Why Schema Refinement?

- We have learnt the advantages of relational tables …
- … but how to decide on the relational schema?
- At one extreme, store everything in single table
 - Huge redundancy
 - Leads to anomalies!
- We need to break the information into several tables
 - How many tables, and with what structures?
 - Having too many tables can also cause problems
 - E.g., performance, difficulty in checking constraints

Sample Relation

Hourly_Emps (ssn, name, lot, rating, wage, hrs_worked)

- Denote relation schema by attribute initial: SNLRWH
- Constraints (dependencies)
 - **ssn is the key:** S → SNLRWH
 - **rating determines wage:** R → W
 - E.g., worker with rating A receives 20$/hr

Anomalies

- Problems due to R → W:
 - **Update anomaly:** Change value of W only in a tuple – dependency violation
 - **Insertion anomaly:** How to insert employee if we don’t know hourly wage for that rating?
 - **Deletion anomaly:** If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Removing Anomalies

Hourly_Emps2

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Wages

<table>
<thead>
<tr>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Create 2 smaller tables!

Dealing with Redundancy

- **Redundancy** is at the root of redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular functional dependencies, can be used to identify redundancy
- Main refinement technique: **decomposition** (replacing ABCD with, say, AB and BCD, or ACD and ABD)
- Decomposition should be used judiciously:
 - Decomposition may sometimes affect performance. Why?
 - What problems (if any) does decomposition cause?
 - Incorrect data
 - Loss of dependencies
Functional Dependencies (FDs)
- A functional dependency \(X \rightarrow Y \) holds over relation \(R \) if for every instance \(r \) of \(R \), \(\forall t_1, t_2 \in r \), \(\pi_X(t_1) = \pi_X(t_2) \) implies \(\pi_Y(t_1) = \pi_Y(t_2) \).
- Given two tuples in \(r \), if the \(X \) values agree, \(Y \) values must also agree.
- FD is a statement about all allowable relations.
- Identified based on semantics of application (business logic).
- Given an instance \(r \) of \(R \), we can check if it violates some FD \(f \), but we cannot tell if \(f \) holds over \(R \)!

FDs and Keys
- FDs are a generalization of keys.
- A key uniquely identifies all attribute values in a tuple.
- That is a particular case of FD …
- … but not all FDs must determine ALL attributes.
- \(K \) is a key for \(R \) means that \(K \rightarrow R \)
- However, \(K \rightarrow R \) does not require \(K \) to be minimal!
- \(K \) can be a superkey as well.

Reasoning About FDs
- Given FD set \(\mathcal{F} \), we can usually infer additional FDs:
 - \(\mathcal{F}^+ = \text{closure of } \mathcal{F} \) is the set of all FDs that are implied by \(\mathcal{F} \)
 - Armstrong's Axioms (\(X, Y, Z \) are sets of attributes):
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- These are sound and complete inference rules for FDs!

Reasoning About FDs (cont'd)
- Additional rules
 - Not necessary, but helpful
- Union and decomposition (splitting)
 - \(X \rightarrow Y \) and \(X \rightarrow Z \Rightarrow X \rightarrow YZ \)
 - \(X \rightarrow YZ \Rightarrow X \rightarrow Y \) and \(X \rightarrow Z \)

An Example of FD Inference
- Contracts(\(cid, sid, jid, did, pid, qty, value \)), and:
 - Contract id, supplier, project, department, part
 - C is the key: \(C \rightarrow \text{CSJDPQV} \)
 - Project purchases each part using single contract: \(JP \rightarrow C \)
 - Dept purchases at most one part from a supplier: \(SD \rightarrow P \)
- \(JP \rightarrow C, C \rightarrow \text{CSJDPQV} \) imply \(JP \rightarrow \text{CSJDPQV} \)
- \(SD \rightarrow P \) implies \(SDJ \rightarrow JP \)
- \(SDJ \rightarrow JP, JP \rightarrow \text{CSJDPQV} \) imply \(SDJ \rightarrow \text{CSJDPQV} \)

Attribute Closure
- Attribute closure of \(X \) (denoted \(X^+ \)) wrt FD set \(\mathcal{F} \):
 - Set of all attributes \(A \) such that \(X \rightarrow A \) is in \(\mathcal{F}^+ \)
 - Set of all attributes that can be determined starting from attributes in \(X \) and using FDs in \(\mathcal{F} \)
- Apply split rule such that all FDs have single attr in RHS
 - \(X = X \)
 - \(X \rightarrow X^+ \)
 - Search all FDs in \(F \) with LHS completely included in \(X^+ \)
 - Add RHS of those FDs to \(X^+ \)
 - Until \(Y = X \)
Verifying if given FD in FD-set closure

- Computing the closure of a set of FDs can be expensive
 - Size of closure is exponential in number of attributes!

- But if we just want to check if a given FD \(X \rightarrow Y \) is in the closure of a set of FDs \(F \):
 - Can be done efficiently without need to know \(F^+ \)
 - Compute \(X^+ \) wrt \(F \)
 - Check if \(Y \) is in \(X^+ \)

Verifying if attribute set is a key

- Key verification can also be done with attribute closure

- To verify if \(X \) is a key, two conditions needed:
 - \(X^+ = R \)
 - \(X \) is minimal

- How to test minimality
 - Removing an attribute from \(X \) results in \(X' \) such that \(X'^+ \neq R \)