page	line	reads	should read
ix	6	ax + b	ax + by
2	-6	suceed	succeed
3	8	composite	composite
5	5,6	;	,
7	1	many primes	many positive primes
8	-9	M_{11213}	$M_?$ (look it up on the internet)
8	-1	Problem $6.21 \dots$	replace with text below
9	-0		see Problems 6.23 and 6.24 below
17	10	$500 = 41 \cdot 12 + 8$	$500 = 41 \cdot 12 + 8,$
18	12	ϕ	$\mid arphi \mid$
21	-8	Theorem	Theorem.
23	5	$ a_j (n_i,n_j) $	$a_j((n_i, n_j))$
23	18	$2a_2$	$ 2a_1 $
23	-4	Prove	Prove that when $n > 1$
25	2	arithmetic	arithmetic
25	-5	m > 0	m > 1
25	-2	(f)	(f)
27	8,16,-10	f (f(
28	4	$(-1)^{(p-1/2)}$	$(-1)^{(p-1)/2}$
28	8	whichever	which
28	14	Example 9, and	Example 9 and
28	16	Theorem 17, and	Theorem 17 and
29	1	Lemma 13.2	Lemma 12.2
29	11		! .
30	-5	$z \in \mathbb{Z}$	$z \in \mathbb{Z}$.
32	-10	$\bar{g}(x^p - x)$	$\bar{g} (x^p - x)$
33	15	S_k^n	S_k^{p-1}
33	-6		(add) In how many ways?

page	line	reads	should read
33	-0		see Problem 15.15 below
36	12	$\mid r_{i+1} \mid$	$\mid r_i \mid$
39	15	$g^{\mathrm{ind}}g^{(a)}$	$g^{\operatorname{ind}_g(a)}$
39	-9	$\operatorname{ind}_q(a+b)$	$\operatorname{ind}_q(ab)$
41	-1	$\mid g_1,\ldots,g \mid$	g_1,\ldots,g_r
43	7	\mathbb{Z}_{n_i}	$ig _{\mathbb{Z}_{n_1}}$
47	1	\mathbb{Z}_{2_lpha}	\mathbb{Z}_{2^lpha}
48	6	only at 0,	only at 1, the identity,
49	-9	$(1+m_{\alpha}p)^p$	$(1+m_{\alpha}p^{\alpha})^p$
49	-10,-1	ϕ (three times)	φ (three times)
51	-8	ϕ (twice)	φ (twice)
52	-2	$h_1^{arphi(p_1lpha_1)}$	$h_1^{arphi(p_1^{lpha_1})}$
52	-1	$\left \stackrel{\downarrow}{h_1^{\phi(p_1lpha_1)}} ight $	$igg h_1^{ec{arphi}(p_1^{lpha_1})}$
53	2	ϕ	arphi
53	-9	β_{-1}	β_{00}
53	-9 -9	$egin{array}{c} eta_{-1} \ \mathbb{Z}_2^{lpha-2} \end{array}$	$\mathbb{Z}_{2^{lpha-2}}$
54	7	$ u(n)/ \phi(n)$	$ u(n) \phi(n)$
63	10	$ \ldots(p) $	$\ldots(p)$.
65	2	$\frac{p-1}{2}$	$\frac{p-1}{2}$
66	-7	For example,	(new paragraph) For example,
74	-10	$p2 \equiv (3)$	$p \equiv 2 \ (3)$
76	-5	Corollary 4.2	Corollary 26.2
80	8	$4u^2 - 2u^2$	$4u^2 - 2y^2$
81	11	integers 501, 503, and	integers 503 and
81	-0		see Problems 27.15 and 27.16 be-
		_	low
82	3	$(x - y\sqrt{m})(x^2 + y\sqrt{m})$	$(x-y\sqrt{m})(x+y\sqrt{m})$
86	-7	$\bar{\omega} + \bar{\omega} = -1$	$\omega + \bar{\omega} = -1$
9	5	$m \not\equiv 1 \ (4)$	$m \equiv 1 \ (4)$
96	-7	Lemma 32.1	Lemma 31.1
97	7	group U of units	group of units
99	-2	infinitely α	infinitely many α
104	-10	$ N(\beta- au) $	$ N(\beta - \alpha \tau) $

page	line	reads	should read
107	-9	$=\pm 4\cdot 5$	$=\pm 5$
107	-8	$\left(\frac{3}{5}\right)$	$\left(\frac{3}{5}\right)$
112	14	$\mathbf{B}(m)\mu$.	$\mid \mathbf{\hat{B}}(m). \mid$
112	15	$\pi N(\pi) n ab = \alpha \bar{\alpha} \beta \bar{\beta}$	$ \pi N(\pi) \Rightarrow \pi n \Rightarrow \pi ab \Rightarrow$
			$\pi \alpha ar{lpha} eta ar{eta}$
114		au =	au' =
114	-4	$\cdots \pi_k^{lpha_k}$	$\cdots \pi_k^{\gamma_k}$
121			inequivalent
126	-13	$\sum_{i=j}^{n}$	$\sum_{i=1}^{n}$
127		$\alpha \alpha =$	$\alpha \alpha' =$
129	-11	$(N(\alpha^*)^{-1}\alpha^*) =$	$(N(\alpha^*)^{-1}\alpha^*)\alpha =$
130	4	D (twice)	D (twice)
131	-9	any γ which left divides α	if any γ which left divides α and
		and β .	β also divides δ .
133	-8	π	p
138	-0		see Problem 41.52 below
140	-1	$(u+v^2)$	$(u+v)^2$
142	5	we were done	we are done
148	5	one of the six	one of the eight
156	2	noncummutative	noncommutative
175	3	$\mathbb{N}(x)$	N(x)
175	4	$\Phi(\mathbf{n})$	$\mid \Phi(n) \mid$
175	8,9	\mathbb{R} (four times)	$R ext{ (four times)}$
175	9	(x)	[x]
178		Improper unit, 108, 134,	Improper unit, 94, 108, 134, 168
		168	

6.21* (page 8). Suppose (m,n)=1 so that the fraction m/n is written in "lowest terms." When does

$$\frac{m}{n} = x^2 + y^2$$

have a solution in rational numbers x and y?

6.23 (page 9). Show that there are infinitely many negative primes of the form 4n + 1.

6.24 (page 9). Prove: for every n

$$3 \nmid n$$
 implies $3|n^2-1$

$$5 \nmid n$$
 implies $5|n^4-1$

$$3 \not\mid n$$
 implies $3|n^2 - 1$
 $5 \not\mid n$ implies $5|n^4 - 1$
 $7 \not\mid n$ implies $7|n^6 - 1$

Generalize if you can.

 15.15^* (page 33). Generalize Thue's Theorem (14.4): Suppose n is not a perfect square, A > 0 and $z \in \mathbb{Z}$. Then the congruence

$$xz \equiv y(n)$$

has a solution $\langle x, y \rangle$ for which $|x| \langle A\sqrt{n}, |y| \langle \sqrt{n}/A, \text{ and } x \text{ and } y \text{ are } x \rangle$ not both 0.

27.15* (page 81). Improve Lemma 26.3 by showing that it remains true when $|k| \le |m|$ is replaced by $|k| \le 2\sqrt{|m|}$.

 27.16^* (page 81). Prove that

$$x^2 + 41y^2 = p$$

has a solution for the odd prime p if and only if $\left(\frac{-41}{p}\right) = 1$ and characterize those primes another way.

 41.52^* (page 138). Show A(41) is a unique factorization domain. (Hint: see Problem 27.16.)