
Overview overview3.3

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view
definition of linear time properties
invariants and safety ←−←−←−
liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

1 / 174

Invariant is2.5-def-invariant

2 / 174

Invariant is2.5-def-invariant

Let EEE be an LT property over APAPAP.

EEE is called an invariant if there exists a propositional
formula ΦΦΦ over APAPAP such that

E =
{

A0 A1 A2 . . . ∈
(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}

3 / 174

Invariant is2.5-def-invariant

Let EEE be an LT property over APAPAP.

EEE is called an invariant if there exists a propositional
formula ΦΦΦ over APAPAP such that

E =
{

A0 A1 A2 . . . ∈
(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}
E =

{
A0 A1 A2 . . . ∈

(
2AP

)ω
: ∀i ≥ 0. Ai |= Φ

}

ΦΦΦ is called the invariant condition of EEE .

4 / 174

Safety properties is2.5-10

state that “nothing bad will happen”

5 / 174

Safety properties is2.5-10

state that “nothing bad will happen”

• mutual exclusion: never crit1 ∧ crit2crit1 ∧ crit2crit1 ∧ crit2

• deadlock freedom: e.g., for dining philosophers
never

∧
0≤i<n

waiti
∧

0≤i<n

waiti
∧

0≤i<n

waiti

6 / 174

Safety properties is2.5-10

state that “nothing bad will happen”

• mutual exclusion: never crit1 ∧ crit2crit1 ∧ crit2crit1 ∧ crit2

• deadlock freedom: e.g., for dining philosophers
never

∧
0≤i<n

waiti
∧

0≤i<n

waiti
∧

0≤i<n

waiti
• German traffic lights:

every red phase is preceded by a yellow phase

7 / 174

Safety properties is2.5-10

state that “nothing bad will happen”

• mutual exclusion: never crit1 ∧ crit2crit1 ∧ crit2crit1 ∧ crit2

• deadlock freedom: e.g., for dining philosophers
never

∧
0≤i<n

waiti
∧

0≤i<n

waiti
∧

0≤i<n

waiti
• German traffic lights:

every red phase is preceded by a yellow phase

• beverage machine:
no drink must be released if the user did not

enter a coin before

the total number of entered coins is never less
than the total number of released drinks

8 / 174

Safety properties is2.5-10a

state that “nothing bad will happen”

invariants:

• mutual exclusion: never crit1 ∧ crit2crit1 ∧ crit2crit1 ∧ crit2
• deadlock freedom: never

∧
0≤i<n

waiti
∧

0≤i<n

waiti
∧

0≤i<n

waiti

other safety properties:

• German traffic lights:
every red phase is preceded by a yellow phase

• beverage machine:
the total number of entered coins is never less

than the total number of released drinks
9 / 174

Safety properties is2.5-10a

state that “nothing bad will happen”

invariants: ←−←−←− “no bad state will be reached”

• mutual exclusion: never crit1 ∧ crit2crit1 ∧ crit2crit1 ∧ crit2
• deadlock freedom: never

∧
0≤i<n

waiti
∧

0≤i<n

waiti
∧

0≤i<n

waiti

other safety properties:

• German traffic lights:
every red phase is preceded by a yellow phase

• beverage machine:
the total number of entered coins is never less

than the total number of released drinks
10 / 174

Safety properties is2.5-10a

state that “nothing bad will happen”

invariants: ←−←−←− “no bad state will be reached”

• mutual exclusion: never crit1 ∧ crit2crit1 ∧ crit2crit1 ∧ crit2
• deadlock freedom: never

∧
0≤i<n

waiti
∧

0≤i<n

waiti
∧

0≤i<n

waiti

other safety properties: ←−←−←− “no bad prefix”

• German traffic lights:
every red phase is preceded by a yellow phase

• beverage machine:
the total number of entered coins is never less

than the total number of released drinks
11 / 174

Bad prefixes of safety properties is2.5-10b

• traffic lights:

every red phase is preceded by a yellow phase

12 / 174

Bad prefixes of safety properties is2.5-10b

• traffic lights:

every red phase is preceded by a yellow phase
↑↑↑

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

e.g., . . . {•} {•}. . . {•} {•}. . . {•} {•}

13 / 174

Bad prefixes of safety properties is2.5-10b

• traffic lights:

every red phase is preceded by a yellow phase
↑↑↑

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

e.g., . . . {•} {•}. . . {•} {•}. . . {•} {•}
• beverage machine:

the total number of entered coins is never less
than the total number of released drinks

14 / 174

Bad prefixes of safety properties is2.5-10b

• traffic lights:

every red phase is preceded by a yellow phase
↑↑↑

bad prefix: finite trace fragment where a red phase
appears without being preceded by a yellow phase

e.g., . . . {•} {•}. . . {•} {•}. . . {•} {•}
• beverage machine:

the total number of entered coins is never less
than the total number of released drinks

↑↑↑
bad prefix, e.g., {pay} {drink} {drink}{pay} {drink} {drink}{pay} {drink} {drink}

15 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

16 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...

belongs to EEE

17 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...

belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

18 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...

belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

19 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...

belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

E =E =E = set of all infinite words that
do not have a bad prefix

20 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...

belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

BadPrefE
def
=BadPrefE
def
=BadPrefE
def
= set of bad prefixes for EEE

21 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...

belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

BadPrefE
def
=BadPrefE
def
=BadPrefE
def
= set of bad prefixes for EEE ⊆

(
2AP

)+⊆
(
2AP

)+⊆
(
2AP

)+

22 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...

belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

BadPrefE
def
=BadPrefE
def
=BadPrefE
def
= set of bad prefixes for EEE ⊆

(
2AP

)+⊆
(
2AP

)+⊆
(
2AP

)+

↑↑↑
briefly: BadPrefBadPrefBadPref

23 / 174

Definition of safety properties is2.5-11

Let EEE be a LT property over APAPAP, i.e., E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω.

EEE is called a safety property if for all words

σ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ Eσ = A0 A1 A2 ... ∈
(
2AP

)ω \ E

there exists a finite prefix A0 A1... AnA0 A1... AnA0 A1... An of σσσ such that
none of the words A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...A0 A1... An Bn+1 Bn+2 Bn+3...

belongs to EEE , i.e.,

E ∩
{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... AnE ∩

{
σ′ ∈ (2AP)ω : A0 ... An is a prefix of σ′

}
= ∅σ′

}
= ∅σ′

}
= ∅

Such words A0 A1 ... AnA0 A1 ... AnA0 A1 ... An are called bad prefixes for EEE .

minimal bad prefixes: any word A0 ... Ai ... An ∈ BadPrefA0 ... Ai ... An ∈ BadPrefA0 ... Ai ... An ∈ BadPref
s.t. no proper prefix A0 ... AiA0 ... AiA0 ... Ai is a bad prefix for EEE

24 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

AP = {red , yellow}AP = {red , yellow}AP = {red , yellow}

25 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

26 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:
red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1 and yellow ∈ Ai−1yellow ∈ Ai−1yellow ∈ Ai−1

27 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:
red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1 and yellow ∈ Ai−1yellow ∈ Ai−1yellow ∈ Ai−1

red

yellow

green red/yellow ∅∅∅

∅∅∅

28 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:
red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1 and yellow ∈ Ai−1yellow ∈ Ai−1yellow ∈ Ai−1

red

yellow

green red/yellow ∅∅∅

∅∅∅

“there is a red phase
that is not preceded
by a yellow phase”

29 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:
red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1 and yellow ∈ Ai−1yellow ∈ Ai−1yellow ∈ Ai−1

red

yellow

green red/yellow ∅∅∅

∅∅∅

“there is a red phase
that is not preceded
by a yellow phase”

hence: T �|= ET �|= ET �|= E
30 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:
red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1 and yellow ∈ Ai−1yellow ∈ Ai−1yellow ∈ Ai−1

red

yellow

green red/yellow ∅∅∅

∅∅∅

T �|= ET �|= ET �|= E

bad prefix, e.g.,
∅ {red}∅ {yellow}∅ {red}∅ {yellow}∅ {red}∅ {yellow}

31 / 174

Safety property for a traffic light is2.5-12

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:
red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1 and yellow ∈ Ai−1yellow ∈ Ai−1yellow ∈ Ai−1

red

yellow

green red/yellow ∅∅∅

∅∅∅

T �|= ET �|= ET �|= E

minimal bad prefix:
∅ {red}∅ {red}∅ {red}

32 / 174

Safety property for a traffic light is2.5-12a

red

yellow

green

red/yellow ∅∅∅

∅∅∅

“every red phase is
preceded by a
yellow phase”

hence: T |= ET |= ET |= E

E =E =E = set of all infinite words A0 A1 A2 ...A0 A1 A2 ...A0 A1 A2 ...
over 2AP2AP2AP such that for all i ∈ Ni ∈ Ni ∈ N:
red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1red ∈ Ai =⇒ i ≥ 1 and yellow ∈ Ai−1yellow ∈ Ai−1yellow ∈ Ai−1

is a safety property over AP = {red , yellow}AP = {red , yellow}AP = {red , yellow} with

BadPref =BadPref =BadPref = set of all finite words A0 A1 . . . AnA0 A1 . . . AnA0 A1 . . . An

over 2AP2AP2AP s.t. for some i ∈ {0, . . . , n}i ∈ {0, . . . , n}i ∈ {0, . . . , n}:
red ∈ Aired ∈ Aired ∈ Ai ∧∧∧ (i=0 ∨ yellow /∈ Ai−1)(i=0 ∨ yellow /∈ Ai−1)(i=0 ∨ yellow /∈ Ai−1)

33 / 174

Satisfaction of safety properties is2.5-11a

34 / 174

Satisfaction of safety properties is2.5-11a

Let E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω be a safety property, TTT a TS over APAPAP .

T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E

Traces(T)Traces(T)Traces(T) === set of traces of TTT

35 / 174

Satisfaction of safety properties is2.5-11a

Let E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω be a safety property, TTT a TS over APAPAP .

T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E

iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅

BadPrefBadPrefBadPref === set of all bad prefixes of EEE

Traces(T)Traces(T)Traces(T) === set of traces of TTT
Tracesfin(T)Tracesfin(T)Tracesfin(T) === set of finite traces of TTT
=

{
trace(π̂) : π̂=

{
trace(π̂) : π̂=

{
trace(π̂) : π̂ is an initial, finite path fragment of T

}
T

}
T

}
36 / 174

Satisfaction of safety properties is2.5-11a

Let E ⊆ (2AP)ωE ⊆ (2AP)ωE ⊆ (2AP)ω be a safety property, TTT a TS over APAPAP .

T |= ET |= ET |= E iff Traces(T) ⊆ ETraces(T) ⊆ ETraces(T) ⊆ E

iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅

iff Tracesfin(T) ∩MinBadPref = ∅Tracesfin(T) ∩MinBadPref = ∅Tracesfin(T) ∩MinBadPref = ∅

BadPrefBadPrefBadPref === set of all bad prefixes of EEE
MinBadPrefMinBadPrefMinBadPref === set of all minimal bad prefixes of EEE
Traces(T)Traces(T)Traces(T) === set of traces of TTT
Tracesfin(T)Tracesfin(T)Tracesfin(T) === set of finite traces of TTT
=

{
trace(π̂) : π̂=

{
trace(π̂) : π̂=

{
trace(π̂) : π̂ is an initial, finite path fragment of T

}
T

}
T

}
37 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

38 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

correct.

39 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

correct.

Let EEE be an invariant with invariant condition ΦΦΦ.

40 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

correct.

Let EEE be an invariant with invariant condition ΦΦΦ.

• bad prefixes for EEE : finite words A0 ...Ai ... AnA0 ...Ai ... AnA0 ...Ai ... An s.t.

Ai �|= ΦAi �|= ΦAi �|= Φ for some i ∈ {0, 1, ..., n}i ∈ {0, 1, ..., n}i ∈ {0, 1, ..., n}

41 / 174

Correct or wrong? is2.5-13

Every invariant is a safety property.

correct.

Let EEE be an invariant with invariant condition ΦΦΦ.

• bad prefixes for EEE : finite words A0 ...Ai ... AnA0 ...Ai ... AnA0 ...Ai ... An s.t.

Ai �|= ΦAi �|= ΦAi �|= Φ for some i ∈ {0, 1, ..., n}i ∈ {0, 1, ..., n}i ∈ {0, 1, ..., n}

• minimal bad prefixes for EEE :
finite words A0 A1 ...An−1 AnA0 A1 ...An−1 AnA0 A1 ...An−1 An such that

Ai |= ΦAi |= ΦAi |= Φ for i = 0, 1, ..., n−1i = 0, 1, ..., n−1i = 0, 1, ..., n−1, and An �|= ΦAn �|= ΦAn �|= Φ

42 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

43 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

44/174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

45 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

• ∅∅∅ is even an invariant (invariant condition falsefalsefalse)

46 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

• ∅∅∅ is even an invariant (invariant condition falsefalsefalse)

(2AP)ω(2AP)ω(2AP)ω is a safety property

47 / 174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

• ∅∅∅ is even an invariant (invariant condition falsefalsefalse)

(2AP)ω(2AP)ω(2AP)ω is a safety property

correct

48/174

Correct or wrong? is2.5-36

∅∅∅ is a safety property

correct

• all finite words A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+A0 ... An ∈ (2AP)+ are bad prefixes

• ∅∅∅ is even an invariant (invariant condition falsefalsefalse)

(2AP)ω(2AP)ω(2AP)ω is a safety property

correct

“For all words ∈ (2AP)ω \ (2AP)ω

︸ ︷︷ ︸
= ∅

∈ (2AP)ω \ (2AP)ω

︸ ︷︷ ︸
= ∅

∈ (2AP)ω \ (2AP)ω

︸ ︷︷ ︸
= ∅

.........”

49 / 174

Prefix closure is2.5-prefix-closure

50 / 174

Prefix closure is2.5-prefix-closure

For a given infinite word σ = A0 A1 A2 . . .σ = A0 A1 A2 . . .σ = A0 A1 A2 . . ., let

pref (σ)pref (σ)pref (σ)
def
=
def
=
def
= set of all nonempty, finite prefixes of σσσ

51 / 174

Prefix closure is2.5-prefix-closure

For a given infinite word σ = A0 A1 A2 . . .σ = A0 A1 A2 . . .σ = A0 A1 A2 . . ., let

pref (σ)pref (σ)pref (σ)
def
=
def
=
def
= set of all nonempty, finite prefixes of σσσ

===
{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}

52 / 174

Prefix closure is2.5-prefix-closure

For a given infinite word σ = A0 A1 A2 . . .σ = A0 A1 A2 . . .σ = A0 A1 A2 . . ., let

pref (σ)pref (σ)pref (σ)
def
=
def
=
def
= set of all nonempty, finite prefixes of σσσ

===
{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}

53 / 174

Prefix closure is2.5-prefix-closure

For a given infinite word σ = A0 A1 A2 . . .σ = A0 A1 A2 . . .σ = A0 A1 A2 . . ., let

pref (σ)pref (σ)pref (σ)
def
=
def
=
def
= set of all nonempty, finite prefixes of σσσ

===
{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}

For E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
, let pref (E)

def
=
def
=
def
=

⋃
σ ∈ E

pref (σ)pref (E)
def
=
def
=
def
=

⋃
σ ∈ E

pref (σ)pref (E)
def
=
def
=
def
=

⋃
σ ∈ E

pref (σ)

54 / 174

Prefix closure is2.5-prefix-closure

For a given infinite word σ = A0 A1 A2 . . .σ = A0 A1 A2 . . .σ = A0 A1 A2 . . ., let

pref (σ)pref (σ)pref (σ)
def
=
def
=
def
= set of all nonempty, finite prefixes of σσσ

===
{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}{

A0 A1 . . .An : n ≥ 0
}

For E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
, let pref (E)

def
=
def
=
def
=

⋃
σ ∈ E

pref (σ)pref (E)
def
=
def
=
def
=

⋃
σ ∈ E

pref (σ)pref (E)
def
=
def
=
def
=

⋃
σ ∈ E

pref (σ)

Given an LT property EEE , the prefix closure of EEE is:

cl(E)
def
=
def
=
def
=

{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}
cl(E)

def
=
def
=
def
=

{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}
cl(E)

def
=
def
=
def
=

{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}

55 / 174

Prefix closure and safety is2.5-safety-prefix-closure

For any infinite word σ ∈
(
2AP

)ω
σ ∈

(
2AP

)ω
σ ∈

(
2AP

)ω
, let

pref (σ)pref (σ)pref (σ) === set of all nonempty, finite prefixes of σσσ

For any LT property E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
, let

pref (E)pref (E)pref (E) ===
⋃

σ∈E
pref (σ)

⋃
σ∈E

pref (σ)
⋃

σ∈E
pref (σ) and

cl(E)cl(E)cl(E) ===
{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}

56 / 174

Prefix closure and safety is2.5-safety-prefix-closure

For any infinite word σ ∈
(
2AP

)ω
σ ∈

(
2AP

)ω
σ ∈

(
2AP

)ω
, let

pref (σ)pref (σ)pref (σ) === set of all nonempty, finite prefixes of σσσ

For any LT property E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
, let

pref (E)pref (E)pref (E) ===
⋃

σ∈E
pref (σ)

⋃
σ∈E

pref (σ)
⋃

σ∈E
pref (σ) and

cl(E)cl(E)cl(E) ===
{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}{
σ ∈ (2AP)ω : pref (σ) ⊆ pref (E)

}

Theorem:

EEE is a safety property iff cl(E) = Ecl(E) = Ecl(E) = E

57 / 174

Safety and finite trace inclusion is2.5-safety-tracefin

remind: LT properties and trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)

iff for all LT properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

58 / 174

Safety and finite trace inclusion is2.5-safety-tracefin

remind: LT properties and trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)Traces(T1) ⊆ Traces(T2)

iff for all LT properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

safety properties and finite trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

59 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

60 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “=⇒=⇒=⇒”: obvious, as for safety property EEE :

T |= ET |= ET |= E iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅

61 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “=⇒=⇒=⇒”: obvious, as for safety property EEE :

T |= ET |= ET |= E iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅

Hence:

If T2 |= ET2 |= ET2 |= E and Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2) then:

62 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “=⇒=⇒=⇒”: obvious, as for safety property EEE :

T |= ET |= ET |= E iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅

Hence:

If T2 |= ET2 |= ET2 |= E and Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2) then:

Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅

Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅

Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅

63 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “=⇒=⇒=⇒”: obvious, as for safety property EEE :

T |= ET |= ET |= E iff Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅Tracesfin(T) ∩ BadPref = ∅

Hence:

If T2 |= ET2 |= ET2 |= E and Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2) then:

Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅

Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅

Tracesfin(T1) ∩ BadPref

⊆ Tracesfin(T2) ∩ BadPref = ∅

and therefore T1 |= ET1 |= ET1 |= E
64 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2))E = cl(Traces(T2))E = cl(Traces(T2))

65 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

66 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

↑↑↑
for each transition system TTT :

pref
(
Traces(T)

)
= Tracesfin(T)pref

(
Traces(T)

)
= Tracesfin(T)pref

(
Traces(T)

)
= Tracesfin(T)

67 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property

68 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property
↑↑↑

as cl(E) = Ecl(E) = Ecl(E) = E

69 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property
↑↑↑

as cl(E) = Ecl(E) = Ecl(E) = E

set of bad prefixes:
(
2AP

)+ \ Tracesfin(T2)
(
2AP

)+ \ Tracesfin(T2)
(
2AP

)+ \ Tracesfin(T2)

70 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

71 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E

72 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

73 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

Hence: Tracesfin(T1)Tracesfin(T1)Tracesfin(T1) === pref (Traces(T1))pref (Traces(T1))pref (Traces(T1))

74 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

Hence: Tracesfin(T1)Tracesfin(T1)Tracesfin(T1) === pref (Traces(T1))pref (Traces(T1))pref (Traces(T1))

⊆⊆⊆ pref (E)pref (E)pref (E)

75 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

Hence: Tracesfin(T1)Tracesfin(T1)Tracesfin(T1) === pref (Traces(T1))pref (Traces(T1))pref (Traces(T1))

⊆⊆⊆ pref (E)pref (E)pref (E) === pref (cl(Traces(T2)))pref (cl(Traces(T2)))pref (cl(Traces(T2)))

76 / 174

Safety and finite trace inclusion is2.5-safety-tracefin-proof

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

Proof “⇐=⇐=⇐=”: consider the LT property

E = cl(Traces(T2)) =
{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}
E = cl(Traces(T2)) =

{
σ : pref (σ) ⊆ Tracesfin(T2)

}

Then, EEE is a safety property and T2 |= ET2 |= ET2 |= E .

By assumption: T1 |= ET1 |= ET1 |= E and therefore Traces(T1) ⊆ ETraces(T1) ⊆ ETraces(T1) ⊆ E .

Hence: Tracesfin(T1)Tracesfin(T1)Tracesfin(T1) === pref (Traces(T1))pref (Traces(T1))pref (Traces(T1))

⊆⊆⊆ pref (E)pref (E)pref (E) === pref (cl(Traces(T2)))pref (cl(Traces(T2)))pref (cl(Traces(T2)))

=== Tracesfin(T2)Tracesfin(T2)Tracesfin(T2)
77 / 174

Safety and finite trace equivalence is2.5-safety-traceequiv

78 / 174

Safety and finite trace equivalence is2.5-safety-traceequiv

safety properties and finite trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

79 / 174

Safety and finite trace equivalence is2.5-safety-traceequiv

safety properties and finite trace inclusion:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)Tracesfin(T1) ⊆ Tracesfin(T2)

iff for all safety properties EEE : T2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= ET2 |= E =⇒ T1 |= E

safety properties and finite trace equivalence:

If T1T1T1 and T2T2T2 are TS over APAPAP then:

Tracesfin(T1) = Tracesfin(T2)Tracesfin(T1) = Tracesfin(T2)Tracesfin(T1) = Tracesfin(T2)

iff T1T1T1 and T2T2T2 satisfy the same safety properties

80 / 174

Summary: trace relations and properties is2.5-30

trace inclusion

Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′) iff

for all LT properties EEE : T ′ |= E =⇒ T |= ET ′ |= E =⇒ T |= ET ′ |= E =⇒ T |= E

finite trace inclusion

Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′) iff

for all safety properties EEE : T ′ |= E =⇒ T |= ET ′ |= E =⇒ T |= ET ′ |= E =⇒ T |= E

81 / 174

Summary: trace relations and properties is2.5-30

trace equivalence

Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) iff

TTT and TTT ′ satisfy the same LT properties

finite trace equivalence

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′) iff

TTT and T ′T ′T ′ satisfy the same safety properties

82 / 174

correct or wrong? is2.5-31

If Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
then Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′).

83 / 174

correct or wrong? is2.5-31

If Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
then Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′).

correct, since

Tracesfin(T)Tracesfin(T)Tracesfin(T) === set of all finite nonempty prefixes
of words in Traces(T)Traces(T)Traces(T)

=== pref (Traces(T))pref (Traces(T))pref (Traces(T))

84 / 174

correct or wrong? is2.5-31

If Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
then Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′).

correct, since

Tracesfin(T)Tracesfin(T)Tracesfin(T) === set of all finite nonempty prefixes
of words in Traces(T)Traces(T)Traces(T)

=== pref (Traces(T))pref (Traces(T))pref (Traces(T))

{a}{a}{a}
Traces(T)Traces(T)Traces(T) ===

{
{a}ω

}{
{a}ω

}{
{a}ω

}

Tracesfin(T)Tracesfin(T)Tracesfin(T) ===
{
{a}n : n ≥ 1

}{
{a}n : n ≥ 1

}{
{a}n : n ≥ 1

}

85 / 174

Finite trace relations versus trace relations is2.5-32

is trace equivalence the same as
finite trace equivalence ?

86/174

Finite trace relations versus trace relations is2.5-32

is trace equivalence the same as
finite trace equivalence ?

answer: no

87/174

Finite trace relations versus trace relations is2.5-32

set of propositions
AP = {b}AP = {b}AP = {b}

=̂ ∅=̂ ∅=̂ ∅ =̂ {b}=̂ {b}=̂ {b}

TTT T ′T ′T ′
...

88/ 174

Finite trace relations versus trace relations is2.5-32

set of propositions
AP = {b}AP = {b}AP = {b}

=̂ ∅=̂ ∅=̂ ∅ =̂ {b}=̂ {b}=̂ {b}

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}

89 / 174

Finite trace relations versus trace relations is2.5-32

set of propositions
AP = {b}AP = {b}AP = {b}

=̂ ∅=̂ ∅=̂ ∅ =̂ {b}=̂ {b}=̂ {b}

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}

90 / 174

Finite trace relations versus trace relations is2.5-32

set of propositions
AP = {b}AP = {b}AP = {b}

=̂ ∅=̂ ∅=̂ ∅ =̂ {b}=̂ {b}=̂ {b}

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}
Traces(T ′)Traces(T ′)Traces(T ′) === {∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}

91 / 174

Finite trace relations versus trace relations is2.5-32

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}
Traces(T ′)Traces(T ′)Traces(T ′) === {∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}
Tracesfin(T ′)Tracesfin(T ′)Tracesfin(T ′) === {∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪

{∅n{b}m : n ≥ 2 ∧m ≥ 1}{∅n{b}m : n ≥ 2 ∧m ≥ 1}{∅n{b}m : n ≥ 2 ∧m ≥ 1}

92 / 174

Finite trace relations versus trace relations is2.5-32

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}
Traces(T ′)Traces(T ′)Traces(T ′) === {∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}
Tracesfin(T ′)Tracesfin(T ′)Tracesfin(T ′) === {∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪

{∅n{b}m : n ≥ 2 ∧m ≥ 1}{∅n{b}m : n ≥ 2 ∧m ≥ 1}{∅n{b}m : n ≥ 2 ∧m ≥ 1}

Traces(T) �⊆ Traces(T ′)Traces(T) �⊆ Traces(T ′)Traces(T) �⊆ Traces(T ′), but

Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
93 / 174

Finite trace relations versus trace relations is2.5-32

TTT T ′T ′T ′
...

Traces(T)Traces(T)Traces(T) === {∅ω}{∅ω}{∅ω}
Tracesfin(T)Tracesfin(T)Tracesfin(T) === {∅n : n ≥ 0}{∅n : n ≥ 0}{∅n : n ≥ 0}
Traces(T ′)Traces(T ′)Traces(T ′) === {∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}{∅n{b}ω : n ≥ 2}
Tracesfin(T ′)Tracesfin(T ′)Tracesfin(T ′) === {∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪{∅n : n ≥ 0} ∪

{∅n{b}m : n ≥ 2 ∧m ≥ 1}{∅n{b}m : n ≥ 2 ∧m ≥ 1}{∅n{b}m : n ≥ 2 ∧m ≥ 1}

Traces(T) �⊆ Traces(T ′)Traces(T) �⊆ Traces(T ′)Traces(T) �⊆ Traces(T ′), but

Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

LT property
EEE =̂̂=̂= “eventually bbb”

T �|= ET �|= ET �|= E , T ′ |= ET ′ |= ET ′ |= E
94 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,

(2) T ′T ′T ′ is finite.

95 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,
i.e., all paths of TTT are infinite

(2) T ′T ′T ′ is finite.

96 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,
i.e., all paths of TTT are infinite

(2) T ′T ′T ′ is finite.

Then: Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
iff Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

97 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,
i.e., all paths of TTT are infinite

(2) T ′T ′T ′ is finite.

Then: Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
iff Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

“=⇒=⇒=⇒”: holds for all transition systems,

no matter whether (1) and (2) hold

98 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states,
i.e., all paths of TTT are infinite

(2) T ′T ′T ′ is finite.

Then: Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)
iff Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

“=⇒=⇒=⇒”: holds for all transition systems

“⇐=⇐=⇐=”: suppose that (1) and (2) hold and that

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Show that Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

99 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

Proof:

100 / 174

Finite trace and trace inclusion is2.5-trace-vs-tracefin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)

Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

Proof: Pick some path π = s0 s1 s2 ...π = s0 s1 s2 ...π = s0 s1 s2 ... in TTT and show
that there exists a path

π′ = t0 t1 t2...π′ = t0 t1 t2...π′ = t0 t1 t2... in T ′T ′T ′

such that trace(π) = trace(π′)trace(π) = trace(π′)trace(π) = trace(π′)

101 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′
paths from state t0t0t0

(unfolded into a tree)

...
...

...
...

102 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′
paths from state t0t0t0

(unfolded into a tree)

...
...

...
...

finite until
depth ≤ n≤ n≤ n

103 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′ contains all path fragments
with trace A0 A1 ... AnA0 A1 ... AnA0 A1 ... Anpaths from state t0t0t0

(unfolded into a tree)

...
...

...
...

finite until
depth ≤ n≤ n≤ n

104 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′ contains all path fragments
with trace A0 A1 ... AnA0 A1 ... AnA0 A1 ... An

in particular: t0 t1 . . . tnt0 t1 . . . tnt0 t1 . . . tn
paths from state t0t0t0

(unfolded into a tree)

...
...

...
...

finite until
depth ≤ n≤ n≤ n

t0t0t0

105 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′ contains all path fragments
with trace A0 A1 ... AnA0 A1 ... AnA0 A1 ... An

in particular: t0 t1 . . . tnt0 t1 . . . tnt0 t1 . . . tn
paths from state t0t0t0

(unfolded into a tree)

...
...

...
...

finite until
depth ≤ n≤ n≤ n

contains infinitely
many path fragments

tn sm
n+1 ... sm

mtn sm
n+1 ... sm

mtn sm
n+1 ... sm

m

t0t0t0

106 / 174

Tracesfin versus traces is2.5-33

finite TS T ′T ′T ′ contains all path fragments
with trace A0 A1 ... AnA0 A1 ... AnA0 A1 ... An

in particular: t0 t1 . . . tnt0 t1 . . . tnt0 t1 . . . tn
paths from state t0t0t0

(unfolded into a tree)

...

...

...
...
...
...

...
...

...

finite until
depth ≤ n≤ n≤ n

contains infinitely
many path fragments

tn sm
n+1 ... sm

mtn sm
n+1 ... sm

mtn sm
n+1 ... sm

m

there exists tn+1 ∈ Post(tn)tn+1 ∈ Post(tn)tn+1 ∈ Post(tn)
s.t. tn+1 = sm

n+1tn+1 = sm
n+1tn+1 = sm
n+1 for

infinitely many mmm

t0t0t0

107 / 174

Finite trace and trace inclusion is2.5-trace-im-fin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite ←−←−←− image-finiteness
is sufficient

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

108 / 174

Finite trace and trace inclusion is2.5-trace-im-fin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite ←−←−←− image-finiteness
is sufficient

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

image-finiteness of T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP , L′):

109 / 174

Finite trace and trace inclusion is2.5-trace-im-fin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite ←−←−←− image-finiteness
is sufficient

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

image-finiteness of T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP , L′):

• for each A ∈ 2APA ∈ 2APA ∈ 2AP and state s ∈ S ′s ∈ S ′s ∈ S ′:

{t ∈ Post(s) : L′(t) = A}{t ∈ Post(s) : L′(t) = A}{t ∈ Post(s) : L′(t) = A} is finite

110 / 174

Finite trace and trace inclusion is2.5-trace-im-fin

Suppose that TTT and T ′T ′T ′ are TS over APAPAP such that

(1) TTT has no terminal states

(2) T ′T ′T ′ is finite ←−←−←− image-finiteness
is sufficient

(3) Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)Tracesfin(T) ⊆ Tracesfin(T ′)
Then Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)Traces(T) ⊆ Traces(T ′)

image-finiteness of T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP, L′)T ′ = (S ′, Act,→, S ′0, AP , L′):

• for each A ∈ 2APA ∈ 2APA ∈ 2AP and state s ∈ S ′s ∈ S ′s ∈ S ′:

{t ∈ Post(s) : L′(t) = A}{t ∈ Post(s) : L′(t) = A}{t ∈ Post(s) : L′(t) = A} is finite

• for each A ∈ 2APA ∈ 2APA ∈ 2AP : {s0 ∈ S ′0 : L′(s0) = A}{s0 ∈ S ′0 : L′(s0) = A}{s0 ∈ S ′0 : L′(s0) = A} is finite
111 / 174

Trace equivalence vs. finite trace equivalence is2.5-34

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

112 / 174

Trace equivalence vs. finite trace equivalence is2.5-34

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

while the reverse direction does not hold in general
(even not for finite transition systems)

113 / 174

Trace equivalence vs. finite trace equivalence is2.5-34

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

while the reverse direction does not hold in general
(even not for finite transition systems)

114 / 174

Trace equivalence vs. finite trace equivalence is2.5-34

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

while the reverse direction does not hold in general
(even not for finite transition systems)

finite trace equivalent,

but not trace equivalent

115 / 174

Trace equivalence vs. finite trace equivalence is2.5-34a

Whenever Traces(T) = Traces(T ′)Traces(T) = Traces(T ′)Traces(T) = Traces(T ′) then

Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)Tracesfin(T) = Tracesfin(T ′)

The reverse implication holds under additional
assumptions, e.g.,

• if TTT and T ′T ′T ′ are finite and have no terminal states

• or, if TTT and T ′T ′T ′ are APAPAP-deterministic

116 / 174

Overview overview3.4

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view
definition of linear time properties
invariants and safety
liveness and fairness ←−←−←−

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

117 / 174

Liveness lf2.6-1

“liveness: something good will happen.”

118/174

Liveness lf2.6-1

“liveness: something good will happen.”

“event aaa will occur eventually”

119 / 174

Liveness lf2.6-1

“liveness: something good will happen.”

“event aaa will occur eventually”

e.g., termination for sequential programs

120 / 174

Liveness lf2.6-1

“liveness: something good will happen.”

“event aaa will occur eventually”

e.g., termination for sequential programs

“event aaa will occur infinitely many times”

e.g., starvation freedom for dining philosophers

121 / 174

Liveness lf2.6-1

“liveness: something good will happen.”

“event aaa will occur eventually”

e.g., termination for sequential programs

“event aaa will occur infinitely many times”

e.g., starvation freedom for dining philosophers

“whenever event bbb occurs then event aaa
will occur sometimes in the future”

122 / 174

Liveness lf2.6-1

“liveness: something good will happen.”

“event aaa will occur eventually”

e.g., termination for sequential programs

“event aaa will occur infinitely many times”

e.g., starvation freedom for dining philosophers

“whenever event bbb occurs then event aaa
will occur sometimes in the future”

e.g., every waiting process enters eventually
its critical section

123 / 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.

124 / 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.
liveness

125/ 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.
liveness

• Two philosophers next to each other never eat at
the same time.

126 / 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.
liveness

• Two philosophers next to each other never eat at
the same time.

invariant

127/ 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.
liveness

• Two philosophers next to each other never eat at
the same time.

invariant

• Whenever a philosopher eats then he has been
thinking at some time before.

128 / 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.
liveness

• Two philosophers next to each other never eat at
the same time.

invariant

• Whenever a philosopher eats then he has been
thinking at some time before.

safety

129/ 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.
liveness

• Two philosophers next to each other never eat at
the same time.

invariant

• Whenever a philosopher eats then he has been
thinking at some time before.

safety

• Whenever a philosopher eats then he will think
some time afterwards.

130 / 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.
liveness

• Two philosophers next to each other never eat at
the same time.

invariant

• Whenever a philosopher eats then he has been
thinking at some time before.

safety

• Whenever a philosopher eats then he will think
some time afterwards.

liveness

131/ 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.
liveness

• Two philosophers next to each other never eat at
the same time.

invariant

• Whenever a philosopher eats then he has been
thinking at some time before.

safety

• Whenever a philosopher eats then he will think
some time afterwards.

liveness

• Between two eating phases of philosopher iii lies at
least one eating phase of philosopher i+1i+1i+1.

132 / 174

which property type? lf2.6-2

• Each philosopher thinks infinitely often.
liveness

• Two philosophers next to each other never eat at
the same time.

invariant

• Whenever a philosopher eats then he has been
thinking at some time before.

safety

• Whenever a philosopher eats then he will think
some time afterwards.

liveness

• Between two eating phases of philosopher iii lies at
least one eating phase of philosopher i+1i+1i+1.

safety
133/ 174

Liveness lf2.6-formal

many different formal definitions of liveness
have been suggested in the literature

134 / 174

Liveness lf2.6-formal

many different formal definitions of liveness
have been suggested in the literature

here: one just example for a formal definition
of liveness

135 / 174

Definition of liveness properties lf2.6-def-liveness

136 / 174

Definition of liveness properties lf2.6-def-liveness

Let EEE be an LT property over APAPAP, i.e., E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

EEE is called a liveness property if each finite word over
APAPAP can be extended to an infinite word in EEE

137 / 174

Definition of liveness properties lf2.6-def-liveness

Let EEE be an LT property over APAPAP, i.e., E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

EEE is called a liveness property if each finite word over
APAPAP can be extended to an infinite word in EEE , i.e., if

pref (E) =
(
2AP

)+
pref (E) =

(
2AP

)+
pref (E) =

(
2AP

)+

recall: pref (E) =pref (E) =pref (E) = set of all finite, nonempty
prefixes of words in EEE

138 / 174

Definition of liveness properties lf2.6-def-liveness

Let EEE be an LT property over APAPAP, i.e., E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω
.

EEE is called a liveness property if each finite word over
APAPAP can be extended to an infinite word in EEE , i.e., if

pref (E) =
(
2AP

)+
pref (E) =

(
2AP

)+
pref (E) =

(
2AP

)+

Examples:

• each process will eventually enter its critical section

• each process will enter its critical section
infinitely often

• whenever a process has requested its critical section
then it will eventually enter its critical section

139 / 174

Examples for liveness properties lf2.6-ex-liveness

An LT property EEE over APAPAP is called a liveness property

if pref (E) =
(
2AP

)+
pref (E) =

(
2AP

)+
pref (E) =

(
2AP

)+

Examples for AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}:

140 / 174

Examples for liveness properties lf2.6-ex-liveness

An LT property EEE over APAPAP is called a liveness property

if pref (E) =
(
2AP

)+
pref (E) =

(
2AP

)+
pref (E) =

(
2AP

)+

Examples for AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}:
• each process will eventually enter its critical section

141 / 174

Examples for liveness properties lf2.6-ex-liveness

An LT property EEE over APAPAP is called a liveness property

if pref (E) =
(
2AP

)+
pref (E) =

(
2AP

)+
pref (E) =

(
2AP

)+

Examples for AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}:
• each process will eventually enter its critical section

E =E =E = set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . s.t.

∀i ∈ {1, . . . , n} ∃k ≥ 0. criti ∈ Ak∀i ∈ {1, . . . , n} ∃k ≥ 0. criti ∈ Ak∀i ∈ {1, . . . , n} ∃k ≥ 0. criti ∈ Ak

142 / 174

Examples for liveness properties lf2.6-ex-liveness

An LT property EEE over APAPAP is called a liveness property

if pref (E) =
(
2AP

)+
pref (E) =

(
2AP

)+
pref (E) =

(
2AP

)+

Examples for AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}:
• each process will eventually enter its critical section

• each process will enter its critical section
infinitely often

143 / 174

Examples for liveness properties lf2.6-ex-liveness

An LT property EEE over APAPAP is called a liveness property

if pref (E) =
(
2AP

)+
pref (E) =

(
2AP

)+
pref (E) =

(
2AP

)+

Examples for AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}AP = {criti : i = 1, . . . , n}:
• each process will eventually enter its critical section

• each process will enter its critical section
infinitely often

E =E =E = set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . s.t.

∀i ∈ {1, . . . , n}
∞
∃ k ≥ 0. criti ∈ Ak∀i ∈ {1, . . . , n}
∞
∃ k ≥ 0. criti ∈ Ak∀i ∈ {1, . . . , n}
∞
∃ k ≥ 0. criti ∈ Ak

144 / 174

Examples for liveness properties lf2.6-ex-liveness

An LT property EEE over APAPAP is called a liveness property

if pref (E) =
(
2AP

)+
pref (E) =

(
2AP

)+
pref (E) =

(
2AP

)+

Examples for AP = {waiti , criti : i = 1, . . . , n}AP = {waiti , criti : i = 1, . . . , n}AP = {waiti , criti : i = 1, . . . , n}:
• each process will eventually enter its critical section

• each process will enter its crit. section inf. often

• whenever a process is waiting then it will eventually
enter its critical section

145 / 174

Examples for liveness properties lf2.6-ex-liveness

An LT property EEE over APAPAP is called a liveness property

if pref (E) =
(
2AP

)+
pref (E) =

(
2AP

)+
pref (E) =

(
2AP

)+

Examples for AP = {waiti , criti : i = 1, . . . , n}AP = {waiti , criti : i = 1, . . . , n}AP = {waiti , criti : i = 1, . . . , n}:
• each process will eventually enter its critical section

• each process will enter its crit. section inf. often

• whenever a process is waiting then it will eventually
enter its critical section

E =E =E = set of all infinite words A0 A1 A2 . . .A0 A1 A2 . . .A0 A1 A2 . . . s.t.

∀i ∈ {1, . . . , n} ∀j ≥ 0. waiti ∈ Aj∀i ∈ {1, . . . , n} ∀j ≥ 0. waiti ∈ Aj∀i ∈ {1, . . . , n} ∀j ≥ 0. waiti ∈ Aj

−→ ∃k > j . criti ∈ Ak−→ ∃k > j . criti ∈ Ak−→ ∃k > j . criti ∈ Ak

146 / 174

Recall: safety properties, prefix closure lf2.6-safety

Let EEE be an LT-property, i.e., E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω

147 / 174

Recall: safety properties, prefix closure lf2.6-safety

Let EEE be an LT-property, i.e., E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω

EEE is a safety property

iff ∀σ ∈
(
2AP

)ω\E∀σ ∈
(
2AP

)ω\E∀σ ∈
(
2AP

)ω\E ∃A0 A1 . . .An ∈ pref (σ)∃A0 A1 . . .An ∈ pref (σ)∃A0 A1 . . .An ∈ pref (σ) s.t.{
σ′ ∈ E : A0 A1 . . .An ∈ pref (σ′)

}
= ∅

{
σ′ ∈ E : A0 A1 . . .An ∈ pref (σ′)

}
= ∅

{
σ′ ∈ E : A0 A1 . . .An ∈ pref (σ′)

}
= ∅

148 / 174

Recall: safety properties, prefix closure lf2.6-safety

Let EEE be an LT-property, i.e., E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω

EEE is a safety property

iff ∀σ ∈
(
2AP

)ω\E∀σ ∈
(
2AP

)ω\E∀σ ∈
(
2AP

)ω\E ∃A0 A1 . . .An ∈ pref (σ)∃A0 A1 . . .An ∈ pref (σ)∃A0 A1 . . .An ∈ pref (σ) s.t.{
σ′ ∈ E : A0 A1 . . .An ∈ pref (σ′)

}
= ∅

{
σ′ ∈ E : A0 A1 . . .An ∈ pref (σ′)

}
= ∅

{
σ′ ∈ E : A0 A1 . . .An ∈ pref (σ′)

}
= ∅

remind:

pref (σ)pref (σ)pref (σ) === set of all finite, nonempty prefixes of σσσ

pref (E)pref (E)pref (E) ===
⋃

σ∈E
pref (σ)

⋃
σ∈E

pref (σ)
⋃

σ∈E
pref (σ)

149 / 174

Recall: safety properties, prefix closure lf2.6-safety

Let EEE be an LT-property, i.e., E ⊆
(
2AP

)ω
E ⊆

(
2AP

)ω
E ⊆

(
2AP

)ω

EEE is a safety property

iff ∀σ ∈
(
2AP

)ω\E∀σ ∈
(
2AP

)ω\E∀σ ∈
(
2AP

)ω\E ∃A0 A1 . . .An ∈ pref (σ)∃A0 A1 . . .An ∈ pref (σ)∃A0 A1 . . .An ∈ pref (σ) s.t.{
σ′ ∈ E : A0 A1 . . .An ∈ pref (σ′)

}
= ∅

{
σ′ ∈ E : A0 A1 . . .An ∈ pref (σ′)

}
= ∅

{
σ′ ∈ E : A0 A1 . . .An ∈ pref (σ′)

}
= ∅

iff cl(E) = Ecl(E) = Ecl(E) = E

remind: cl(E)cl(E)cl(E) ===
{
σ ∈

(
2AP

)ω
: pref (σ) ⊆ pref (E)

}{
σ ∈

(
2AP

)ω
: pref (σ) ⊆ pref (E)

}{
σ ∈

(
2AP

)ω
: pref (σ) ⊆ pref (E)

}

pref (σ)pref (σ)pref (σ) === set of all finite, nonempty prefixes of σσσ

pref (E)pref (E)pref (E) ===
⋃

σ∈E
pref (σ)

⋃
σ∈E

pref (σ)
⋃

σ∈E
pref (σ)

150 / 174

Decomposition theorem lf2.6-decomp-thm

151 / 174

Decomposition theorem lf2.6-decomp-thm

For each LT-property EEE , there exists a safety
property SAFESAFESAFE and a liveness property LIVELIVELIVE s.t.

E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

152 / 174

Decomposition theorem lf2.6-decomp-thm

For each LT-property EEE , there exists a safety
property SAFESAFESAFE and a liveness property LIVELIVELIVE s.t.

E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

Proof:

153 / 174

Decomposition theorem lf2.6-decomp-thm

For each LT-property EEE , there exists a safety
property SAFESAFESAFE and a liveness property LIVELIVELIVE s.t.

E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

Proof: Let SAFESAFESAFE
def
=
def
=
def
= cl(E)cl(E)cl(E)

154 / 174

Decomposition theorem lf2.6-decomp-thm

For each LT-property EEE , there exists a safety
property SAFESAFESAFE and a liveness property LIVELIVELIVE s.t.

E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

Proof: Let SAFESAFESAFE
def
=
def
=
def
= cl(E)cl(E)cl(E)

remind: cl(E)cl(E)cl(E) ===
{
σ ∈

(
2AP

)ω
: pref (σ) ⊆ pref (E)

}{
σ ∈

(
2AP

)ω
: pref (σ) ⊆ pref (E)

}{
σ ∈

(
2AP

)ω
: pref (σ) ⊆ pref (E)

}

pref (σ)pref (σ)pref (σ) === set of all finite, nonempty prefixes of σσσ

pref (E)pref (E)pref (E) ===
⋃

σ∈E
pref (σ)

⋃
σ∈E

pref (σ)
⋃

σ∈E
pref (σ)

155 / 174

Decomposition theorem lf2.6-decomp-thm

For each LT-property EEE , there exists a safety
property SAFESAFESAFE and a liveness property LIVELIVELIVE s.t.

E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

Proof: Let SAFESAFESAFE
def
=
def
=
def
= cl(E)cl(E)cl(E)

LIVELIVELIVE
def
=
def
=
def
= E ∪

((
2AP

)ω \ cl(E)
)

E ∪
((

2AP
)ω \ cl(E)

)
E ∪

((
2AP

)ω \ cl(E)
)

remind: cl(E)cl(E)cl(E) ===
{
σ ∈

(
2AP

)ω
: pref (σ) ⊆ pref (E)

}{
σ ∈

(
2AP

)ω
: pref (σ) ⊆ pref (E)

}{
σ ∈

(
2AP

)ω
: pref (σ) ⊆ pref (E)

}

pref (σ)pref (σ)pref (σ) === set of all finite, nonempty prefixes of σσσ

pref (E)pref (E)pref (E) ===
⋃

σ∈E
pref (σ)

⋃
σ∈E

pref (σ)
⋃

σ∈E
pref (σ)

156 / 174

Decomposition theorem lf2.6-decomp-thm

For each LT-property EEE , there exists a safety
property SAFESAFESAFE and a liveness property LIVELIVELIVE s.t.

E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

Proof: Let SAFESAFESAFE
def
=
def
=
def
= cl(E)cl(E)cl(E)

LIVELIVELIVE
def
=
def
=
def
= E ∪

((
2AP

)ω \ cl(E)
)

E ∪
((

2AP
)ω \ cl(E)

)
E ∪

((
2AP

)ω \ cl(E)
)

Show that:

• E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

• SAFESAFESAFE is a safety property

• LIVELIVELIVE is a liveness property

157 / 174

Decomposition theorem lf2.6-decomp-thm

For each LT-property EEE , there exists a safety
property SAFESAFESAFE and a liveness property LIVELIVELIVE s.t.

E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

Proof: Let SAFESAFESAFE
def
=
def
=
def
= cl(E)cl(E)cl(E)

LIVELIVELIVE
def
=
def
=
def
= E ∪

((
2AP

)ω \ cl(E)
)

E ∪
((

2AP
)ω \ cl(E)

)
E ∪

((
2AP

)ω \ cl(E)
)

Show that:

• E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE
√√√

• SAFESAFESAFE is a safety property

• LIVELIVELIVE is a liveness property

158 / 174

Decomposition theorem lf2.6-decomp-thm

For each LT-property EEE , there exists a safety
property SAFESAFESAFE and a liveness property LIVELIVELIVE s.t.

E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

Proof: Let SAFESAFESAFE
def
=
def
=
def
= cl(E)cl(E)cl(E)

LIVELIVELIVE
def
=
def
=
def
= E ∪

((
2AP

)ω \ cl(E)
)

E ∪
((

2AP
)ω \ cl(E)

)
E ∪

((
2AP

)ω \ cl(E)
)

Show that:

• E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE
√√√

• SAFESAFESAFE is a safety property as cl(SAFE) = SAFEcl(SAFE) = SAFEcl(SAFE) = SAFE

• LIVELIVELIVE is a liveness property

159 / 174

Decomposition theorem lf2.6-decomp-thm

For each LT-property EEE , there exists a safety
property SAFESAFESAFE and a liveness property LIVELIVELIVE s.t.

E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE

Proof: Let SAFESAFESAFE
def
=
def
=
def
= cl(E)cl(E)cl(E)

LIVELIVELIVE
def
=
def
=
def
= E ∪

((
2AP

)ω \ cl(E)
)

E ∪
((

2AP
)ω \ cl(E)

)
E ∪

((
2AP

)ω \ cl(E)
)

Show that:

• E = SAFE ∩ LIVEE = SAFE ∩ LIVEE = SAFE ∩ LIVE
√√√

• SAFESAFESAFE is a safety property as cl(SAFE) = SAFEcl(SAFE) = SAFEcl(SAFE) = SAFE

• LIVELIVELIVE is a liveness property, i.e., pref (LIVE) =
(
2AP

)+
pref (LIVE) =

(
2AP

)+
pref (LIVE) =

(
2AP

)+

160 / 174

Being safe and live lf2.6-safe-and-live

Which LT properties are both
a safety and a liveness property?

161 / 174

Being safe and live lf2.6-safe-and-live

Which LT properties are both
a safety and a liveness property?

answer: The set
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is the only LT property which

is a safety property and a liveness property

162 / 174

Being safe and live lf2.6-safe-and-live

Which LT properties are both
a safety and a liveness property?

answer: The set
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is the only LT property which

is a safety property and a liveness property

•
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is a safety and a liveness property:

√√√

163 / 174

Being safe and live lf2.6-safe-and-live

Which LT properties are both
a safety and a liveness property?

answer: The set
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is the only LT property which

is a safety property and a liveness property

•
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is a safety and a liveness property:

√√√

• If EEE is a liveness property then

pref (E)pref (E)pref (E) ===
(
2AP

)+(
2AP

)+(
2AP

)+

164 / 174

Being safe and live lf2.6-safe-and-live

Which LT properties are both
a safety and a liveness property?

answer: The set
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is the only LT property which

is a safety property and a liveness property

•
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is a safety and a liveness property:

√√√

• If EEE is a liveness property then

pref (E)pref (E)pref (E) ===
(
2AP

)+(
2AP

)+(
2AP

)+

=⇒=⇒=⇒ cl(E)cl(E)cl(E) ===
(
2AP

)ω(
2AP

)ω(
2AP

)ω

165 / 174

Being safe and live lf2.6-safe-and-live

Which LT properties are both
a safety and a liveness property?

answer: The set
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is the only LT property which

is a safety property and a liveness property

•
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is a safety and a liveness property:

√√√

• If EEE is a liveness property then

pref (E)pref (E)pref (E) ===
(
2AP

)+(
2AP

)+(
2AP

)+

=⇒=⇒=⇒ cl(E)cl(E)cl(E) ===
(
2AP

)ω(
2AP

)ω(
2AP

)ω

If EEE is a safety property too, then cl(E) = Ecl(E) = Ecl(E) = E .

166 / 174

Being safe and live lf2.6-safe-and-live

Which LT properties are both
a safety and a liveness property?

answer: The set
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is the only LT property which

is a safety property and a liveness property

•
(
2AP

)ω(
2AP

)ω(
2AP

)ω
is a safety and a liveness property:

√√√

• If EEE is a liveness property then

pref (E)pref (E)pref (E) ===
(
2AP

)+(
2AP

)+(
2AP

)+

=⇒=⇒=⇒ cl(E)cl(E)cl(E) ===
(
2AP

)ω(
2AP

)ω(
2AP

)ω

If EEE is a safety property too, then cl(E) = Ecl(E) = Ecl(E) = E .
Hence E = cl(E) =

(
2AP

)ω
E = cl(E) =

(
2AP

)ω
E = cl(E) =

(
2AP

)ω
.

167 / 174

