Suppose you are given a relation R with four attributes $A B C D$ and the following set of FDs:
a. Identify the candidate key(s) for R
$F=\{A \rightarrow B, B \rightarrow C, D->B\}$.
$\mathrm{K}=$?
$\mathrm{F}+=$?
b. Is R in $B C N F$? Is R in 3NF? If it is not in BCNF, decompose to $B C N F$.

\mathbf{X}	
A	A,B,C
B	B, C
C	C
D	D,B,C
AB	A,B,C
AC	A,C,B
AD	A,D,B,C
BC	B,C
BD	B,D,C
CD	C,D,B
ABC	A,B,C
ABD	
ACD	
BCD	B, C, D

$K=A D$
$F+=\{A \rightarrow B, B \rightarrow C, D->B, A->C, D->C\}$
BCNF?
BCNF Violation?
3NF Violation?

A->B	YES	YES
B->C	YES	YES
D->B	YES	YES
A $>$ C	YES	YES
D->C	YES	YES

NOT BCNF and NOT 3NF

If not BCNF, decompose.

Case 1:

$F x=\{A->B\}$
Attribute Closures for ACD

$\begin{array}{lll}D & D, C & F=\{A->C\} \\ A C & A, C & \\ A D & A, D, C & \\ C D & C, D & \end{array}$
Case 2:

