d

√
d)n

for n = 1, 3, 5, 7, . . . , is also a solution.

Proof: The proof is done by induction.
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Continued Fractions

Definition

The expression of the form

a0 +
1

a1 + 1
a2+

1
a3+⋅⋅⋅

where the ai ’s are integers, is called the continued fraction
expansion of a real number.

Example: The continued fraction of 987
610 = 1 + 1

1+ 1

1+ 1
1+⋅⋅⋅

.

We use the notation [a0, a1, a2, a3, ⋅ ⋅ ⋅ ] to denote the continued
fraction expression of a real number. Hence, in the above example,
we have

987

610
= [1; 1, 1, 1, 1, 1, 1, 1, ⋅ ⋅ ⋅ ].
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Continued Fractions(Cont’d)

In the definition of the continued fraction of a real number R, we
call the k-convergent of R, the truncated continued fraction of R
at the kth term. We denote this convergent as Ck . Hence,

C0 = a0, C1 = a0+
1

a1
, C2 = a0+

1

a1 + 1
a2

, C3 = a0+
1

a1 + 1
a2+

1
a3+⋅⋅⋅

,

and so on.
We can rewrite the Ck in fraction form as Ak/Bk .

Exercise(to do for homework)

Show that AkBk−1 − Ak−1Bk = (−1)k for k ≥ 0.
Hint: Write two recurrence relations involving the ai ’s and Ak , Bk

Number Theory: Fall 2009 University of Massachusetts Boston



Continued Fractions(Cont’d)

In the definition of the continued fraction of a real number R, we
call the k-convergent of R, the truncated continued fraction of R
at the kth term. We denote this convergent as Ck . Hence,

C0 = a0, C1 = a0+
1

a1
, C2 = a0+

1

a1 + 1
a2

, C3 = a0+
1

a1 + 1
a2+

1
a3+⋅⋅⋅

,

and so on.
We can rewrite the Ck in fraction form as Ak/Bk .

Exercise(to do for homework)

Show that AkBk−1 − Ak−1Bk = (−1)k for k ≥ 0.
Hint: Write two recurrence relations involving the ai ’s and Ak , Bk

Number Theory: Fall 2009 University of Massachusetts Boston



Algorithm to find continued fraction expansion

Algorithm

Let R be a real number.
Step 1: Write R = ⌊R⌋+ 1

x1
Step 2: Solve for x1
Step 3: Write x1 = ⌊x1⌋+ 1

x2
and replace the new expression of x1

into step 1.
Step 3: Repeat steps 2 and 3 for x2 and so on.

Using the algorithm above, we obtained that the continued
fraction of

√
8 and

√
13 are given respectively, by [2; 1, 4] and

[3; 1, 1, 1, 1, 6].

Exercise(to do for homework)
Let P,Q ∈ ℤ with Q ∕= 0. Show that the continued fraction of P

Q
is obtained by performing the Euclidean algorithm, and deduce
that its continued fraction eventually stops.
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Fact about continued fractions

A continued fraction is purely periodic with period m if the initial
block of partial quotients a0, a1, . . . , am−1 repeats infinitely and no
block of length less than m is repeated and is periodic with period
m if it consists of an initial block of length n followed by a
repeating block of length m.

Purely periodic continued fraction 7→ [a0; a1, . . . , am−1]
Periodic continued fraction 7→ [a0; a1 . . . , an−1, an, . . . , an+m−1].
We denote the length of the period by r .

Theorem

Let d > 1 be a rational number that is not the square of another
rational number. Then

√
d = [a0; a1, a2, . . . , a2, a1, 2a0].
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Solving Pell’s Equations

The solutions to both Pell’s equations x2 − dy2 = 1 and
x2 − dy2 = −1 are related to the continued fraction expansion of√
d . In fact,

Theorem

The equation x2 − dy2 = 1 is always solvable and the fundamental
solution is (Ak ,Bk) where k = r or 2r and Ak/Bk is a convergent
of
√
d . The equation x2 − dy2 is solvable if and only if the length

of the period of the continued expansion of
√
d is odd. The

fundamental solution is (Ak ,Bk) where k = r or r + 1.

From the above theorem, it follows that

Theorem

The positive solutions to the Pell’equation x2 − dy2 = ±1 are
given by the convergent Ak/Bk with k = r , 2r , 3r , ⋅ ⋅ ⋅
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Exercises, Part II

The numbers 1, 3, 6, 10, 15, 21, 28, 36, , 45, . . . , tn = 1
2n(n + 1), . . .

are called triangular numbers, since the nth number counts the
number of dots in an equilateral triangular array with n dots to the
side. It happens that individual triangular numbers are square. We
want to find them or at least generate them.
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Solution

The condition that the nth triangular number tn is equal to the
mth square is 1

2n(n + 1) = m2. Rewriting that expression, we can
put it in the form (2n + 1)2 − 8m2 = 1. Now setting x = 2n + 1
and y = m, we are can solve the equation x2 − 8y2 = 1.

A0/B0= 2
A1/B1: 3 = 3
A2/B2= 14/5
A3/B3= 17/6
A4/B4= 82/29
A5/B5= 99/35

A6/B6= 478/169
A7/B7= 577/204
A8/B8= 2786/985
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Exercises, Part II(Cont’d)

Determine integers n for which there exists an integer m for which

1 + 2 + 3 + ⋅ ⋅ ⋅+ m = (m + 1) + (m + 2) + ⋅ ⋅ ⋅+ n.

Solution:
The condition is that n(n + 1) = 2m(m + 1) or
(2n + 1)2− 2(2m + 1)2 = −1. The continued fraction expansion of√

2 give us infinitely many solutions.

A0/B0 = 1
A1/B1 = 3/2
A2/B2 = 7/5
A3/B3 =17/12
A4/B4 = 41/29
A5/B5 = 99/70

A6/B6 = 239/169
A7/B7 = 577/408
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Last Homework Problem

The root-mean-square of a set of {a1, . . . , an} of positive integers
is equal to √

a21 + a22 + ⋅ ⋅ ⋅+ a2k
k

.

Is the root-mean-square of the first n positive integers ever an
integer?.
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Q & A

QUESTIONS?
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