1. Let $S = \{ f : \mathbb{N} \to \mathbb{N} | f(n) \text{ is divisible by } n, \text{ for all } n \}$. Use diagonalization to show that S is uncountable.

Solution: Suppose that S is countable. Since S is clearly infinite, this means that S has the same size as \mathbb{N}, so all the elements of S can be listed as f_1, f_2, f_3, \ldots. Define a function $d : \mathbb{N} \to \mathbb{N}$ by $d(n) = f_n(n) + n$ for all $n \in \mathbb{N}$. Then d is in S because for all n, $f_n(n)$ is divisible by n, so $f_n(n) + n$ is divisible by n, and d is different from all the f_n’s because $d(n)$ and $f_n(n)$ are different numbers. Thus, the list f_1, f_2, \ldots does not list all elements of S. This contradiction shows that S is uncountable.

2. $HALT_{TM}$ is defined as $\{ \langle M, w \rangle | M \text{ is a Turing machine, and } M \text{ halts on } w \}$. Prove that $HALT_{TM}$ is Turing recognizable.

Solution: $HALT_{TM}$ is recognized by the following Turing machine V.

$V =$ “On input $\langle M, w \rangle$ where M is a Turing machine and w is an input string

1. Simulate M on w.
2. If M halts, accept.”

3. In class we showed that $HALT_{TM}$ is not decidable by reducing A_{TM} to $HALT_{TM}$. For this problem, you are asked to show that $HALT_{TM}$ is undecidable by using diagonalization instead of using a reduction. Your proof should be similar to but not the same as the proof that A_{TM} is not decidable.

Solution: We assume that $HALT_{TM}$ is decidable and obtain a contradiction. Suppose that the Turing machine H decides $HALT_{TM}$. This means that

$$ H(\langle M, w \rangle) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{accept} & \text{if } M \text{ rejects } w \\
\text{reject} & \text{if } M \text{ loops on } w
\end{cases} $$

Using H, we define another Turing machine D

$D =$ “On input $\langle M \rangle$ where M is a Turing machine

1. Run H on $\langle M, \langle M \rangle \rangle$.
2. If H accepts, go into an infinite loop. If H rejects, accept.”

We have

$$ D(\langle M \rangle) = \begin{cases}
\text{loop} & \text{if } M \text{ accepts } \langle M \rangle \\
\text{loop} & \text{if } M \text{ rejects } \langle M \rangle \\
\text{accept} & \text{if } M \text{ loops on } \langle M \rangle
\end{cases} $$
Applying this to $M = D$, we get

$$D(\langle D \rangle) = \begin{cases}
\text{loop} & \text{if } D \text{ accepts } \langle D \rangle \\
\text{loop} & \text{if } D \text{ rejects } \langle D \rangle \\
\text{accept} & \text{if } D \text{ loops on } \langle D \rangle
\end{cases}$$

No matter what D does on $\langle D \rangle$, we get a contradiction, so D can’t exist, which means that H can’t exist and $HALT_{TM}$ is undecidable.