Overview

Introduction
Modelling parallel systems
Linear Time Properties
state-based and linear time view definition of linear time properties invariants and safety
liveness and fairness
Regular Properties
Linear Temporal Logic
Computation-Tree Logic
Equivalences and Abstraction

Invariant

Let E be an LT property over $\boldsymbol{A P}$.

E is called an invariant if there exists a propositional formula Φ over $A P$ such that

$$
E=\left\{A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}: \forall i \geq 0 . A_{i} \models \Phi\right\}
$$

Invariant

Let E be an LT property over $\boldsymbol{A P}$.

E is called an invariant if there exists a propositional formula Φ over $A P$ such that

$$
E=\left\{A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}: \forall i \geq 0 . A_{i} \models \Phi\right\}
$$

Φ is called the invariant condition of E.

Safety properties

state that "nothing bad will happen"

Safety properties

state that "nothing bad will happen"

- mutual exclusion:
- deadlock freedom:
never crit $_{1} \wedge$ crit $_{2}$
e.g., for dining philosophers never $\bigwedge_{0 \leq i<n}$ wait $_{i}$

Safety properties

state that "nothing bad will happen"

- mutual exclusion:
- deadlock freedom:
- German traffic lights: every red phase is preceded by a yellow phase

Safety properties

state that "nothing bad will happen"

- mutual exclusion:
- deadlock freedom:
- German traffic lights:
every red phase is preceded by a yellow phase
- beverage machine:
no drink must be released if the user did not enter a coin before
the total number of entered coins is never less than the total number of released drinks

Safety properties

state that "nothing bad will happen"

invariants:

- mutual exclusion: never crit $_{1} \wedge$ crit $_{2}$
- deadlock freedom: never \bigwedge wait $_{i}$

$$
0 \leq i<n
$$

other safety properties:

- German traffic lights: every red phase is preceded by a yellow phase
- beverage machine:
the total number of entered coins is never less than the total number of released drinks

Safety properties

state that "nothing bad will happen"
invariants:
$\longleftarrow \quad$ "no bad state will be reached"

- mutual exclusion: never crit $_{1} \wedge$ crit $_{2}$
- deadlock freedom: never \bigwedge wait $_{i}$

$$
0 \leq i<n
$$

other safety properties:

- German traffic lights: every red phase is preceded by a yellow phase
- beverage machine:
the total number of entered coins is never less than the total number of released drinks

Safety properties

state that "nothing bad will happen"
invariants:
$\longleftarrow \quad$ "no bad state will be reached"

- mutual exclusion: never $\mathrm{crit}_{1} \wedge$ crit $_{2}$
- deadlock freedom: never \bigwedge wait $_{i}$

$$
0 \leq i<n
$$

other safety properties:

- German traffic lights: every red phase is preceded by a yellow phase
- beverage machine:
the total number of entered coins is never less than the total number of released drinks

Bad prefixes of safety properties

- traffic lights:
every red phase is preceded by a yellow phase

Bad prefixes of safety properties

- traffic lights:
every red phase is preceded by a yellow phase \uparrow
bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase

$$
\text { e.g., } \ldots\{\odot\}\{\odot\}
$$

Bad prefixes of safety properties

- traffic lights: every red phase is preceded by a yellow phase \uparrow
bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase

$$
\text { e.g., } \ldots\{\bullet\}\{\bullet\}
$$

- beverage machine:
the total number of entered coins is never less than the total number of released drinks

Bad prefixes of safety properties

- traffic lights:
every red phase is preceded by a yellow phase \uparrow
bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase

$$
\text { e.g., } \ldots\{\bullet\}\{\bullet\}
$$

- beverage machine:
the total number of entered coins is never less than the total number of released drinks

bad prefix, e.g., $\{$ pay \} \{drink\} \{drink\}

Definition of safety properties

Let E be a LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.

Definition of safety properties

Let E be a LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a safety property if for all words

$$
\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \backslash E
$$

there exists a finite prefix $A_{0} A_{1} \ldots A_{n}$ of σ such that none of the words $A_{0} A_{1} \ldots A_{n} B_{n+1} B_{n+2} B_{n+3} \ldots$ belongs to E

Definition of safety properties

Let E be a LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a safety property if for all words

$$
\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \backslash E
$$

there exists a finite prefix $A_{0} A_{1} \ldots A_{n}$ of σ such that none of the words $A_{0} A_{1} \ldots A_{n} B_{n+1} B_{n+2} B_{n+3} \ldots$ belongs to E, i.e.,

$$
E \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega}: A_{0} \ldots A_{n} \text { is a prefix of } \sigma^{\prime}\right\}=\varnothing
$$

Definition of safety properties

Let E be a LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a safety property if for all words

$$
\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \backslash E
$$

there exists a finite prefix $A_{0} A_{1} \ldots A_{n}$ of σ such that none of the words $A_{0} A_{1} \ldots A_{n} B_{n+1} B_{n+2} B_{n+3} \ldots$ belongs to E, i.e.,

$$
E \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega}: \boldsymbol{A}_{0} \ldots \boldsymbol{A}_{\boldsymbol{n}} \text { is a prefix of } \sigma^{\prime}\right\}=\varnothing
$$

Such words $A_{0} \boldsymbol{A}_{1} \ldots \boldsymbol{A}_{\boldsymbol{n}}$ are called bad prefixes for E.

Definition of safety properties

Let E be a LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a safety property if for all words

$$
\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \backslash E
$$

there exists a finite prefix $A_{0} A_{1} \ldots A_{n}$ of σ such that none of the words $A_{0} A_{1} \ldots A_{n} B_{n+1} B_{n+2} B_{n+3} \ldots$ belongs to E, i.e.,

$$
E \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega}: \boldsymbol{A}_{0} \ldots \boldsymbol{A}_{\boldsymbol{n}} \text { is a prefix of } \sigma^{\prime}\right\}=\varnothing
$$

Such words $A_{0} \boldsymbol{A}_{1} \ldots \boldsymbol{A}_{\boldsymbol{n}}$ are called bad prefixes for E.
$E=$ set of all infinite words that do not have a bad prefix

Definition of safety properties

Let E be a LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a safety property if for all words

$$
\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \backslash E
$$

there exists a finite prefix $A_{0} A_{1} \ldots A_{n}$ of σ such that none of the words $A_{0} A_{1} \ldots A_{n} B_{n+1} B_{n+2} B_{n+3} \ldots$ belongs to E, i.e.,
$E \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega}: A_{0} \ldots A_{n}\right.$ is a prefix of $\left.\sigma^{\prime}\right\}=\varnothing$
Such words $A_{0} \boldsymbol{A}_{\mathbf{1}} \ldots \boldsymbol{A}_{\boldsymbol{n}}$ are called bad prefixes for \boldsymbol{E}.
$\operatorname{BadPref}_{E} \stackrel{\text { def }}{=}$ set of bad prefixes for E

Definition of safety properties

Let E be a LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a safety property if for all words

$$
\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \backslash E
$$

there exists a finite prefix $A_{0} A_{1} \ldots A_{n}$ of σ such that none of the words $A_{0} A_{1} \ldots A_{n} B_{n+1} B_{n+2} B_{n+3} \ldots$ belongs to E, i.e.,
$E \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega}: A_{0} \ldots A_{n}\right.$ is a prefix of $\left.\sigma^{\prime}\right\}=\varnothing$
Such words $A_{0} \boldsymbol{A}_{1} \ldots \boldsymbol{A}_{\boldsymbol{n}}$ are called bad prefixes for E.
BadPref $_{E} \stackrel{\text { def }}{=}$ set of bad prefixes for $E \subseteq\left(2^{A P}\right)^{+}$

Definition of safety properties

Let E be a LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a safety property if for all words

$$
\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \backslash E
$$

there exists a finite prefix $A_{0} A_{1} \ldots A_{n}$ of σ such that none of the words $A_{0} A_{1} \ldots A_{n} B_{n+1} B_{n+2} B_{n+3} \ldots$ belongs to E, i.e.,

$$
E \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega}: \boldsymbol{A}_{0} \ldots \boldsymbol{A}_{\boldsymbol{n}} \text { is a prefix of } \sigma^{\prime}\right\}=\varnothing
$$

Such words $A_{0} \boldsymbol{A}_{\mathbf{1}} \ldots \boldsymbol{A}_{\boldsymbol{n}}$ are called bad prefixes for \boldsymbol{E}.
BadPref $_{E} \stackrel{\text { def }}{=}$ set of bad prefixes for $E \subseteq\left(2^{A P}\right)^{+}$ \uparrow
briefly: BadPref

Definition of safety properties

Let E be a LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a safety property if for all words

$$
\sigma=A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \backslash E
$$

there exists a finite prefix $A_{0} A_{1} \ldots A_{n}$ of σ such that none of the words $A_{0} A_{1} \ldots A_{n} B_{n+1} B_{n+2} B_{n+3} \ldots$ belongs to E, i.e.,

$$
E \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega}: \boldsymbol{A}_{0} \ldots \boldsymbol{A}_{\boldsymbol{n}} \text { is a prefix of } \sigma^{\prime}\right\}=\varnothing
$$

Such words $A_{0} \boldsymbol{A}_{1} \ldots \boldsymbol{A}_{\boldsymbol{n}}$ are called bad prefixes for E.
minimal bad prefixes: any word $A_{0} \ldots A_{i} \ldots A_{n} \in \operatorname{BadPref}$ s.t. no proper prefix $A_{0} \ldots A_{i}$ is a bad prefix for E

Safety property for a traffic light

Safety property for a traffic light

"every red phase is preceded by a yellow phase"

Safety property for a traffic light

"every red phase is preceded by a yellow phase" hence: $\mathcal{T} \models E$
$E=$ set of all infinite words $A_{0} A_{1} A_{2} \ldots$ over $2^{A P}$ such that for all $i \in \mathbb{N}$: red $\in A_{i} \Longrightarrow i \geq 1$ and yellow $\in A_{i-1}$

Safety property for a traffic light

"every red phase is preceded by a yellow phase" hence: $\mathcal{T} \models E$
$E=$ set of all infinite words $A_{0} A_{1} A_{2} \ldots$ over $2^{A P}$ such that for all $i \in \mathbb{N}$: red $\in A_{i} \Longrightarrow i \geq 1$ and yellow $\in A_{i-1}$

Safety property for a traffic light

"every red phase is preceded by a yellow phase" hence: $\mathcal{T} \models E$
$E=$ set of all infinite words $A_{0} A_{1} A_{2} \ldots$ over $2^{A P}$ such that for all $i \in \mathbb{N}$: red $\in A_{i} \Longrightarrow i \geq 1$ and yellow $\in A_{i-1}$

"there is a red phase that is not preceded by a yellow phase"

Safety property for a traffic light

"every red phase is preceded by a yellow phase" hence: $\mathcal{T} \models E$
$E=$ set of all infinite words $A_{0} A_{1} A_{2} \ldots$ over $2^{A P}$ such that for all $i \in \mathbb{N}$: red $\in A_{i} \Longrightarrow i \geq 1$ and yellow $\in A_{i-1}$

"there is a red phase that is not preceded by a yellow phase" hence: $\mathcal{T} \not \neq E$

Safety property for a traffic light

"every red phase is preceded by a yellow phase" hence: $\mathcal{T} \models E$
$E=$ set of all infinite words $A_{0} A_{1} A_{2} \ldots$ over $2^{A P}$ such that for all $i \in \mathbb{N}$: red $\in A_{i} \Longrightarrow i \geq 1$ and yellow $\in A_{i-1}$

$$
\mathcal{T} \not \equiv E
$$

bad prefix, e.g., $\varnothing\{$ red $\} \varnothing\{$ yellow $\}$

Safety property for a traffic light

"every red phase is preceded by a yellow phase" hence: $\mathcal{T} \models E$
$E=$ set of all infinite words $A_{0} A_{1} A_{2} \ldots$ over $2^{A P}$ such that for all $i \in \mathbb{N}$: red $\in A_{i} \Longrightarrow i \geq 1$ and yellow $\in A_{i-1}$

$\mathcal{T} \not \not \neq E$ minimal bad prefix: $\varnothing\{r e d\}$

Safety property for a traffic light

"every red phase is preceded by a yellow phase" hence: $\mathcal{T} \models E$
$E=$ set of all infinite words $A_{0} A_{1} A_{2} \ldots$ over $2^{A P}$ such that for all $i \in \mathbb{N}$: red $\in A_{i} \Longrightarrow i \geq 1$ and yellow $\in A_{i-1}$
is a safety property over $\boldsymbol{A P}=\{$ red, yellow $\}$ with BadPref $=$ set of all finite words $A_{0} A_{1} \ldots A_{n}$ over $2^{A P}$ s.t. for some $i \in\{0, \ldots, n\}$: red $\in A_{i} \wedge\left(i=0 \vee\right.$ yellow $\left.\notin A_{i-1}\right)$

Satisfaction of safety properties

Satisfaction of safety properties

Let $E \subseteq\left(2^{A P}\right)^{\omega}$ be a safety property, \mathcal{T} a TS over $A P$.

$\mathcal{T} \models E \quad$ iff $\quad \operatorname{Traces}(\mathcal{T}) \subseteq E$

$\operatorname{Traces}(\mathcal{T})=$ set of traces of \mathcal{T}

Satisfaction of safety properties

Let $E \subseteq\left(2^{A P}\right)^{\omega}$ be a safety property, \mathcal{T} a TS over $A P$.

$$
\begin{array}{lll}
\mathcal{T} \models E & \text { iff } & \operatorname{Traces}(\mathcal{T}) \subseteq E \\
& \text { iff } & \operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \text { BadPref }=\varnothing
\end{array}
$$

BadPref $=$ set of all bad prefixes of E
$\operatorname{Traces}(\mathcal{T})=$ set of traces of \mathcal{T}
$\operatorname{Traces}_{\text {fin }}(\mathcal{T})=$ set of finite traces of \mathcal{T}
$=\{\operatorname{trace}(\widehat{\pi}): \widehat{\pi}$ is an initial, finite path fragment of $\mathcal{T}\}$

Satisfaction of safety properties

Let $E \subseteq\left(2^{A P}\right)^{\omega}$ be a safety property, \mathcal{T} a TS over $A P$.

$$
\begin{array}{lll}
\mathcal{T}=E & \text { iff } & \operatorname{Traces}(\mathcal{T}) \subseteq E \\
& \text { iff } & \operatorname{Traces}_{f i n}(\mathcal{T}) \cap \text { BadPref }=\varnothing \\
& \text { iff } & \operatorname{Traces}_{f i n}(\mathcal{T}) \cap \text { MinBadPref }=\varnothing
\end{array}
$$

BadPref $=$ set of all bad prefixes of E
MinBadPref $=$ set of all minimal bad prefixes of E
$\operatorname{Traces}(\mathcal{T})=$ set of traces of \mathcal{T}
$\operatorname{Traces}_{\text {fin }}(\mathcal{T})=$ set of finite traces of \mathcal{T}
$=\{\operatorname{trace}(\widehat{\pi}): \widehat{\pi}$ is an initial, finite path fragment of $\mathcal{T}\}$

Correct or wrong?

Every invariant is a safety property.

Correct or wrong?

Every invariant is a safety property.
correct.

Correct or wrong?

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition Φ.

Correct or wrong?

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition Φ.

- bad prefixes for E : finite words $A_{0} \ldots \boldsymbol{A}_{i} \ldots A_{n}$ s.t.

$$
A_{i} \not \models \Phi \text { for some } i \in\{0,1, \ldots, n\}
$$

Correct or wrong?

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition Φ.

- bad prefixes for E : finite words $A_{0} \ldots \boldsymbol{A}_{i} \ldots A_{n}$ s.t.

$$
A_{i} \not \models \Phi \text { for some } i \in\{0,1, \ldots, n\}
$$

- minimal bad prefixes for E :
finite words $A_{0} A_{1} \ldots A_{n-1} A_{n}$ such that

$$
A_{i} \models \Phi \text { for } i=0,1, \ldots, n-1, \text { and } A_{n} \not \models \Phi
$$

Correct or wrong?

\varnothing is a safety property

Correct or wrong?

\varnothing is a safety property

correct

Correct or wrong?

\varnothing is a safety property

correct

- all finite words $A_{0} \ldots A_{n} \in\left(2^{A P}\right)^{+}$are bad prefixes

Correct or wrong?

\varnothing is a safety property

correct

- all finite words $A_{0} \ldots A_{n} \in\left(2^{A P}\right)^{+}$are bad prefixes
- \varnothing is even an invariant (invariant condition false)

Correct or wrong?

\varnothing is a safety property

correct

- all finite words $A_{0} \ldots A_{n} \in\left(2^{A P}\right)^{+}$are bad prefixes
- \varnothing is even an invariant (invariant condition false)
$\left(2^{A P}\right)^{\omega}$ is a safety property

Correct or wrong?

\varnothing is a safety property

correct

- all finite words $A_{0} \ldots A_{n} \in\left(2^{A P}\right)^{+}$are bad prefixes
- \varnothing is even an invariant (invariant condition false)

$$
\left(2^{A P}\right)^{\omega} \text { is a safety property }
$$

correct

Correct or wrong?

\varnothing is a safety property

correct

- all finite words $A_{0} \ldots A_{n} \in\left(2^{A P}\right)^{+}$are bad prefixes
- \varnothing is even an invariant (invariant condition false)

$$
\left(2^{A P}\right)^{\omega} \text { is a safety property }
$$

correct

$$
\text { "For all words } \in \underbrace{\left(2^{A P}\right)^{\omega} \backslash\left(2^{A P}\right)^{\omega}}_{=\varnothing} \ldots \text { " }
$$

Prefix closure

Prefix closure

For a given infinite word $\sigma=A_{0} A_{1} A_{2} \ldots$, let $\operatorname{pref}(\sigma) \stackrel{\text { def }}{=}$ set of all nonempty, finite prefixes of σ

Prefix closure

For a given infinite word $\sigma=A_{0} A_{1} A_{2} \ldots$, let
$\operatorname{pref}(\sigma) \stackrel{\text { def }}{=}$ set of all nonempty, finite prefixes of σ
$=\left\{A_{0} A_{1} \ldots A_{n}: n \geq 0\right\}$

Prefix closure

For a given infinite word $\sigma=A_{0} A_{1} A_{2} \ldots$, let
$\operatorname{pref}(\sigma) \stackrel{\text { def }}{=}$ set of all nonempty, finite prefixes of σ
$=\left\{A_{0} A_{1} \ldots A_{n}: n \geq 0\right\}$

Prefix closure

For a given infinite word $\sigma=A_{0} A_{1} A_{2} \ldots$, let $\operatorname{pref}(\sigma) \stackrel{\text { def }}{=}$ set of all nonempty, finite prefixes of σ $=\left\{A_{0} A_{1} \ldots A_{n}: n \geq 0\right\}$
For $E \subseteq\left(2^{A P}\right)^{\omega}$, let $\operatorname{pref}(E) \stackrel{\text { def }}{=} \cup \operatorname{pref}(\sigma)$ $\sigma \in E$

Prefix closure

For a given infinite word $\sigma=A_{0} A_{1} A_{2} \ldots$, let $\operatorname{pref}(\sigma) \stackrel{\text { def }}{=}$ set of all nonempty, finite prefixes of σ

$$
=\left\{A_{0} A_{1} \ldots A_{n}: n \geq 0\right\}
$$

For $E \subseteq\left(2^{A P}\right)^{\omega}$, let $\operatorname{pref}(E) \stackrel{\text { def }}{=} \bigcup \operatorname{pref}(\sigma)$

$$
\sigma \in E
$$

Given an LT property E, the prefix closure of E is:

$$
c l(E) \stackrel{\text { def }}{=}\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(E)\right\}
$$

Prefix closure and safety

For any infinite word $\sigma \in\left(2^{A P}\right)^{\omega}$, let
$\operatorname{pref}(\sigma)=$ set of all nonempty, finite prefixes of σ
For any LT property $E \subseteq\left(2^{A P}\right)^{\omega}$, let

$$
\begin{aligned}
\operatorname{pref}(E) & =\bigcup_{\sigma \in E} \operatorname{pref}(\sigma) \text { and } \\
c l(E) & =\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(E)\right\}
\end{aligned}
$$

Prefix closure and safety

For any infinite word $\sigma \in\left(2^{A P}\right)^{\omega}$, let
$\operatorname{pref}(\sigma)=$ set of all nonempty, finite prefixes of σ
For any LT property $E \subseteq\left(2^{A P}\right)^{\omega}$, let

$$
\begin{aligned}
\operatorname{pref}(E) & =\bigcup_{\sigma \in E} \operatorname{pref}(\sigma) \text { and } \\
c l(E) & =\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(E)\right\}
\end{aligned}
$$

Theorem:

E is a safety property iff $c l(E)=E$

Safety and finite trace inclusion

remind: LT properties and trace inclusion:
If \mathcal{I}_{1} and \mathcal{T}_{2} are TS over $\boldsymbol{A} \boldsymbol{P}$ then:

$\operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}\left(\mathcal{T}_{2}\right)$

iff for all LT properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$

Safety and finite trace inclusion

remind: LT properties and trace inclusion:
If \mathcal{T}_{1} and \mathcal{T}_{2} are TS over $\boldsymbol{A} P$ then:

$\operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}\left(\mathcal{T}_{2}\right)$

iff for all LT properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
safety properties and finite trace inclusion:
If \mathcal{T}_{1} and \mathcal{T}_{2} are TS over $\boldsymbol{A} \boldsymbol{P}$ then:

$$
\operatorname{Traces}_{f i n}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}_{2}\right)
$$

iff for all safety properties $E: \quad \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longrightarrow ": obvious, as for safety property E :
$\mathcal{T} \models E \quad$ iff $\quad \operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \operatorname{BadPref}=\varnothing$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longrightarrow ": obvious, as for safety property E : $\mathcal{T} \models E \quad$ iff $\quad \operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \operatorname{BadPref}=\varnothing$
Hence:
If $\mathcal{T}_{2} \models E$ and $\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$ then:

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longrightarrow ": obvious, as for safety property E :

$$
\mathcal{T} \models E \quad \text { iff } \quad \operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \operatorname{BadPref}=\varnothing
$$

Hence:
If $\mathcal{T}_{2} \models E$ and $\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$ then:

$$
\begin{aligned}
& \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \cap \text { BadPref } \\
& \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right) \cap \text { BadPref }=\varnothing \\
& \hline
\end{aligned}
$$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longrightarrow ": obvious, as for safety property E :

$$
\mathcal{T} \models E \quad \text { iff } \quad \operatorname{Traces}_{\text {fin }}(\mathcal{T}) \cap \operatorname{BadPref}=\varnothing
$$

Hence:
If $\mathcal{T}_{2} \models E$ and $\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$ then:

$$
\begin{aligned}
& \text { Traces }_{\text {fin }}\left(\mathcal{T}_{1}\right) \cap \text { BadPref } \\
& \subseteq \text { Traces }_{\text {fin }}\left(\mathcal{T}_{2}\right) \cap \text { BadPref }=\varnothing \\
& \hline
\end{aligned}
$$

and therefore $\mathcal{T}_{1} \models E$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c l\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)
$$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Tracesfin}\left(\mathcal{T}_{2}\right)\right\}
$$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}_{2}\right)\right\}
$$

for each transition system \mathcal{T} :

$$
\operatorname{pref}(\operatorname{Traces}(\mathcal{T}))=\operatorname{Traces}_{\text {fin }}(\mathcal{T})
$$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property

$$
\text { as } c l(E)=E
$$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Tracesfin}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property

$$
\begin{aligned}
& \text { as } c l(E)=E \\
& \text { set of bad prefixes: }\left(2^{A P}\right)^{+} \backslash \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)
\end{aligned}
$$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property and $\mathcal{T}_{2} \models E$.

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property and $\mathcal{T}_{2} \models E$.
By assumption: $\boldsymbol{T}_{1} \models E$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Tracesfin}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property and $\mathcal{T}_{2} \models E$.
By assumption: $\mathcal{T}_{1} \models E$ and therefore $\operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq E$.

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property and $\mathcal{T}_{2} \models E$.
By assumption: $\mathcal{T}_{1} \models E$ and therefore $\operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq E$. Hence: $\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right)=\operatorname{pref}\left(\operatorname{Traces}\left(\mathcal{T}_{1}\right)\right)$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Tracesfin}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property and $\mathcal{T}_{2} \models E$.
By assumption: $\mathcal{T}_{1} \models E$ and therefore $\operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq E$.
Hence: $\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right)=\operatorname{pref}\left(\operatorname{Traces}\left(\mathcal{T}_{1}\right)\right)$

$$
\subseteq \operatorname{pref}(E)
$$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Tracesfin}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property and $\mathcal{T}_{2} \models E$.
By assumption: $\mathcal{T}_{1} \models E$ and therefore $\operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq E$.
Hence: $\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right)=\operatorname{pref}\left(\operatorname{Traces}\left(\mathcal{T}_{1}\right)\right)$

$$
\subseteq \operatorname{pref}(E)=\operatorname{pref}\left(c l\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)\right)
$$

Safety and finite trace inclusion

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
Proof " \Longleftarrow ": consider the LT property

$$
E=c \prime\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)=\left\{\sigma: \operatorname{pref}(\sigma) \subseteq \operatorname{Tracesfin}\left(\mathcal{T}_{2}\right)\right\}
$$

Then, E is a safety property and $\mathcal{T}_{2} \models E$.
By assumption: $\mathcal{T}_{1} \models E$ and therefore $\operatorname{Traces}\left(\mathcal{T}_{1}\right) \subseteq E$.
Hence: $\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right)=\operatorname{pref}\left(\operatorname{Traces}\left(\mathcal{T}_{1}\right)\right)$

$$
\begin{aligned}
& \subseteq \operatorname{pref}^{(E)}=\operatorname{pref}\left(c l\left(\operatorname{Traces}\left(\mathcal{T}_{2}\right)\right)\right) \\
& =\operatorname{Traces}_{f i n}\left(\mathcal{T}_{2}\right)
\end{aligned}
$$

Safety and finite trace equivalence

Safety and finite trace equivalence

safety properties and finite trace inclusion:
If \mathcal{T}_{1} and \mathcal{T}_{2} are TS over $\boldsymbol{A} \boldsymbol{P}$ then:

$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$

iff for all safety properties $E: \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$

Safety and finite trace equivalence

safety properties and finite trace inclusion:
If \mathcal{T}_{1} and \mathcal{T}_{2} are TS over $\boldsymbol{A} \boldsymbol{P}$ then:
$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}_{2}\right)$
iff for all safety properties $E: \quad \mathcal{T}_{2} \models E \Longrightarrow \mathcal{T}_{1} \models E$
safety properties and finite trace equivalence:
If \mathcal{T}_{1} and \mathcal{T}_{2} are TS over $A P$ then:
$\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{1}\right)=\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}_{2}\right)$
iff \mathcal{T}_{1} and \mathcal{T}_{2} satisfy the same safety properties

Summary: trace relations and properties

trace inclusion
$\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$ iff
for all LT properties $E: \quad T^{\prime} \models E \Longrightarrow \mathcal{T} \models E$
finite trace inclusion
$\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)$ iff
for all safety properties $E: \mathcal{T}^{\prime} \models E \Longrightarrow \mathcal{T} \models E$

Summary: trace relations and properties

trace equivalence
$\operatorname{Traces}(\mathcal{T})=\operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$ iff
\mathcal{T} and \mathcal{T}^{\prime} satisfy the same LT properties
finite trace equivalence
$\operatorname{Traces}_{f i n}(\mathcal{T})=\operatorname{Traces}_{f i n}\left(\mathcal{T}^{\prime}\right)$ iff
\mathcal{T} and \mathcal{T}^{\prime} satisfy the same safety properties

correct or wrong?

If $\operatorname{Traces}(T) \subseteq \operatorname{Traces}\left(T^{\prime}\right)$ then $\operatorname{Traces}_{f i n}(\mathcal{T}) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)$.

correct or wrong?

> If $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}^{\left(\mathcal{T}^{\prime}\right)}$ then $\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)$.
correct, since
$\operatorname{Traces}_{f i n}(\mathcal{T})=$ set of all finite nonempty prefixes of words in Traces (\mathcal{T})
$=\operatorname{pref}(\operatorname{Traces}(\mathcal{T}))$

correct or wrong?

```
If Traces(T) \subseteqTraces(T')
then Tracesfin}(\mathcal{T})\subseteq\mp@subsup{\operatorname{Traces}}{\mathrm{ fin }}{(}\mp@subsup{\mathcal{T}}{}{\prime})\mathrm{ .
```

correct, since
$\operatorname{Traces}_{f i n}(\mathcal{T})=$ set of all finite nonempty prefixes of words in Traces (\mathcal{T})
$=\operatorname{pref}(\operatorname{Traces}(\mathcal{T}))$
$\oint\{a\}$

$$
\begin{aligned}
\operatorname{Traces}(\mathcal{T}) & =\left\{\{a\}^{\omega}\right\} \\
\operatorname{Traces}_{\text {fin }}(\mathcal{T}) & =\left\{\{a\}^{n}: n \geq 1\right\}
\end{aligned}
$$

Finite trace relations versus trace relations

is trace equivalence the same as finite trace equivalence?

Finite trace relations versus trace relations

is trace equivalence the same as finite trace equivalence ?

answer: no

Finite trace relations versus trace relations

\mathcal{T}^{\prime}

Finite trace relations versus trace relations

Finite trace relations versus trace relations

$\operatorname{Traces}(\mathcal{T})=\left\{\varnothing^{\omega}\right\}$
 $\operatorname{Traces}_{\text {fin }}(\mathcal{T})=\left\{\varnothing^{n}: n \geq 0\right\}$

\mathcal{T}^{\prime}

$$
\bigcirc \widehat{=} \varnothing \quad \bigcirc \hat{=}\{b\}
$$

set of propositions

$$
A P=\{b\}
$$

Finite trace relations versus trace relations

\boldsymbol{T} O

$$
\begin{aligned} & \operatorname{Traces}(\mathcal{T})=\left\{\varnothing^{\omega}\right\} \\ & \operatorname{Traces}(\mathcal{T})=\left\{\varnothing^{n}: n \geq 0\right\} \\ & \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)=\left\{\varnothing^{n}\{b\}^{\omega}: n \geq 2\right\} \end{aligned}
$$
 $\operatorname{Traces}(\mathcal{T})=\left\{\varnothing^{\omega}\right\}$
 $\operatorname{Traces}_{\text {fin }}(\mathcal{T})=\left\{\varnothing^{n}: n \geq 0\right\}$
 $\operatorname{Traces}\left(\mathcal{T}^{\prime}\right)=\left\{\varnothing^{n}\{b\}^{\omega}: n \geq 2\right\}$

$$
\mathcal{T}^{\prime}
$$

都

Finite trace relations versus trace relations

Finite trace relations versus trace relations

$$
\left\{\varnothing^{n}\{b\}^{m}: n \geq 2 \wedge m \geq 1\right\}
$$

$$
\begin{aligned}
& \boldsymbol{T} \text { O } \\
& \begin{array}{ll}
\operatorname{Traces}(\mathcal{T}) & =\left\{\varnothing^{\omega}\right\} \\
\operatorname{Traces}_{f i n}(\mathcal{T}) & =\left\{\varnothing^{n}: n \geq 0\right\}
\end{array} \\
& \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)=\left\{\varnothing^{n}\{b\}^{\omega}: n \geq 2\right\} \\
& \operatorname{Traces}_{f i n}\left(\mathcal{T}^{\prime}\right)=\left\{\varnothing^{n}: n \geq 0\right\} \cup \\
& \operatorname{Traces}(\mathcal{T}) \nsubseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right) \text {, but } \\
& \operatorname{Traces}_{f i n}(\mathcal{T}) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}^{\prime}\right)
\end{aligned}
$$

Finite trace relations versus trace relations

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $\boldsymbol{A P}$ such that
(1) \mathcal{T} has no terminal states,
(2) \mathcal{T}^{\prime} is finite.

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $\boldsymbol{A P}$ such that
(1) \mathcal{T} has no terminal states, i.e., all paths of \mathcal{T} are infinite
(2) \mathcal{T}^{\prime} is finite.

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $A P$ such that
(1) \mathcal{T} has no terminal states, i.e., all paths of \mathcal{T} are infinite
(2) \mathcal{T}^{\prime} is finite.

Then:

$$
\begin{aligned}
\operatorname{Traces}(\mathcal{T}) & \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right) \\
\text { iff } \quad \operatorname{Traces}_{\text {fin }}(\mathcal{T}) & \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)
\end{aligned}
$$

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $\boldsymbol{A P}$ such that
(1) \mathcal{T} has no terminal states, i.e., all paths of \mathcal{T} are infinite
(2) \mathcal{T}^{\prime} is finite.

Then:

$$
\begin{aligned}
\operatorname{Traces}(\mathcal{T}) & \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right) \\
\text { iff } \quad \operatorname{Traces}_{\text {fin }}(\mathcal{T}) & \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)
\end{aligned}
$$

" \Longrightarrow ": holds for all transition systems, no matter whether (1) and (2) hold

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $\boldsymbol{A P}$ such that
(1) \mathcal{T} has no terminal states, i.e., all paths of \mathcal{T} are infinite
(2) \mathcal{T}^{\prime} is finite.

Then:

$$
\begin{aligned}
\operatorname{Traces}(\mathcal{T}) & \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right) \\
\text { iff } \quad \operatorname{Traces}_{\text {fin }}(\mathcal{T}) & \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)
\end{aligned}
$$

" \Longrightarrow ": holds for all transition systems
$" \Longleftarrow "$: suppose that (1) and (2) hold and that (3) $\operatorname{Traces}_{f i n}(\mathcal{T}) \subseteq$ Traces $_{f \text { fin }}\left(\mathcal{T}^{\prime}\right)$

Show that $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $\boldsymbol{A P}$ such that
(1) \mathcal{T} has no terminal states
(2) \boldsymbol{T}^{\prime} is finite
(3) $\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)$

Then $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$
Proof:

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $A P$ such that
(1) \mathcal{T} has no terminal states
(2) \mathcal{T}^{\prime} is finite
(3) $\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)$

Then $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$
Proof: Pick some path $\pi=s_{0} s_{1} s_{2} \ldots$ in \mathcal{T} and show that there exists a path

$$
\pi^{\prime}=t_{0} t_{1} t_{2} \ldots \text { in } \mathcal{T}^{\prime}
$$

such that $\operatorname{trace}(\pi)=\operatorname{trace}\left(\pi^{\prime}\right)$

Tracesfin versus traces

finite TS \mathcal{T}^{\prime}
paths from state t_{0}
(unfolded into a tree)

Tracesfin versus traces

finite TS \mathcal{T}^{\prime}
paths from state t_{0}
(unfolded into a tree)

finite until depth $\leq \boldsymbol{n}$

Tracesfin versus traces

finite TS \mathcal{T}^{\prime}
paths from state t_{0} (unfolded into a tree)
contains all path fragments with trace $A_{0} A_{1} \ldots A_{n}$

finite until depth $\leq \boldsymbol{n}$

Tracesfin versus traces

finite TS \mathcal{T}^{\prime}
paths from state t_{0} (unfolded into a tree)
contains all path fragments with trace $A_{0} A_{1} \ldots A_{n}$ in particular: $t_{0} t_{1} \ldots t_{n}$

finite until depth $\leq \boldsymbol{n}$

Tracesfin versus traces

finite TS \mathcal{T}^{\prime}
paths from state t_{0} (unfolded into a tree)
contains all path fragments with trace $A_{0} A_{1} \ldots A_{n}$ in particular: $t_{0} t_{1} \ldots t_{n}$
contains infinitely many path fragments

$$
t_{n} s_{n+1}^{m} \ldots s_{m}^{m}
$$

finite until depth $\leq \boldsymbol{n}$

Tracesfin versus traces

finite $\mathrm{TS} \mathcal{T}^{\prime}$
paths from state t_{0} (unfolded into a tree)

finite until depth $\leq \boldsymbol{n}$
contains infinitely many path fragments

$$
t_{n} s_{n+1}^{m} \ldots s_{m}^{m}
$$

contains all path fragments with trace $A_{0} A_{1} \ldots A_{n}$ in particular: $t_{0} t_{1} \ldots t_{n}$
there exists $t_{n+1} \in \operatorname{Post}\left(t_{n}\right)$ s.t. $t_{n+1}=s_{n+1}^{m}$ for infinitely many m

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $\boldsymbol{A P}$ such that
(1) \mathcal{T} has no terminal states
(2) \boldsymbol{T}^{\prime} is finite

image-finiteness

 is sufficient(3) $\operatorname{Traces}_{f i n}(\mathcal{T}) \subseteq$ Traces $_{f i n}\left(\mathcal{T}^{\prime}\right)$

Then $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $\boldsymbol{A P}$ such that
(1) \mathcal{T} has no terminal states
(2) \boldsymbol{T}^{\prime} is finite

image-finiteness

 is sufficient(3) $\operatorname{Traces}_{f i n}(\mathcal{T}) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}^{\prime}\right)$

Then $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$
image-finiteness of $\mathcal{T}^{\prime}=\left(S^{\prime}, A c t, \rightarrow, S_{0}^{\prime}, A P, L^{\prime}\right)$:

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $\boldsymbol{A P}$ such that
(1) \mathcal{T} has no terminal states
(2) \mathcal{T}^{\prime} is finite
\longleftarrow image-finiteness is sufficient
(3) $\operatorname{Traces}_{f i n}(\mathcal{T}) \subseteq \operatorname{Traces}_{f i n}\left(\mathcal{T}^{\prime}\right)$

Then $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$
image-finiteness of $\mathcal{T}^{\prime}=\left(S^{\prime}, A c t, \rightarrow, S_{0}^{\prime}, A P, L^{\prime}\right)$:

- for each $A \in 2^{A P}$ and state $s \in S^{\prime}$:

$$
\left\{t \in \operatorname{Post}(s): L^{\prime}(t)=A\right\} \text { is finite }
$$

Finite trace and trace inclusion

Suppose that \mathcal{T} and \mathcal{T}^{\prime} are TS over $\boldsymbol{A P}$ such that
(1) \mathcal{T} has no terminal states
(2) \mathcal{T}^{\prime} is finite
\longleftarrow image-finiteness is sufficient
(3) $\operatorname{Traces}_{\text {fin }}(\mathcal{T}) \subseteq \operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)$

Then $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$
image-finiteness of $\mathcal{T}^{\prime}=\left(S^{\prime}, A c t, \rightarrow, S_{0}^{\prime}, A P, L^{\prime}\right)$:

- for each $A \in 2^{A P}$ and state $s \in S^{\prime}$:

$$
\left\{t \in \operatorname{Post}(s): L^{\prime}(t)=A\right\} \text { is finite }
$$

- for each $A \in 2^{A P}:\left\{s_{0} \in S_{0}^{\prime}: L^{\prime}\left(s_{0}\right)=A\right\}$ is finite

Trace equivalence vs. finite trace equivalence

Whenever $\operatorname{Traces}(\mathcal{T})=\operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$ then
$\operatorname{Traces}_{\text {fin }}(\mathcal{T})=\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)$

Trace equivalence vs. finite trace equivalence

Whenever $\operatorname{Traces}(\mathcal{T})=\operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$ then $\operatorname{Traces}_{\text {fin }}(\mathcal{T})=\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)$
while the reverse direction does not hold in general (even not for finite transition systems)

Trace equivalence vs. finite trace equivalence

Whenever $\operatorname{Traces}(\mathcal{T})=\operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$ then
$\operatorname{Traces}_{\text {fin }}(\mathcal{T})=\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)$
while the reverse direction does not hold in general (even not for finite transition systems)

Trace equivalence vs. finite trace equivalence

Whenever $\operatorname{Traces}(\mathcal{T})=\operatorname{Traces}\left(\mathcal{T}^{\prime}\right)$ then

$$
\operatorname{Traces}_{f i n}(\mathcal{T})=\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)
$$

while the reverse direction does not hold in general (even not for finite transition systems)

finite trace equivalent, but not trace equivalent

Trace equivalence vs. finite trace equivalence

$$
\begin{aligned}
& {\text { Whenever } \operatorname{Traces}(\mathcal{T})=\operatorname{Traces}\left(\mathcal{T}^{\prime}\right) \text { then }}_{\operatorname{Traces}_{\text {fin }}(\mathcal{T})=\operatorname{Traces}_{\text {fin }}\left(\mathcal{T}^{\prime}\right)}
\end{aligned}
$$

The reverse implication holds under additional assumptions, e.g.,

- if \mathcal{T} and \mathcal{T}^{\prime} are finite and have no terminal states
- or, if \mathcal{T} and \mathcal{T}^{\prime} are $\boldsymbol{A} \boldsymbol{P}$-deterministic

Overview

Introduction
Modelling parallel systems
Linear Time Properties
state-based and linear time view definition of linear time properties
invariants and safety
liveness and fairness
Regular Properties
Linear Temporal Logic
Computation-Tree Logic
Equivalences and Abstraction
"liveness: something good will happen."
"liveness: something good will happen."
"event a will occur eventually"

Liveness

"liveness: something good will happen."
"event a will occur eventually"
e.g., termination for sequential programs

Liveness

"liveness: something good will happen."
"event a will occur eventually"
e.g., termination for sequential programs
"event a will occur infinitely many times"
e.g., starvation freedom for dining philosophers

Liveness

"liveness: something good will happen."
"event a will occur eventually"
e.g., termination for sequential programs
"event a will occur infinitely many times" e.g., starvation freedom for dining philosophers
"whenever event b occurs then event \boldsymbol{a} will occur sometimes in the future"

Liveness

"liveness: something good will happen."

"event a will occur eventually"
e.g., termination for sequential programs
"event a will occur infinitely many times" e.g., starvation freedom for dining philosophers
"whenever event b occurs then event a will occur sometimes in the future"
e.g., every waiting process enters eventually its critical section

which property type?

- Each philosopher thinks infinitely often.

which property type?

- Each philosopher thinks infinitely often.

liveness

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.

which property type?

- Each philosopher thinks infinitely often.
liveness
- Two philosophers next to each other never eat at the same time.
invariant

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before.

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
invariant
- Whenever a philosopher eats then he has been thinking at some time before.
safety

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
invariant
- Whenever a philosopher eats then he has been thinking at some time before.
safety
- Whenever a philosopher eats then he will think some time afterwards.

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
invariant
- Whenever a philosopher eats then he has been thinking at some time before.
safety
- Whenever a philosopher eats then he will think some time afterwards.
liveness

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
invariant
- Whenever a philosopher eats then he has been thinking at some time before.
- Whenever a philosopher eats then he will think some time afterwards.
- Between two eating phases of philosopher \boldsymbol{i} lies at least one eating phase of philosopher $i+1$.

which property type?

- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.

invariant

- Whenever a philosopher eats then he has been thinking at some time before.
- Whenever a philosopher eats then he will think some time afterwards.

liveness

- Between two eating phases of philosopher i lies at least one eating phase of philosopher $i+1$.
safety

many different formal definitions of liveness
 have been suggested in the literature

many different formal definitions of liveness
have been suggested in the literature
here: one just example for a formal definition of liveness

Definition of liveness properties

Definition of liveness properties

Let E be an LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a liveness property if each finite word over
$A P$ can be extended to an infinite word in E

Definition of liveness properties

Let E be an LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a liveness property if each finite word over $A P$ can be extended to an infinite word in E, i.e., if

$$
\operatorname{pref}(E)=\left(2^{A P}\right)^{+}
$$

recall: $\operatorname{pref}(E)=$ set of all finite, nonempty prefixes of words in E

Definition of liveness properties

Let E be an LT property over $A P$, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$.
E is called a liveness property if each finite word over
$A P$ can be extended to an infinite word in E, i.e., if

$$
\operatorname{pref}(E)=\left(2^{A P}\right)^{+}
$$

Examples:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often
- whenever a process has requested its critical section then it will eventually enter its critical section

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{\right.$ crit $\left._{i}: i=1, \ldots, n\right\}$:

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{c r i t_{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{c r i t_{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section

$$
\begin{aligned}
& E=\text { set of all infinite words } A_{0} A_{1} A_{2} \ldots \text { s.t. } \\
& \forall i \in\{1, \ldots, n\} \exists k \geq 0 . \text { crit }_{i} \in A_{k}
\end{aligned}
$$

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{c r i t_{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{c r i t_{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often
$E=$ set of all infinite words $A_{0} A_{1} A_{2} \ldots$ s.t.

$$
\forall i \in\{1, \ldots, n\} \stackrel{\infty}{\exists} k \geq 0 . \text { crit }_{i} \in A_{k}
$$

Examples for liveness properties

An LT property E over $A P$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{\right.$ wait $_{i}$, crit $\left._{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

Examples for liveness properties

An LT property E over $\boldsymbol{A P}$ is called a liveness property if $\operatorname{pref}(E)=\left(2^{A P}\right)^{+}$

Examples for $A P=\left\{\right.$ wait $_{i}$, crit $\left._{i}: i=1, \ldots, n\right\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

$$
\begin{aligned}
& E=\text { set of all infinite words } A_{0} A_{1} A_{2} \ldots \text { s.t. } \\
& \forall i \in\{1, \ldots, n\} \forall j \geq 0 . \text { wait }_{i} \in A_{j} \\
& \exists k>j . \text { crit }_{i} \in A_{k}
\end{aligned}
$$

Recall: safety properties, prefix closure

Let E be an LT-property, i.e., $E \subseteq\left(2^{A P}\right)^{\omega}$

Recall: safety properties, prefix closure

Let E be an LT-property, ie., $E \subseteq\left(2^{A P}\right)^{\omega}$
E is a safety property
iff $\forall \sigma \in\left(2^{A P}\right)^{\omega} \backslash E \exists A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}(\sigma)$ s.t.

$$
\left\{\sigma^{\prime} \in E: A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\varnothing
$$

Recall: safety properties, prefix closure

Let E be an LT-property, ie., $E \subseteq\left(2^{A P}\right)^{\omega}$
E is a safety property
iff $\forall \sigma \in\left(2^{A P}\right)^{\omega} \backslash E \exists A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}(\sigma)$ s.t.

$$
\left\{\sigma^{\prime} \in E: A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\varnothing
$$

remind:

$$
\begin{aligned}
& \operatorname{pref}(\sigma)=\text { set of all finite, nonempty prefixes of } \sigma \\
& \operatorname{pref}(E)=\bigcup_{\sigma \in E} \operatorname{pref}(\sigma)
\end{aligned}
$$

Recall: safety properties, prefix closure

Let E be an LT-property, ie., $E \subseteq\left(2^{A P}\right)^{\omega}$
E is a safety property
iff $\forall \sigma \in\left(2^{A P}\right)^{\omega} \backslash E \exists A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}(\sigma)$ s.t.

$$
\left\{\sigma^{\prime} \in E: A_{0} A_{1} \ldots A_{n} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\varnothing
$$

iff $c l(E)=E$
remind: $c l(E)=\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(E)\right\}$
$\operatorname{pref}(\sigma)=$ set of all finite, nonempty prefixes of σ

$$
\operatorname{pref}(E)=\bigcup_{\sigma \in E} \operatorname{pref}(\sigma)
$$

Decomposition theorem

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof:

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c l(E)$

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c l(E)$
remind: $c l(E)=\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(E)\right\}$
$\operatorname{pref}(\sigma)=$ set of all finite, nonempty prefixes of σ
$\operatorname{pref}(E)=\bigcup \operatorname{pref}(\sigma)$
$\sigma \in E$

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c l(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

remind: $c l(E)=\left\{\sigma \in\left(2^{A P}\right)^{\omega}: \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(E)\right\}$
$\operatorname{pref}(\sigma)=$ set of all finite, nonempty prefixes of σ
$\operatorname{pref}(E)=\bigcup^{\operatorname{pref}}(\sigma)$
$\sigma \in E$

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c I(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

Show that:

- $E=S A F E \cap$ LIVE
- SAFE is a safety property
- LIVE is a liveness property

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c I(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

Show that:

- $E=S A F E \cap$ LIVE
- SAFE is a safety property
- LIVE is a liveness property

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c I(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

Show that:

- $E=S A F E \cap$ LIVE
- SAFE is a safety property as $c l(S A F E)=$ SAFE
- LIVE is a liveness property

Decomposition theorem

For each LT-property E, there exists a safety property SAFE and a liveness property LIVE s.t.

$$
E=S A F E \cap L I V E
$$

Proof: Let SAFE $\stackrel{\text { def }}{=} c I(E)$

$$
\text { LIVE } \stackrel{\text { def }}{=} E \cup\left(\left(2^{A P}\right)^{\omega} \backslash c l(E)\right)
$$

Show that:

- $E=S A F E \cap$ LIVE
- SAFE is a safety property as $c((S A F E)=$ SAFE
- LIVE is a liveness property, i.e., $\operatorname{pref}($ LIVE $)=\left(2^{A P}\right)^{+}$

Being safe and live

Which LT properties are both a safety and a liveness property?

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$

Being safe and live

> Which LT properties are both a safety and a liveness property?
answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$
- If E is a liveness property then

$$
\operatorname{pref}(E)=\left(2^{A P}\right)^{+}
$$

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$
- If E is a liveness property then

$$
\begin{aligned}
\operatorname{pref}(E) & =\left(2^{A P}\right)^{+} \\
\Longrightarrow \quad c l(E) & =\left(2^{A P}\right)^{\omega}
\end{aligned}
$$

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$
- If E is a liveness property then

$$
\begin{aligned}
\quad \operatorname{pref}(E) & =\left(2^{A P}\right)^{+} \\
\Rightarrow \quad c l(E) & =\left(2^{A P}\right)^{\omega}
\end{aligned}
$$

If E is a safety property too, then $c l(E)=E$.

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $\left(2^{A P}\right)^{\omega}$ is the only LT property which is a safety property and a liveness property

- $\left(2^{A P}\right)^{\omega}$ is a safety and a liveness property: $\sqrt{ }$
- If E is a liveness property then

$$
\begin{aligned}
\operatorname{pref}(E) & =\left(2^{A P}\right)^{+} \\
\Longrightarrow \quad c l(E) & =\left(2^{A P}\right)^{\omega}
\end{aligned}
$$

If E is a safety property too, then $c l(E)=E$.
Hence $E=c l(E)=\left(2^{A P}\right)^{\omega}$.

