Normal Forms. BCNF and 3NF Decompositions

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke
Decomposition of a Relation Schema

- A **decomposition** of R replaces it by two or more relations
 - Each new relation schema contains a subset of the attributes of R
 - Every attribute of R appears in one of the new relations
 - E.g., SNLRWH decomposed into SNLRH and RW

- Decompositions should be used only when needed
 - Cost of join will be incurred at query time

- Problems may arise with (improper) decompositions
 - Reconstruction of initial relation may not be possible
 - Dependencies cannot be checked on smaller tables
Lossless Join Decompositions

- Decomposition of R into X and Y is **lossless-join** if:
 \[\pi_X (r) \bowtie \pi_Y (r) = r \]

- It is always true that $r \subseteq \pi_X (r) \bowtie \pi_Y (r)$
 - In general, the other direction does not hold!
 - If it does, the decomposition is lossless-join.

- *It is essential that all decompositions used to deal with redundancy be lossless!*
Incorrect Decomposition

Natural Join

A B C
1 2 3
4 5 6
7 2 8

B C
2 3
5 6
2 8

A B C
1 2 3
4 5 6
7 2 8
1 2 8
7 2 3
Condition for Lossless-join

- The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
 - X ∩ Y → X, or
 - X ∩ Y → Y

- In particular, the decomposition of R into UV and R - V is lossless-join if U → V holds over R.
Dependency Preserving Decomposition

- Consider CSJDPQV, C is key, JP → C and SD → P.
- Consider decomposition: CSJQDV and SDP
- Problem: Checking JP → C requires a join!

Dependency preserving decomposition (Intuitive):
- If R is decomposed into X and Y, and we enforce the FDs that hold on X, Y then all FDs that were given to hold on R must also hold.

Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X (denoted \(F_X \)) is the set of FDs \(U \rightarrow V \) in \(F^+ \) (closure of F) such that U,V are in X.
Dependency Preserving Decompositions

- Decomposition of R into X and Y is *dependency preserving* if
\[(F_X \cup F_Y)^+ = F^+\]

- Dependencies that can be checked in X without considering Y, and in Y without considering X, together represent all dependencies in \(F^+\)

- Dependency preserving does not imply lossless join:
 - ABC, \(A \rightarrow B\), decomposed into AB and BC.
Normal Forms

- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized.

- Role of FDs in detecting redundancy:
 - Consider a relation R with attributes AB
 - No FDs hold: There is no redundancy
 - Given A → B:
 - Several tuples could have the same A value
 - If so, they’ll all have the same B value!
Boyce-Codd Normal Form (BCNF)

- Relation R with FDs F is in BCNF if, for all $X \rightarrow A$ in F^+
 - $A \subseteq X$ (called a trivial FD), or
 - X contains a key for R

- The only non-trivial FDs allowed are key constraints

- BCNF guarantees no anomalies occur
Decomposition into BCNF

Consider relation R with FDs F. If X → Y violates BCNF, decompose R into R - Y and XY.

Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.

e.g., CSJDPQV, key C, JP → C, SD → P, J → S

To deal with SD → P, decompose into SDP, CSJLQV.

To deal with J → S, decompose CSJLQV into JS and CJDQV
Decomposition into BCNF

- In general, several dependencies may cause violation of BCNF. The order in which we “deal with” them could lead to very different sets of relations!
BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF
 - e.g., ABC, AB → C, C → A
 - Can’t decompose while preserving first FD; not in BCNF
Third Normal Form (3NF)

- Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+
 - $A \subseteq X$ (called a trivial FD), or
 - X contains a key for R, or
 - A is part of some key for R (A here is a single attribute)

- *Minimality* of a key is crucial in third condition above!

- If R is in BCNF, it is also in 3NF.

- If R is in 3NF, some redundancy is possible
 - compromise used when BCNF not achievable
 - e.g., no "good" decomposition, or performance considerations

- *Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.*
Decomposition into 3NF

- Lossless join decomposition algorithm also applies to 3NF
- To ensure dependency preservation, one idea:
 - If \(X \rightarrow Y \) is not preserved, add relation \(XY \)
 - Refinement: Instead of the given set of FDs \(F \), use a \textit{minimal cover for} \(F \)

Example: \(CSJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S \)
- Choose \(SD \rightarrow P \), result is \(SDP \) and \(CSJDPQV \)
- Choose \(J \rightarrow S \), result is \(JS \) and \(CJDQV \), all 3NF
- Add \(CJP \) relation
Summary of Schema Refinement

- **BCNF**: relation is free of FD redundancies
 - Having only BCNF relations is desirable
 - If relation is not in BCNF, it can be decomposed to BCNF
 - Lossless join property guaranteed
 - But some FD may be lost

- **3NF is a relaxation of BCNF**
 - Guarantees both lossless join and FD preservation

- **Decompositions may lead to performance loss**
 - *performance requirements* must be considered when using decomposition