Overview

Introduction Modelling parallel systems **Linear Time Properties** state-based and linear time view definition of linear time properties invariants and safety liveness and fairness **Regular Properties** Linear Temporal Logic Computation-Tree Logic Equivalences and Abstraction

Invariant

Let *E* be an LT property over *AP*.

E is called an invariant if there exists a propositional formula ϕ over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP} \right)^{\omega} : \forall i \ge 0. A_i \models \Phi \right\}$$

Let *E* be an LT property over *AP*.

E is called an invariant if there exists a propositional formula ϕ over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP} \right)^{\omega} : \forall i \ge 0. A_i \models \Phi \right\}$$

 Φ is called the invariant condition of E.

IS2.5-10

state that "nothing bad will happen"

IS2.5-10

state that "nothing bad will happen"

- mutual exclusion:
- deadlock freedom:

never $\operatorname{crit}_1 \wedge \operatorname{crit}_2$ e.g., for dining philosophers never $\bigwedge_{0 \le i < n} \operatorname{wait}_i$

IS2.5-10

state that "nothing bad will happen"

- mutual exclusion: *never* $crit_1 \land crit_2$
- deadlock freedom:

e.g., for dining philosophers never $\bigwedge_{0 \le i \le n} wait_i$

German traffic lights: ⁰≤¹<"
 every red phase is preceded by a yellow phase

1S2.5-10

state that "nothing bad will happen"

- mutual exclusion: never crit₁ \wedge crit₂
- deadlock freedom:

- e.g., for dining philosophers never \bigwedge wait $0 \le i \le n$
- German traffic lights: every red phase is preceded by a yellow phase
- beverage machine:

no drink must be released if the user did not enter a coin before

IS2.5-10A

state that "nothing bad will happen"

invariants:

- mutual exclusion: never crit₁ ∧ crit₂
- deadlock freedom: never $\bigwedge_{0 \le i \le n} wait_i$

other safety properties:

- German traffic lights: every red phase is preceded by a yellow phase
- beverage machine:

IS2.5-10A

state that "nothing bad will happen"

other safety properties:

- German traffic lights: every red phase is preceded by a yellow phase
- beverage machine:

IS2.5-10A

state that "nothing bad will happen"

IS2.5-10B

• traffic lights:

every red phase is preceded by a yellow phase

IS2.5-10B

• traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase e.g., $\dots \{\bullet\} \{\bullet\}$

IS2.5-10B

• traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase e.g., $\dots \{\bullet\} \{\bullet\}$

• beverage machine:

IS2.5-10B

• traffic lights:

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase e.g., $\dots \{\bullet\} \{\bullet\}$

• beverage machine:

the total number of entered coins is never less than the total number of released drinks

bad prefix, e.g., {pay} {drink} {drink}

IS2.5-11

Let **E** be a LT property over **AP**, i.e., $E \subseteq (2^{AP})^{\omega}$.

Let **E** be a LT property over **AP**, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that *none* of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E

Let **E** be a LT property over **AP**, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that *none* of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

 $E \cap \left\{ \sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma' \right\} = \emptyset$

Let **E** be a LT property over **AP**, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that *none* of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

 $E \cap \left\{ \sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma' \right\} = \emptyset$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

Let **E** be a LT property over **AP**, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that *none* of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

 $E \cap \left\{ \sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma' \right\} = \emptyset$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

E = set of all infinite words that do not have a bad prefix

Let **E** be a LT property over **AP**, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that *none* of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

 $E \cap \left\{ \sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma' \right\} = \emptyset$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

BadPref_E $\stackrel{\text{def}}{=}$ set of bad prefixes for E

Let **E** be a LT property over **AP**, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that *none* of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

 $E \cap \left\{ \sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma' \right\} = \emptyset$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

BadPref_E $\stackrel{\text{def}}{=}$ set of bad prefixes for $E \subseteq (2^{AP})^+$

Let **E** be a LT property over **AP**, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that *none* of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

 $E \cap \left\{ \sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma' \right\} = \emptyset$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

BadPref_E $\stackrel{\text{def}}{=}$ set of bad prefixes for $E \subseteq (2^{AP})^+$ ↑ briefly: BadPref

Let **E** be a LT property over **AP**, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that *none* of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

 $E \cap \left\{ \sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma' \right\} = \emptyset$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

minimal bad prefixes: any word $A_0 \dots A_i \dots A_n \in BadPref$ s.t. no proper prefix $A_0 \dots A_i$ is a bad prefix for E

IS2.5-12

$$AP = \{red, yellow\}$$

IS2.5-12

"every red phase is preceded by a yellow phase"

IS2.5-12

IS2.5-12

 $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$

IS2.5-12

$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots$$

over 2^{AP} such that for all $i \in \mathbb{N}$:
$$red \in A_i \implies i \ge 1 \text{ and } yellow \in A_{i-1}$$

"there is a red phase that is not preceded by a yellow phase"

IS2.5-12

$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots$$

over 2^{AP} such that for all $i \in \mathbb{N}$:
$$red \in A_i \implies i \ge 1 \text{ and } yellow \in A_{i-1}$$

"there is a red phase that is not preceded by a yellow phase"

hence: $\mathcal{T} \not\models \mathbf{E}$

IS2.5-12

 $\mathcal{T} \not\models \mathbf{E}$

bad prefix, e.g., Ø {**red**}Ø {yellow}

IS2.5-12

 $\mathcal{T} \not\models \mathbf{E}$

minimal bad prefix: Ø {*red*}

IS2.5-12A

$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots$$

over 2^{AP} such that for all $i \in \mathbb{N}$:
$$red \in A_i \implies i \ge 1 \text{ and } yellow \in A_{i-1}$$

is a safety property over $AP = \{red, yellow\}$ with

Satisfaction of safety properties

IS2.5-11A

Satisfaction of safety properties

IS2.5-11A

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

 $\mathcal{T} \models E \quad \text{iff} \quad Traces(\mathcal{T}) \subseteq E$

Traces(T) = set of traces of T

Satisfaction of safety properties

IS2.5-11A

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

 $\mathcal{T} \models E \quad \text{iff} \quad \frac{\text{Traces}(\mathcal{T}) \subseteq E}{\text{iff} \quad \frac{\text{Traces}(\mathcal{T}) \cap BadPref}{\text{For } Factorial} = \emptyset }$

BadPref = set of all bad prefixes of **E**

 $\begin{array}{rcl} Traces(\mathcal{T}) &=& \text{set of traces of } \mathcal{T} \\ Traces_{fin}(\mathcal{T}) &=& \text{set of finite traces of } \mathcal{T} \\ &= \left\{ \begin{array}{l} trace(\widehat{\pi}) : \widehat{\pi} \text{ is an initial, finite path fragment of } \mathcal{T} \end{array} \right\} \end{array}$

Satisfaction of safety properties

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

 $\begin{array}{ll} \mathcal{T} \models E & \text{iff} & \textit{Traces}(\mathcal{T}) \subseteq E \\ & \text{iff} & \textit{Traces}_{\textit{fin}}(\mathcal{T}) \cap \textit{BadPref} = \varnothing \\ & \text{iff} & \textit{Traces}_{\textit{fin}}(\mathcal{T}) \cap \textit{MinBadPref} = \varnothing \end{array}$

BadPref = set of all bad prefixes of E MinBadPref = set of all minimal bad prefixes of E Traces(T) = set of traces of T $Traces_{fin}(T) = set of finite traces of T$ $= \{ trace(\hat{\pi}) : \hat{\pi} \text{ is an initial, finite path fragment of } T \}$

IS2.5-13

Every invariant is a safety property.

IS2.5-13

Every invariant is a safety property.

correct.

Every invariant is a safety property.

correct.

Let *E* be an invariant with invariant condition Φ .

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition Φ .

• bad prefixes for E: finite words $A_0 \dots A_i \dots A_n$ s.t. $A_i \not\models \Phi$ for some $i \in \{0, 1, \dots, n\}$

Every invariant is a safety property.

correct.

Let E be an invariant with invariant condition Φ .

- bad prefixes for E: finite words $A_0 \dots A_i \dots A_n$ s.t. $A_i \not\models \Phi$ for some $i \in \{0, 1, \dots, n\}$
- minimal bad prefixes for *E*:
 finite words *A*₀ *A*₁ ... *A*_{n-1} *A*_n such that

$$A_i \models \Phi$$
 for $i = 0, 1, ..., n-1$, and $A_n \not\models \Phi$

IS2.5-36

 \emptyset is a safety property

IS2.5-36

 \varnothing is a safety property

correct

IS2.5-36

Ø is a safety property

correct

• all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes

Ø is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 \varnothing is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 $(2^{AP})^{\omega}$ is a safety property

 \emptyset is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 $(2^{AP})^{\omega}$ is a safety property

correct

 \emptyset is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 $(2^{AP})^{\omega}$ is a safety property

correct

"For all words
$$\in \underbrace{(2^{AP})^{\omega} \setminus (2^{AP})^{\omega}}_{= \emptyset} \dots$$
"

IS2.5-PREFIX-CLOSURE

IS2.5-PREFIX-CLOSURE

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let *pref*(σ) $\stackrel{\text{def}}{=}$ set of all nonempty, finite prefixes of σ

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let $pref(\sigma) \stackrel{\text{def}}{=} \text{ set of all nonempty, finite prefixes of } \sigma$ $= \{A_0 A_1 \dots A_n : n \ge 0\}$

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let $pref(\sigma) \stackrel{\text{def}}{=} \text{ set of all nonempty, finite prefixes of } \sigma$ $= \{A_0 A_1 \dots A_n : n \ge 0\}$

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let $pref(\sigma) \stackrel{\text{def}}{=} \text{ set of all nonempty, finite prefixes of } \sigma$ $= \{A_0 A_1 \dots A_n : n \ge 0\}$ For $E \subseteq (2^{AP})^{\omega}$, let $pref(E) \stackrel{\text{def}}{=} \bigcup_{\sigma \in E} pref(\sigma)$

For a given infinite word
$$\sigma = A_0 A_1 A_2 \dots$$
, let
 $pref(\sigma) \stackrel{\text{def}}{=} \text{ set of all nonempty, finite prefixes of } \sigma$
 $= \{A_0 A_1 \dots A_n : n \ge 0\}$
For $E \subseteq (2^{AP})^{\omega}$, let $pref(E) \stackrel{\text{def}}{=} \bigcup_{\sigma \in E} pref(\sigma)$

Given an LT property E, the prefix closure of E is: $cl(E) \stackrel{\text{def}}{=} \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$

Prefix closure and safety

For any infinite word $\sigma \in (2^{AP})^{\omega}$, let $pref(\sigma) = set of all nonempty, finite prefixes of \sigma$ For any LT property $E \subseteq (2^{AP})^{\omega}$, let $pref(E) = \bigcup_{\substack{\sigma \in E \\ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)}}$

Prefix closure and safety

For any infinite word $\sigma \in (2^{AP})^{\omega}$, let $pref(\sigma)$ = set of all nonempty, finite prefixes of σ For any LT property $E \subseteq (2^{AP})^{\omega}$, let $pref(E) = \bigcup_{\sigma \in E} pref(\sigma) \text{ and}$ $cl(E) = \left\{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \right\}$ Theorem:

E is a safety property iff cl(E) = E

Safety and finite trace inclusion

remind: LT properties and trace inclusion:

If T_1 and T_2 are TS over AP then: $Traces(T_1) \subseteq Traces(T_2)$ iff for all LT properties $E: T_2 \models E \implies T_1 \models E$

Safety and finite trace inclusion

remind: LT properties and trace inclusion:

If T_1 and T_2 are TS over AP then: $Traces(T_1) \subseteq Traces(T_2)$ iff for all LT properties $E: T_2 \models E \implies T_1 \models E$

safety properties and finite trace inclusion:

If T_1 and T_2 are TS over AP then: $Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$ iff for all safety properties $E: T_2 \models E \implies T_1 \models E$

$$\begin{array}{l} \textit{Traces_{fin}(\mathcal{T}_1) \subseteq \textit{Traces_{fin}(\mathcal{T}_2)}} \\ \textit{iff} \quad \textit{for all safety properties } E: \ \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E \end{array}$$

 $\begin{array}{l} \textit{Traces_{fin}(T_1)} \subseteq \textit{Traces_{fin}(T_2)} \\ \text{iff for all safety properties } E: \ \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E \\ \hline \textit{Proof "} \Longrightarrow ": \text{ obvious, as for safety property } E: \\ \mathcal{T} \models E \quad \text{iff} \quad \textit{Traces_{fin}(T)} \cap \textit{BadPref} = \emptyset \end{array}$

 $Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$ iff for all safety properties $E: T_2 \models E \implies T_1 \models E$ $Proof "\Longrightarrow": obvious, as for safety property E:$ $T \models E \quad iff \quad Traces_{fin}(T) \cap BadPref = \emptyset$ Hence:

If $\mathcal{T}_2 \models E$ and $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ then:

$$\begin{array}{l} \textit{Traces_{fin}(\mathcal{T}_1) \subseteq \textit{Traces_{fin}(\mathcal{T}_2)}} \\ \textit{iff} \quad \textit{for all safety properties } E: \ \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E \end{array}$$

Proof "⇒": obvious, as for safety property *E*: $\mathcal{T} \models E$ iff *Traces_{fin}*(\mathcal{T}) ∩ *BadPref* = Ø Hence:

If
$$\mathcal{T}_2 \models E$$
 and $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ then:

 $Traces_{fin}(\mathcal{T}_1) \cap BadPref$ $\subseteq Traces_{fin}(\mathcal{T}_2) \cap BadPref = \emptyset$

$$\begin{array}{l} \textit{Traces_{fin}(\mathcal{T}_1) \subseteq \textit{Traces_{fin}(\mathcal{T}_2)}} \\ \textit{iff} \quad \textit{for all safety properties } E: \ \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E \end{array}$$

Proof " \implies ": obvious, as for safety property *E*: $\mathcal{T} \models E$ iff $Traces_{fin}(\mathcal{T}) \cap BadPref = \emptyset$

Hence.

If $\mathcal{T}_2 \models E$ and $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ then:

 $Traces_{fin}(\mathcal{T}_1) \cap BadPref$ $\subseteq Traces_{fin}(\mathcal{T}_2) \cap BadPref = \emptyset$

and therefore $T_1 \models E$

Proof " \Leftarrow ": consider the LT property

 $E = cl(Traces(T_2))$

 $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ iff for all safety properties $E: \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Proof "←": consider the LT property

 $E = cl(Traces(\mathcal{T}_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_2)\}$

 $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ iff for all safety properties $E: T_2 \models E \implies T_1 \models E$ *Proof* " \Leftarrow ": consider the LT property $E = cl(Traces(\mathcal{T}_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_2)\}$ for each transition system \mathcal{T} : $pref(Traces(T)) = Traces_{fin}(T)$

 $Traces_{fin}(\mathcal{T}_{1}) \subseteq Traces_{fin}(\mathcal{T}_{2})$ iff for all safety properties $E: \mathcal{T}_{2} \models E \implies \mathcal{T}_{1} \models E$ $Proof `` \Leftarrow ``: consider the LT property$ $E = cl(Traces(\mathcal{T}_{2})) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_{2})\}$ Then, E is a safety property

$$Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$$

iff for all safety properties $E: T_2 \models E \implies T_1 \models E$
$$Proof "\Leftarrow ": \text{ consider the LT property}$$

$$E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$$

Then, E is a safety property
$$\uparrow$$

as $cl(E) = E$

$$Traces_{fin}(\mathcal{T}_{1}) \subseteq Traces_{fin}(\mathcal{T}_{2})$$

iff for all safety properties $E: \mathcal{T}_{2} \models E \implies \mathcal{T}_{1} \models E$
$$Proof `` \Leftarrow ``: consider the LT property$$

$$E = cl(Traces(\mathcal{T}_{2})) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_{2})\}$$

Then, E is a safety property
$$\uparrow$$

as $cl(E) = E$
set of bad prefixes: $(2^{AP})^{+} \setminus Traces_{fin}(\mathcal{T}_{2})$

 $Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$ iff for all safety properties $E: T_2 \models E \implies T_1 \models E$ $Proof `` \Leftarrow ``: consider the LT property$ $E = cl(Traces(T_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(T_2)\}$ Then, E is a safety property and $T_2 \models E$.

 $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ iff for all safety properties $E: \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$ *Proof* " \Leftarrow ": consider the LT property $E = cl(Traces(\mathcal{T}_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_2)\}$ Then, E is a safety property and $\mathcal{I}_2 \models E$. By assumption: $T_1 \models E$

 $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ iff for all safety properties $E: T_2 \models E \implies T_1 \models E$ *Proof* " \Leftarrow ": consider the LT property $E = cl(Traces(\mathcal{T}_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_2)\}$ Then, E is a safety property and $\mathcal{I}_2 \models E$. By assumption: $\mathcal{T}_1 \models \mathcal{E}$ and therefore $Traces(\mathcal{T}_1) \subseteq \mathcal{E}$.

 $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ iff for all safety properties $E: T_2 \models E \implies T_1 \models E$ *Proof* " \Leftarrow ": consider the LT property $E = cl(Traces(\mathcal{T}_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_2)\}$ Then, E is a safety property and $\mathcal{I}_2 \models E$. By assumption: $\mathcal{T}_1 \models \mathcal{E}$ and therefore $Traces(\mathcal{T}_1) \subseteq \mathcal{E}$. Hence: $Traces_{fin}(\mathcal{T}_1) = pref(Traces(\mathcal{T}_1))$

 $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ iff for all safety properties $E: \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$ *Proof* " \Leftarrow ": consider the LT property $E = cl(Traces(\mathcal{T}_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_2)\}$ Then, E is a safety property and $\mathcal{I}_2 \models E$. By assumption: $\mathcal{T}_1 \models \mathcal{E}$ and therefore $Traces(\mathcal{T}_1) \subseteq \mathcal{E}$. Hence: $Traces_{fin}(T_1) = pref(Traces(T_1))$ $\subseteq pref(E)$

 $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ iff for all safety properties $E: \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$ *Proof* " \Leftarrow ": consider the LT property $E = cl(Traces(\mathcal{T}_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_2)\}$ Then, E is a safety property and $\mathcal{I}_2 \models E$. By assumption: $\mathcal{T}_1 \models \mathcal{E}$ and therefore $Traces(\mathcal{T}_1) \subseteq \mathcal{E}$. Hence: $Traces_{fin}(T_1) = pref(Traces(T_1))$ \subseteq pref(E) = pref(cl(Traces(T_2)))

 $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ iff for all safety properties $E: \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$ *Proof* " \Leftarrow ": consider the LT property $E = cl(Traces(\mathcal{T}_2)) = \{\sigma : pref(\sigma) \subseteq Traces_{fin}(\mathcal{T}_2)\}$ Then, **E** is a safety property and $\mathcal{I}_2 \models E$. By assumption: $\mathcal{T}_1 \models \mathcal{E}$ and therefore $Traces(\mathcal{T}_1) \subseteq \mathcal{E}$. Hence: $Traces_{fin}(\mathcal{T}_1) = pref(Traces(\mathcal{T}_1))$ \subseteq pref(E) = pref(cl(Traces(T_2))) = Traces_{fin}(T_2)

Safety and finite trace equivalence

Safety and finite trace equivalence

safety properties and finite trace inclusion:

If T_1 and T_2 are TS over **AP** then:

 $Traces_{fin}(T_1) \subseteq Traces_{fin}(T_2)$

iff for all safety properties $E: \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

Safety and finite trace equivalence

safety properties and finite trace inclusion:

If \mathcal{T}_1 and \mathcal{T}_2 are TS over AP then:

 $Traces_{fin}(\mathcal{T}_1) \subseteq Traces_{fin}(\mathcal{T}_2)$ iff for all safety properties $E: \mathcal{T}_2 \models E \implies \mathcal{T}_1 \models E$

safety properties and finite trace equivalence:

If T_1 and T_2 are TS over AP then: $Traces_{fin}(T_1) = Traces_{fin}(T_2)$ iff T_1 and T_2 satisfy the same safety properties

Summary: trace relations and properties

```
trace inclusion

Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}') \text{ iff}
for all LT properties E: \quad \mathcal{T}' \models E \Longrightarrow \mathcal{T} \models E
```

```
finite trace inclusion
```

 $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$ iff

for all safety properties $E: T' \models E \Longrightarrow T \models E$

Summary: trace relations and properties

```
trace equivalence

Traces(T) = Traces(T') iff

T and T' satisfy the same LT properties
```

```
finite trace equivalence

Traces_{fin}(\mathcal{T}) = Traces_{fin}(\mathcal{T}') \text{ iff}
\mathcal{T} \text{ and } \mathcal{T}' \text{ satisfy the same safety properties}
```

correct or wrong?

If $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$ then $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$.

correct or wrong?

IS2.5-31

If $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$ then $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$.

correct, since

 $Traces_{fin}(\mathcal{T}) =$ set of all finite nonempty prefixes of words in $Traces(\mathcal{T})$

= pref(Traces(T))

correct or wrong?

IS2.5-31

If $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$ then $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$.

correct, since

 $Traces_{fin}(\mathcal{T}) = \text{ set of all finite nonempty prefixes} \\ \text{ of words in } Traces(\mathcal{T}) \\ = pref(Traces(\mathcal{T}))$

$$Traces(\mathcal{T}) = \{\{a\}^{\omega}\}$$
$$Traces_{fin}(\mathcal{T}) = \{\{a\}^{n} : n \ge 1\}$$

IS2.5-32

is trace equivalence the same as finite trace equivalence ?

IS2.5-32

is trace equivalence the same as finite trace equivalence ?

answer: no

$\bigcirc \widehat{=} \varnothing \quad \bigcirc \widehat{=} \{b\}$

IS2.5-32

 $\bigcirc \widehat{=} \emptyset \quad \bigcirc \widehat{=} \{b\}$

IS2.5-32

 $T \qquad T'$ $Traces(T) = \{ \emptyset^{\omega} \}$ $Traces_{fin}(T) = \{ \emptyset^n : n \ge 0 \}$

 $\bigcirc \widehat{=} \emptyset \quad \bigcirc \widehat{=} \{b\}$

IS2.5-32

$\bigcirc \widehat{=} \varnothing \quad \bigcirc \widehat{=} \{ b \}$

IS2.5-32

 $\frac{\text{Traces}(\mathcal{T}) \not\subseteq \text{Traces}(\mathcal{T}'), \text{ but}}{\text{Traces}_{\text{fin}}(\mathcal{T}) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}')}$

Suppose that T and T' are TS over AP such that (1) T has no terminal states, i.e., all paths of T are infinite (2) T' is finite. Then: $Traces(T) \subseteq Traces(T')$ iff $Traces_{fin}(T) \subseteq Traces_{fin}(T')$

" \implies ": holds for all transition systems, no matter whether (1) and (2) hold

Suppose that T and T' are TS over AP such that (1) T has no terminal states, i.e., all paths of T are infinite (2) T' is finite. Then: $Traces(T) \subseteq Traces(T')$ iff $Traces_{fin}(T) \subseteq Traces_{fin}(T')$

- " \implies ": holds for all transition systems
- "←": suppose that (1) and (2) hold and that (3) $Traces_{fin}(\mathcal{T}) \subseteq Traces_{fin}(\mathcal{T}')$ Show that $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$

Proof:

Proof: Pick some path $\pi = s_0 s_1 s_2 \dots$ in T and show that there exists a path

$$\pi' = t_0 t_1 t_2 \dots$$
 in \mathcal{T}'

such that $trace(\pi) = trace(\pi')$

finite TS **T'** paths from state **t**₀ (unfolded into a tree)

finite TS **T'** paths from state **t**₀ (unfolded into a tree)

finite until depth $\leq n$

finite TS T'paths from state t_0 (unfolded into a tree)

contains all path fragments with trace $A_0 A_1 \dots A_n$

1S2.5-33

finite until depth $\leq n$

IS2.5-TRACE-IM-FIN

Finite trace and trace inclusion

image-finiteness of $\mathcal{T}' = (S', Act, \rightarrow, S'_0, AP, L')$:

Finite trace and trace inclusion

image-finiteness of $\mathcal{T}' = (S', Act, \rightarrow, S'_0, AP, L')$:

• for each $A \in 2^{AP}$ and state $s \in S'$:

 $\{t \in Post(s) : L'(t) = A\}$ is finite

Finite trace and trace inclusion

image-finiteness of $\mathcal{T}' = (S', Act, \rightarrow, S'_0, AP, L')$:

• for each $A \in 2^{AP}$ and state $s \in S'$:

 $\{t \in Post(s) : L'(t) = A\}$ is finite

• for each $A \in 2^{AP}$: $\{s_0 \in S'_0 : L'(s_0) = A\}$ is finite

Whenever
$$Traces(\mathcal{T}) = Traces(\mathcal{T}')$$
 then
 $Traces_{fin}(\mathcal{T}) = Traces_{fin}(\mathcal{T}')$

Whenever
$$Traces(\mathcal{T}) = Traces(\mathcal{T}')$$
 then
 $Traces_{fin}(\mathcal{T}) = Traces_{fin}(\mathcal{T}')$

while the reverse direction does not hold in general (even not for finite transition systems)

Whenever
$$Traces(\mathcal{T}) = Traces(\mathcal{T}')$$
 then
 $Traces_{fin}(\mathcal{T}) = Traces_{fin}(\mathcal{T}')$

while the reverse direction does not hold in general (even not for finite transition systems)

Whenever
$$Traces(\mathcal{T}) = Traces(\mathcal{T}')$$
 then
 $Traces_{fin}(\mathcal{T}) = Traces_{fin}(\mathcal{T}')$

while the reverse direction does not hold in general (even not for finite transition systems)

finite trace equivalent, but *not* trace equivalent

Whenever
$$Traces(\mathcal{T}) = Traces(\mathcal{T}')$$
 then
 $Traces_{fin}(\mathcal{T}) = Traces_{fin}(\mathcal{T}')$

The reverse implication holds under additional assumptions, e.g.,

- if \mathcal{T} and \mathcal{T}' are finite and have no terminal states
- or, if T and T' are AP-deterministic

Overview

Introduction Modelling parallel systems **Linear Time Properties** state-based and linear time view definition of linear time properties invariants and safety liveness and fairness **Regular Properties** Linear Temporal Logic Computation-Tree Logic Equivalences and Abstraction

LF2.6-1

"liveness: something good will happen."

LF2.6-1

"liveness: something good will happen."

"event *a* will occur eventually"

"event *a* will occur eventually"

e.g., termination for sequential programs

"event *a* will occur eventually"

e.g., termination for sequential programs

"event *a* will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"event *a* will occur eventually"

e.g., termination for sequential programs

"event *a* will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"whenever event **b** occurs then event **a** will occur sometimes in the future"

"event *a* will occur eventually"

e.g., termination for sequential programs

"event a will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"whenever event **b** occurs then event **a** will occur sometimes in the future"

e.g., every waiting process enters eventually its critical section

• Each philosopher thinks infinitely often.

• Each philosopher thinks infinitely often.

liveness

• Each philosopher thinks infinitely often.

liveness

• Two philosophers next to each other never eat at the same time.

• Each philosopher thinks infinitely often.

liveness

• Two philosophers next to each other never eat at the same time.

• Each philosopher thinks infinitely often.

liveness

LF2.6-2

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before.

- LF2.6-2
- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before. safety

• Each philosopher thinks infinitely often.

liveness

LF2.6-2

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before. safety

• Whenever a philosopher eats then he will think some time afterwards.

• Each philosopher thinks infinitely often.

liveness

LF2.6-2

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before. safety

• Whenever a philosopher eats then he will think some time afterwards.

• Each philosopher thinks infinitely often.

liveness

LF2.6-2

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before.

safety

- Whenever a philosopher eats then he will think some time afterwards.
- Between two eating phases of philosopher *i* lies at least one eating phase of philosopher *i*+1.

• Each philosopher thinks infinitely often.

liveness

LF2.6-2

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before.

safety

safetv

- Whenever a philosopher eats then he will think some time afterwards.
- Between two eating phases of philosopher *i* lies at least one eating phase of philosopher *i*+1.

many different formal definitions of liveness have been suggested in the literature

many different formal definitions of liveness have been suggested in the literature

here: one just example for a formal definition of liveness

Definition of liveness properties

Let **E** be an LT property over **AP**, i.e., $\mathbf{E} \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over AP can be extended to an infinite word in E

Let **E** be an LT property over **AP**, i.e., $\mathbf{E} \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over AP can be extended to an infinite word in E, i.e., if

$$pref(E) = (2^{AP})^+$$

recall: **pref(E)** = set of all finite, nonempty prefixes of words in **E** Let **E** be an LT property over **AP**, i.e., $\mathbf{E} \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over *AP* can be extended to an infinite word in *E*, i.e., if

$$pref(E) = (2^{AP})^+$$

Examples:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often
- whenever a process has requested its critical section then it will eventually enter its critical section

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

• each process will eventually enter its critical section

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

• each process will eventually enter its critical section

$$E = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$$
$$\forall i \in \{1, \dots, n\} \exists k \ge 0. \ crit_i \in A_k$$

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

 $E = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$ $\forall i \in \{1, \dots, n\} \stackrel{\infty}{\exists} k \ge 0. \ crit_i \in A_k$

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{wait_i, crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{wait_i, crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

$$E = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$$

$$\forall i \in \{1, \dots, n\} \ \forall j \ge 0. \ wait_i \in A_j$$

$$\longrightarrow \exists k > j. \ crit_i \in A_k$$

Let **E** be an LT-property, i.e.,
$$\mathbf{E} \subseteq (2^{AP})^{\omega}$$

LF2.6-SAFETY

Let **E** be an LT-property, i.e.,
$$\mathbf{E} \subseteq (2^{AP})^{\omega}$$

E is a safety property
iff
$$\forall \sigma \in (2^{AP})^{\omega} \setminus E \exists A_0 A_1 \dots A_n \in pref(\sigma)$$
 s.t.
 $\{\sigma' \in E : A_0 A_1 \dots A_n \in pref(\sigma')\} = \emptyset$

LF2.6-SAFETY

Let **E** be an LT-property, i.e.,
$$\mathbf{E} \subseteq (2^{AP})^{\omega}$$

E is a safety property
iff
$$\forall \sigma \in (2^{AP})^{\omega} \setminus E \exists A_0 A_1 \dots A_n \in pref(\sigma)$$
 s.t.
 $\{\sigma' \in E : A_0 A_1 \dots A_n \in pref(\sigma')\} = \emptyset$

remind:

$$pref(\sigma) = \text{ set of all finite, nonempty prefixes of } \sigma$$
$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

LF2.6-SAFETY

Let **E** be an LT-property, i.e.,
$$\mathbf{E} \subseteq (2^{AP})^{\omega}$$

$$E \text{ is a safety property}$$
iff $\forall \sigma \in (2^{AP})^{\omega} \setminus E \exists A_0 A_1 \dots A_n \in pref(\sigma) \text{ s.t.}$

$$\{\sigma' \in E : A_0 A_1 \dots A_n \in pref(\sigma')\} = \emptyset$$
iff $cl(E) = E$

remind: $cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}$ $pref(\sigma) = \text{set of all finite, nonempty prefixes of } \sigma$ $pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$

Decomposition theorem

LF2.6-DECOMP-THM

```
For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.
E = SAFE \cap LIVE
```

```
For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.
E = SAFE \cap LIVE
```

Proof:

Proof: Let **SAFE** $\stackrel{\text{def}}{=}$ cl(E)

Proof: Let **SAFE** $\stackrel{\text{def}}{=}$ cl(E)

remind:
$$cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}$$

 $pref(\sigma) = \text{set of all finite, nonempty prefixes of } \sigma$
 $pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$

Proof: Let SAFE
$$\stackrel{\text{def}}{=} cl(E)$$

 $LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$

remind:
$$cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}$$

 $pref(\sigma) = \text{set of all finite, nonempty prefixes of } \sigma$
 $pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$

- *Proof:* Let *SAFE* $\stackrel{\text{def}}{=}$ cl(E) *LIVE* $\stackrel{\text{def}}{=}$ $E \cup ((2^{AP})^{\omega} \setminus cl(E))$ Show that:
- $E = SAFE \cap LIVE$
- **SAFE** is a safety property
- *LIVE* is a liveness property

- *Proof:* Let *SAFE* $\stackrel{\text{def}}{=}$ cl(E) *LIVE* $\stackrel{\text{def}}{=}$ $E \cup ((2^{AP})^{\omega} \setminus cl(E))$ Show that:
- $E = SAFE \cap LIVE \quad \checkmark$
- **SAFE** is a safety property
- *LIVE* is a liveness property

- *Proof:* Let *SAFE* $\stackrel{\text{def}}{=}$ cl(E) *LIVE* $\stackrel{\text{def}}{=}$ $E \cup ((2^{AP})^{\omega} \setminus cl(E))$ Show that:
- $E = SAFE \cap LIVE \quad \checkmark$
- SAFE is a safety property as cl(SAFE) = SAFE
- *LIVE* is a liveness property

- *Proof:* Let *SAFE* $\stackrel{\text{def}}{=} cl(E)$ *LIVE* $\stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$ Show that:
- $E = SAFE \cap LIVE \quad \sqrt{}$
- SAFE is a safety property as cl(SAFE) = SAFE
- LIVE is a liveness property, i.e., $pref(LIVE) = (2^{AP})^+$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

• $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

 $pref(E) = (2^{AP})^+$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$
$$\implies cl(E) = (2^{AP})^{\omega}$$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$
$$\implies cl(E) = (2^{AP})^{\omega}$$

If E is a safety property too, then cl(E) = E.

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$
$$\implies cl(E) = (2^{AP})^{\omega}$$

If **E** is a safety property too, then cl(E) = E. Hence $E = cl(E) = (2^{AP})^{\omega}$.