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Abstract—This paper proposes and evaluates an evolution-
ary multiobjective optimization algorithm (EMOA) that uses a
new quality indicator, called the prospect indicator, for parent
selection and environmental selection operators. The prospect
indicator measures the potential of each individual to reproduce
offspring that dominate itself and spread out in the objective
space. The prospect indicator allows the proposed EMOA, PIBEA
(Prospect Indicator Based Evolutionary Algorithm), to (1) main-
tain sufficient selection pressure, even in high dimensional MOPs,
thereby improving convergence velocity toward the Pareto front,
and (2) diversify individuals, even in high dimensional MOPs,
thereby distributing individuals uniformly in the objective space.
Experimental results show that PIBEA effectively performs its
operators in high dimensional problems and outperforms three
existing well-known EMOAs, NSGA-II, SPEA2 and AbYSS, in
terms of convergence velocity, diversity of individuals, coverage
of the Pareto front and performance stability.

I. INTRODUCTION

This paper proposes and evaluates a new evolutionary algo-
rithm to solve multiobjective optimization problems (MOPs).
In general, an MOP is formally described as follows:

minimize F (~x) = [f1(~x), f2(~x), · · · , fm(~x)]T ∈ O
subject to ~x = [x1, x2, · · · , xn]T ∈ S

}
(1)

O denotes the objective space. S denotes the decision vari-
able space. ~x ∈ S denotes a vector of n decision variables It is
called an individual in evolutionary multiobjective optimiza-
tion algorithms (EMOAs). A function vector, F : Rn → Rm,
consists of m real-value objective functions that map an in-
dividual (~x) to m objective values (f1(~x), f2(~x), · · · , fm(~x)).
When m ≥ 3, an MOP is called high-dimensional [1]. The
goal of an EMOA is to find an individual(s) that minimize(s)
objective values.

In an MOP, there rarely exists a single solution that is
optimum with respect to all objectives because objectives often
conflict with each other. Therefore, EMOAs often seek the
optimal trade-off individuals, or Pareto-optimal individuals,
by balancing the trade-offs among conflicting objectives. An
EMOA evolves a population of individuals via genetic opera-
tors (e.g., selection, crossover and mutation operators) through
generations toward the Pareto-optimal front, or simply Pareto
front, which is a collection of Pareto-optimal solutions.

The notion of dominance plays an important role for
EMOAs to seek Pareto optimality. An individual ~x is said to
dominate another individual ~y (denoted by ~x � ~y) iif fi(~x) ≤
fi(~y) ∀i = 1, · · · ,m and fi(~x) < fi(~y) ∃i = 1, · · · ,m.
EMOAs often rank individuals based on the dominance re-
lationships among them and exploit their ranks in selection
operators. This process is called dominance ranking [2].

A research trend in the design space of EMOAs is to
adopt indicator-based selection operators based on perfor-
mance/quality indicators that augment or replace dominance
ranking [3]. For example, the hypervolume indicator have been
used in several EMOAs’ selection operators [4]–[8].

This paper proposes and evaluates an EMOA that leverages
a new quality indicator called prospect indicator. The prospect
indicator measures the potential of each individual to repro-
duce offspring that dominate itself and spread out in the objec-
tive space. The proposed EMOA, PIBEA (Prospect Indicator
Based Evolutionary Algorithm), uses the prospect indicator in
its parent selection operator, which chooses individuals from
the population to reproduce offspring, as well as its envi-
ronmental selection operator, which chooses individuals for
the next generation from the union of the current-generation
individuals and their offspring. The prospect indicator allows
the two selection operators to (1) maintain sufficient selection
pressure, even in high dimensional MOPs, thereby improving
convergence velocity toward the Pareto front, and (2) diversify
individuals, even in high dimensional MOPs, thereby distribut-
ing individuals uniformly in the objective space.

PIBEA also performs adaptive mutation rate adjustment. It
increases the mutation rate to encourage individuals to explore
the decision variable space when they have not converged to
a part(s) of the Pareto front. However, when they have, it
decreases the mutation rate to exploit them and cover a wider
range of the front. The proposed operator examines the entropy
of individuals to estimate their proximity to the Pareto front.

Experimental results show that PIBEA effectively performs
its parent selection, environmental selection and adaptive mu-
tation rate adjustment operators in high dimensional MOPs
and outperforms three existing well-known EMOAs, NSGA-
II [9], SPEA2 [10] and AbYSS [11], in terms of convergence
velocity to the Pareto front, diversity of individuals, coverage
of the Pareto front and performance stability.



II. RELATED WORK

The dominance ranking operator was first proposed in
NSGA [2]. NSGA-II extends NSGA with faster dominance
ranking, diversity preservation using crowding distance and
a (µ + λ)-elitism in environmental selection [12]. Crowding
distance measures the density of each individual and its
neighbors in the objective space by computing the Euclidean
distances between the individual and its direct neighbors on
an objective by objective basis. PIBEA is similar to NSGA-
II in that it follows NSGA-II’s algorithmic structure (See
Section III-A.); however, it extends NSGA-II’s selection oper-
ators with the prospect indicator. NSGA-II does not consider
adaptive mutation rate adjustment as PIBEA does.

SPEA enhances NSGA-II’s selection operators with a new
fitness assignment method and the notion of elite archiv-
ing [13]. SPEA2 further extends SPEA’s selection operators
with an improved fitness assignment method [10]. It also
introduces a new diversity preservation method. It examines
the density of each individual and its neighbors in the objective
space with a k-nearest neighbor algorithm. PIBEA is similar
to SPEA and SPEA2 in that it provides enhanced selection
operators atop NSGA-II’s dominance ranking. However, its
enhancement strategy is very different from SPEA’s and
SPEA2’s strategies. PIBEA uses the prospect indicator for both
parent selection and diversity preservation while SPEA/SPEA2
uses two different methods for parent selection and diversity
preservation. SPEA and SPEA2 do not consider adaptive
mutation rate adjustment.

Adaptive mutation adjustment was first proposed in [14],
and it has been used in [15], [16], among others. In [14], [15],
the mutation rate is adjusted based on the fitness values of the
current-generartion individuals. In [16], the mutation rate is
adjusted based on a feedback from the previous generation.
For instance, if mutation has limited effects on convergence
in the previous generation, the mutation rate is increased by a
fixed amount. PIBEA uses an entropy-based diversity metric
to decide whether and how much the mutation rate is adjusted.

The hypervolume indicator [4]–[8] is similar to the prospect
indicator in that both are volume-based indicators. It measures
the volume of a hypercube that each individual dominates in
the objective space. The hypercube is formed with the individ-
ual and a reference point representing the highest (or worst)
possible objective values. In contrast, the prospect indicator
measures the volume of a hypercube in the opposite way.
It considers a hypercube that dominates an individual. The
hypercube is formed with the individual and the Utopian point,
which represents the lowest (or best) possible objective values.
The Utopian point is the (0, 0) point in a two dimensional
objective space. While the hypervolume indicator requires a
carefully chosen reference point depending on an MOP to
solve [8], [17], it is always trivial to choose the Utopian point
for the prospect indicator regardless of an MOP to solve.

III. PIBEA
This section describes PIBIA’s algorithmic structure (Sec-

tion III-A) and its operators (Sections III-B to III-D).

A. Algorithmic Structure

Algorithm 1 shows PIBEA’s algorithmic structure, which
extends NSGA-II’s.

Algorithm 1 The Algorithmic Structure of PIBEA
1: g = 0
2: Pg = initializePopulation(N )
3: Pm = Pmmax

4: while g < MAX-GENERATION do
5: Og = ∅
6: while |Og| < N do do
7: p1 = prospectBasedParentSelection(Pg)
8: p2 = prospectBasedParentSelection(Pg)
9: if random() ≤ Pc then

10: {o1 , o2} = crossover(p1 , p2 )
11: if random() ≤ Pm then
12: o1 = mutation(o1 )
13: end if
14: if random() ≤ Pm then
15: o2 = mutation(o2 )
16: end if
17: Og = {o1 , o2} ∪ Og

18: end if
19: end while
20: Rg = Pg ∪ Og

21: Pg+1 = prospectBasedEnvironmentalSelection(Rg)
22: E = computeEntropy(Pg+1)
23: Pm = updateMutationRate(E)
24: g = g + 1

25: end while

In the 0-th generation, N individuals are randomly gener-
ated as the initial population (Line 2). The mutation rate (Pm)
is initially set to be the maximum value (Pmmax ). In each
generation (g), a pair of individuals, called parents (p1 and
p2), are chosen from the current population with the proposed
parent selection operator, which uses the prospect indicator
(prospectBasedParentSelection(), Lines 7-8).

With the crossover rate Pc, two parents reproduce two off-
spring with the SBX (self-adaptive simulated binary crossover)
operator [18] (Lines 10). Each offspring performs polynomial
mutation [9] with the probability Pm (Lines 11 to 16). The
selection, crossover and mutation operations are performed
repeatedly on Pg to produce N offspring. The offspring (Og)
are combined with the population Pg to form Rg , which is a
pool of candidates for the next-generation individuals.

Environmental selection follows reproduction.
N individuals are selected from 2N individuals
in Rg as the next-generation population Pg+1

(prospectBasedEnvironmentalSelection(), Line
21). Environmental selection performs a (N +N)-elitism.

Finally, the mutation rate is updated by computing the
entropy of the next-generation individuals (Lines 22 and 23).

B. Prospect Indicator Based Parent Selection

Algorithm 2 shows how the proposed parent selection op-
erator (prospectBaseParentSelection() in Algorithm 1)
works with the prospect indicator. It is designed as a variant of



binary tournament selection. It randomly draws two individu-
als from the current population P (Lines 1 and 2), compares
them based on the dominance relationship between them and
chooses a superior one as a parent (Lines 5 to 8). Note that
p1 � p2 means p1 dominates p2 as described in Section I

If two individuals (p1 and p2) do not dominate each other
and are placed at the same rank, the proposed operator chooses
one of them as a parent with the prospect indicator. Lines 10
and 11 compute the prospect indicator values of p1 and p2
(IP (p1) and IP (p2)), and Line 12 compares the two values.
The proposed operator chooses the one with a higher IP (Lines
12 to 16).

The prospect indicator value of individual i (IP (i)) is
computed as follows:

IP (i) = V (Rrank(i))− V (Rrank(i) \ {i}) (2)

rank(i) denotes the value of a rank that i is placed at.
Rrank(i) denotes a set of individuals that are placed at the
same rank as i. V (R) denotes the volume of a hypercube that
dominates the individuals in R in the objective space. It is
calculated with the Lebesgue measure as follows.

V (R) = Λ

(⋃
x∈R
{x′|xu � x′ � x}

)
(3)

xu denotes the Utopian point, and Λ denotes the Lebesgue
measure.

The prospect indicator valuates the potential of an individual
to reproduce offspring that dominate itself. Figure 1 shows an
example measurement of the prospect indicator in a two di-
mensional objective space. This example considers three non-
dominated individuals: a, b and c (Rrank(a) = Rrank(b) =
Rrank(c) = {a, b, c}). The Utopian point is (0, 0). IP (b) is a
shaded area (i.e., V (Rrank(b))− V (Rrank(b) \ {b})). It is the
area where individual b can exclusively reproduce its offspring
by evolving itself.

Algorithm 2 prospectBaseParentSelection()

Require: P|P 6= ∅
1: p1 = randomSelection(P)
2: p2 = randomSelection(P)
3: if p1 = p2 then
4: return p1
5: else if p1 � p2 then
6: return p1
7: else if p2 � p1 then
8: return p2
9: else

10: IP (p1) = prospectIndicator(p1, Rrank(p1))
11: IP (p2) = prospectIndicator(p2, Rrank(p2))
12: if IP (p1) > IP (p2) then
13: return p1
14: else
15: return p2
16: end if
17: end if

Algorithm 3 prospectIndicator()

Require: p,P|P 6= ∅
1: v = 1
2: for each o ∈ O do
3: s = ∅
4: for each n ∈ P do
5: if fo(n) < fo(p) then
6: if s = ∅ then
7: s = n
8: else if fo(s) < fo(n) then
9: s = n

10: end if
11: end if
12: end for
13: v = v × |fo(p)− fo(s)|
14: end for
15: return v

f1

f2

a

b

c

Fig. 1: An Example Measurement of Prospect Indicator

Algorithm 3 shows pseudo code to compute IP (p). P
denotes a set of individuals that are placed at the same rank
as individual p. For each objective (o), the distance between
p and s is measured to compute IP (p), where s denotes an
individual that yields the closest yet superior objective value.

C. Prospect Indicator Based Environmental Selection

Algorithm 4 shows how the proposed environmental selec-
tion operator (prospectBaseEnvironmentalSelection()
in Algorithm 1) works with the prospect indicator. In the
environmental selection process, N individuals are selected
from 2N individuals in Rg as the next-generation population
(Pg+1). The individuals inRg are selected and moved to Pg+1

on a rank by rank basis, starting with the top rank (Line 2
to 8). In Line 3, nonDominatedIndividualSelection()
determines the dominance relationships among a given set of
individuals and chooses the non-dominated (i.e., top-ranked)
ones asRND. Algorithm 5 shows pseudo code of this operator.

If the number of individuals in Pg+1 ∪ RND is less than
N , RND moves to Pg+1. Otherwise, a subset of RND moves
to Pg+1. The subset is selected with subsetSelection()

(Line 5). Algorithm 6 shows how this operator works with the
prospect indicator. It sorts the individuals in RND from the
ones with higher IP values to the ones with lower IP values
(Line 4). The individuals with higher IP values have higher
chances to be selected to Pg+1 (Lines 6 to 9)

The prospect indicator indicates how distant each individual
is to its direct neighbors in the objective space. For example,
in Figure 1, IP (b) indicates how distant individual b is to



individuals a and c. A higher IP (b) means that b is more
distant to a and c, and a lower IP (b) means that b is closer to
a and c. Therefore, the prospect indicator valuates the potential
of an individual to reproduce offspring that spread out in the
objective space and contribute to the population’s diversity.

Algorithm 4 prospectBasedEnvironmentalSelection()

Require: Rg|Rg 6= ∅
1: Pg+1 = ∅
2: while |Pg+1| < N do
3: RND = nonDominatedIndividualSelection(Rg \ Pg+1)
4: if |Pg+1|+ |RND| > N then
5: RND = subsetSelection(RND , N − |Pg+1|)
6: end if
7: Pg+1 = Pg+1 ∪RND

8: end while
9: return Pg+1

Algorithm 5 nonDominatedIndividualSelection()
Require: P|P 6= ∅

1: P ′ = ∅
2: for each p ∈ P ∧ p /∈ P ′ do
3: P ′ = P ′ ∪ {p}
4: for each q ∈ P ′ ∧ q 6= p do
5: if p � q then
6: P ′ = P ′ \ {q}
7: else if q � p then
8: P ′ = P ′ \ {p}
9: end if

10: end for
11: end for
12: return P ′

Algorithm 6 subsetSelection()
Require: P, T |P 6= ∅

1: for each p ∈ P do
2: IP (p) = prospectIndicator(p,P)
3: end for
4: PS = sort(P , Ip)
5: R = ∅
6: for each p ∈ PS ∧ |R| < T do
7: R = R∪ p
8: end for
9: return R

D. Adaptive Mutation Rate Adjustment

The proposed mutation rate adjustment operator is designed
to balance exploration and exploitation in an optimization
process. It increases the mutation rate (pm in Algorithm 1) to
encourage individuals to explore the decision variable space
when they have not converged enough toward the Pareto front.
This aims to increase convergence velocity by placing a higher
priority on exploration. On the contrary, when individuals
have not converged enough to the Pareto front, the proposed
operator decreases the mutation rate to exploit them and
cover a wider range of the front. This aims to improve the

diversity of individuals and stabilize convergence with limited
performance fluctuations across generations.

The proposed operator examines the entropy of individuals
in the objective space in order to estimate their proximity to the
Pareto front. It decreases the mutation rate when the entropy
increases based on the observation that randomly-generated
individuals are disordered in the objective space at the first
generation and they become more ordered through generations.

The entropy of individuals is computed with hypercubes
that comprise the objective space. As an example in Figure 2
shows, the objective space is bounded by the maximum and
minimum objective values that individuals yield. Then, it is
divided to hypercubes. Figure 2 shows six individuals in
the three dimensional objective space that consists of eight
hypercubes.

3rd objective 2nd objective

1st objective individuals

A

B
C

D
E

F

Fig. 2: An Example Hypercube

The entropy of individuals (H) is computed as:

H = −
∑
i∈C

P (i) log2(P (i)) (4)

where

P (i) =
ni∑
i∈C ni

. (5)

C denotes the set of hypercubes in the objective space. P (i)
denotes the probability that individuals exist in a hypercube
i. ni denotes the number of individuals in a hypercube i. In
Figure 2,

∑
i∈C ni = 6 and C = 8.

Once entropy (H) is obtained, it is normalized as follows:

Ho =
H

Hmax
=

H

log2 |C|
(6)

The mutation rate m is adjusted with Ho as follow.

Pm = Pmmax ×
√
1− (1−Ho)2 (7)

Pmmax is the maximum mutation rate.

IV. EXPERIMENTAL RESULTS

This section evaluates PIBES with 45 MOPs that are de-
rived from three standard test problems: DTLZ1, DTLZ3 and
DTLZ7 [19] with a varying number of objectives (m, three
to nine) and decision variables (n, 12 to 24). This section
also compares PIBES with three existing EMOAs: NSGA-II,
SPEA2 and AbYSS. AbYSS is designed to be a best-of-breed



algorithm that integrates the operators in NSGAII, SPEA2
and PAES [20]: crowding distance in NSGA-II, the initial
individual selection with density estimation in SPEA2 and elite
archiving in PAES. AbYSS also incorporates the scatter search
template [21], which enables scatter search for the local search
and diversification purposes.

TABLE I: Parameter Setup

Parameter value

Maximum Number of Generations 250
Population Size 100
SPEA2 and AbYSS External Archive Size 100
AbYSS Reference Sets Size 10/10
AbYSS Improvement Method Iteration 5
NSGA-II’s and SPEA2’s Crossover Rate 0.9
Crossover Rate (Pc) 0.9
Crossover Operator SBX
Crossover Distribution Index (ηc) 20
NSGA-II’s and SPEA2’s Mutation Rate 1/(# of decision variables)
PIBEA’s Maximum Mutation Rate (mmax) 1/(# of decision variables)
Mutation Operator Polynomial Mutation
Mutation Distribution Index (ηm) 20
Size of VGD moving window (w) 10

NSGA-II, SPEA2 and AbYSS were configured as described
in [9], [10] and [11], respectively. All experiments were
conducted with jMetal [22]. Each experimental result is the
average of 20 independent results.

A. Performance Metrics

This paper uses the following four evaluation metrics.
• Generational distance (GD): measures the average dis-

tance from non-dominated individuals toward the Pareto-
optimal front [23].

• Extend (EX): measures the coverage of non-dominated
individuals in the objective space [9].

• Spread (SP): measures the distribution of non-dominated
individuals in the objective space [11].

• Variance of Generational distance (VGD): is the variance
of GD values in the last w generations (Table I). It mea-
sures the stability of GD performance that non-dominated
individuals yield. A large VGD indicates greater fluctua-
tion in the GD performance

B. Convergence

This section discusses the convergence of individuals with
the GD metric. Table II shows the results from DTLZ1
problem after 250 generations. The lower GD value indicate
that the non-dominated individuals are closer to the Pareto-
optimal front; thus, lower is better. The first and second
columns of the tables show the number of objectives (m) and
decision variables (n) used in experiments, respectively. Bold
number represents the best results among four algorithms.
The result of GD shows that non-dominated individuals from
PIBEA are closers to Pareto-optimal front than that from the
other algorithms in every combination of number of objectives
and decision variables. Prospect based parent selection and
prospect based environmental selection allow PIBEA to find
better non-dominated individuals, in term of closeness to
Pareto-optimal front.

TABLE II: GD Results with DTLZ1

m n PIBEA SPEA2 NSGA-II AbYSS

3

12 5.3355E-02 9.0700E-01 9.8983E-02 3.0058E+00
15 6.3209E-02 4.8432E-01 4.0401E-01 4.3580E+00
18 8.0557E-02 3.3287E-01 8.4416E-01 5.1871E+00
21 1.7821E-01 1.3229E+00 1.1248E+00 7.4520E+00
24 3.0425E-01 1.7413E+00 9.6690E-01 1.0029E+01

6

12 5.9074E-02 8.9780E+00 8.0647E+00 3.7546E+00
15 2.5001E-01 1.1386E+01 1.2785E+01 6.2831E+00
18 3.2716E-01 1.6268E+01 1.4880E+01 7.8906E+00
21 4.3740E-01 1.7996E+01 2.0922E+01 9.9878E+00
24 5.0563E-01 2.4015E+01 2.1039E+01 1.3562E+01

9

12 4.9282E-02 1.0190E+01 1.3020E+01 2.5674E+00
15 9.1175E-02 1.6761E+01 2.6484E+01 5.5819E+00
18 2.5214E-01 2.8280E+01 3.7333E+01 8.4386E+00
21 3.6007E-01 2.8424E+01 3.8749E+01 1.0473E+01
24 1.1466E+00 4.2360E+01 3.7094E+01 1.2496E+01

TABLE III: GD Results with DTLZ3

m n PIBEA SPEA2 NSGA-II AbYSS

3

12 8.5373E-02 5.1257E-01 1.0775E-01 3.0043E+00
15 9.7620E-02 1.2090E+00 2.5584E-01 4.2776E+00
18 1.4062E-01 2.1203E+00 4.3341E-01 1.0132E+01
21 3.6745E-01 2.4634E+00 6.8791E-01 1.2144E+01
24 2.6552E-01 1.5780E+00 1.2621E+00 1.3090E+01

6

12 1.1397E-01 8.2864E+00 7.9889E+00 5.7849E+00
15 4.3240E-01 1.1728E+01 1.0807E+01 8.5492E+00
18 3.3532E-01 1.5359E+01 1.4189E+01 1.0961E+01
21 4.4475E-01 2.0274E+01 1.6232E+01 1.5244E+01
24 1.1624E+00 2.1929E+01 1.9737E+01 1.7206E+01

9

12 9.0554E-02 7.8765E+00 7.8911E+00 2.6630E+00
15 1.0764E-01 1.6385E+01 1.3182E+01 6.0813E+00
18 3.3427E-01 2.0609E+01 1.7826E+01 1.1743E+01
21 4.6355E-01 2.6850E+01 2.7159E+01 1.2875E+01
24 7.5107E-01 3.0623E+01 2.7626E+01 1.6836E+01

Fig. 4a shows the value of GD with respect to the number
of generations. In the figure, the number of objectives is three
and the number of decision variables is 12. The figure shows
that all four algorithms can improve GD and the value of
GD to a particular value; however, PIBEA can improve the
non-dominated individuals faster than the other algorithms
which can be observed from steeper slop in the first fifty
generations. NSGA-II and SPEA2 have similar performance
while AbYSS is the worse one. Fig. 4b shows the value of
GD when the number of objectives is increased to nine and
the number of decision variables is increased to 24. In this
figure, only PIBEA can improve the value of GD while the
other algorithms cannot. PIBEA can find solutions faster for
simple problem, i.e., with three objectives, and allow GD to
converge in complicated problem, i.e., with nine objectives,
while the other cannot.

Table III shows the GD results from DTLZ3 problem. Even
though, DTLZ3 problem is harder than DTLZ1; however, the
same result as from DTLZ1 can be observed.

Table III shows the GD results from DTLZ7 problem. Even
though, DTLZ7 problem is harder than DTLZ1 and DTLZ3;
however, the similar result as from DTLZ1 and DTLZ3 can
be observed. In particular, PIBEA can find better solutions in
most of configurations, except when the number of objectives
is 9 and the number of decision variables are 12, 18 and 24.
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Fig. 3: The Pareto Front Shapes of DTLZ1, DTLZ3 and DTLZ7 with three Objectives

(a) 3 Objectives and 12 Decision Variables (b) 9 Objectives and 24 Decision Variables

Fig. 4: GD Transition with DTLZ1

TABLE IV: GD Results with DTLZ7

m n PIBEA SPEA2 NSGA-II AbYSS

3

12 1.3692E-01 1.3692E-01 1.3692E-01 1.4364E-01
15 1.3692E-01 1.3692E-01 1.3692E-01 1.4425E-01
18 1.3692E-01 1.3692E-01 1.3692E-01 1.5632E-01
21 1.3692E-01 1.3692E-01 1.3692E-01 1.4994E-01
24 1.3692E-01 1.3692E-01 1.3692E-01 1.5376E-01

6

12 1.2862E-01 1.3081E-01 1.2883E-01 1.3111E-01
15 1.2862E-01 1.2975E-01 1.2865E-01 1.3244E-01
18 1.2862E-01 1.2922E-01 1.2864E-01 1.3146E-01
21 1.2865E-01 1.2898E-01 1.2865E-01 1.3195E-01
24 1.2865E-01 1.2898E-01 1.2871E-01 1.3172E-01

9

12 1.6165E-01 1.6541E-01 1.6103E-01 1.6461E-01
15 1.6122E-01 1.6512E-01 1.6216E-01 1.6279E-01
18 1.6179E-01 1.6488E-01 1.6147E-01 1.6304E-01
21 1.6162E-01 1.6325E-01 1.6163E-01 1.6400E-01
24 1.6168E-01 1.6222E-01 1.6125E-01 1.6430E-01

The results in Table IV might suggest that NODAME is
worse than NSGA-II when the number of objectives is large.
However, Fig. 5, which is GD result from DTLZ7 problem
with 9 objectives and 24 decision variables, shows that the
value of GD from NSGA-II fluctuate from generation to
generation while NODAME’s GD is more stable. This is
because of adaptive mutation rate adjustment in NODAME.
Thus, the results show that even though NODAME does not
have better performance in terms of GD at 250th generation,

Fig. 5: GD Transition with DTLZ7 (9 Objectives and 24
Decision Variables)

but it provides more stable solutions than that of NSGA-II.
The stability aspect of experimental results will be discussed
more in the section IV-D.

C. Coverage and Distribution

This section discusses the coverage of individuals with the
EX metric and the distribution of individuals with the SP



TABLE V: EX Results with DTLZ1

m n PIBEA SPEA2 NSGA-II AbYSS

3

12 1.8392E+00 2.8274E-02 2.7868E-01 9.3400E-03
15 6.1102E-01 5.2211E-02 6.9642E-02 6.7836E-03
18 3.6711E-01 6.4069E-02 3.3673E-02 5.3059E-03
21 1.4725E-01 1.9471E-02 2.3975E-02 3.2016E-03
24 8.0374E-02 1.5248E-02 2.4030E-02 2.3813E-03

6

12 1.2746E+00 4.7770E-03 5.7031E-03 1.0022E-02
15 2.3297E-01 3.4767E-03 3.4841E-03 6.1213E-03
18 1.6459E-01 2.5507E-03 3.0292E-03 4.8357E-03
21 1.2088E-01 2.1617E-03 2.3455E-03 3.9077E-03
24 1.0608E-01 1.8104E-03 2.4236E-03 2.8229E-03

9

12 4.5035E+00 5.3875E-03 5.6042E-03 2.1390E-02
15 1.0337E+00 3.4898E-03 2.7577E-03 8.3928E-03
18 3.0551E-01 2.1416E-03 1.9426E-03 5.8827E-03
21 2.2812E-01 2.2813E-03 1.8143E-03 4.3775E-03
24 7.3816E-02 1.5133E-03 1.7898E-03 4.1402E-03

TABLE VI: EX Results with DTLZ3

m n PIBEA SPEA2 NSGA-II AbYSS

3

12 1.8392E+00 2.8274E-02 2.7868E-01 9.3400E-03
15 6.1102E-01 5.2211E-02 6.9642E-02 6.7836E-03
18 3.6711E-01 6.4069E-02 3.3673E-02 5.3059E-03
21 1.4725E-01 1.9471E-02 2.3975E-02 3.2016E-03
24 8.0374E-02 1.5248E-02 2.4030E-02 2.3813E-03

6

12 1.2746E+00 4.7770E-03 5.7031E-03 1.0022E-02
15 2.3297E-01 3.4767E-03 3.4841E-03 6.1213E-03
18 1.6459E-01 2.5507E-03 3.0292E-03 4.8357E-03
21 1.2088E-01 2.1617E-03 2.3455E-03 3.9077E-03
24 1.0608E-01 1.8104E-03 2.4236E-03 2.8229E-03

9

12 4.5035E+00 5.3875E-03 5.6042E-03 2.1390E-02
15 1.0337E+00 3.4898E-03 2.7577E-03 8.3928E-03
18 3.0551E-01 2.1416E-03 1.9426E-03 5.8827E-03
21 2.2812E-01 2.2813E-03 1.8143E-03 4.3775E-03
24 7.3816E-02 1.5133E-03 1.7898E-03 4.1402E-03

TABLE VII: EX Results with DTLZ7

m n NODAME SPEA2 NSGA-II AbYSS

3

12 1.6414E+00 1.3690E+00 1.4667E+00 1.2143E+00
15 1.5777E+00 1.3358E+00 1.3069E+00 1.0802E+00
18 1.5582E+00 1.3321E+00 1.3680E+00 1.2234E+00
21 1.5046E+00 1.3906E+00 1.4676E+00 1.0154E+00
24 1.5510E+00 1.2686E+00 1.3332E+00 9.8572E-01

6

12 3.2083E+00 1.3056E+00 1.6625E+00 1.0589E+00
15 3.1185E+00 1.2484E+00 1.8346E+00 1.0034E+00
18 3.3767E+00 1.3658E+00 1.6214E+00 1.0609E+00
21 3.2537E+00 1.6246E+00 1.6676E+00 9.6770E-01
24 3.1521E+00 1.6549E+00 1.9483E+00 9.4542E-01

9

12 1.7976E+00 1.1416E+00 1.5542E+00 1.0881E+00
15 2.0924E+00 1.0412E+00 1.3217E+00 1.1656E+00
18 1.7067E+00 1.0817E+00 1.4234E+00 1.1435E+00
21 1.9529E+00 1.1386E+00 1.4216E+00 1.0462E+00
24 1.6634E+00 1.4051E+00 1.5740E+00 1.0457E+00

metric. Table V, VI and VII show the results of EX metric
on DTLZ1, DTLZ3 and DTLZ7 problems, respectively. The
higher value indicates better coverage. The results from the
tables show that non-dominated individuals from PIBEA have
better coverage than that from the other algorithms in all
combination of the number of objectives and decision vari-
ables. The experimental results point out that prospect based
parent selection and prospect based environmental selection
in PIBEA allow non-dominated individuals to have better
coverage of Pareto-optimal front.

Table VIII, X and IX show the results of SP metric on
DTLZ1, DTLZ3 and DTLZ7 problems, respectively. The
lower value indicates better distribution. The results from
the tables show that non-dominated individuals from PIBEA

TABLE VIII: SP Results with DTLZ1

m n PIBEA SPEA2 NSGA-II AbYSS

3

12 1.2080E+00 1.3351E+00 1.3331E+00 1.3400E+00
15 1.2887E+00 1.3361E+00 1.3357E+00 1.3393E+00
18 1.1676E+00 1.1898E+00 1.1905E+00 1.1915E+00
21 1.3320E+00 1.3398E+00 1.3398E+00 1.3407E+00
24 1.3353E+00 1.3404E+00 1.3397E+00 1.3407E+00

6

12 1.2867E+00 1.3407E+00 1.3408E+00 1.3403E+00
15 1.3211E+00 1.3408E+00 1.3408E+00 1.3406E+00
18 1.3322E+00 1.3408E+00 1.3408E+00 1.3407E+00
21 1.3364E+00 1.3408E+00 1.3408E+00 1.3407E+00
24 1.3365E+00 1.3409E+00 1.3408E+00 1.3408E+00

9

12 1.2485E+00 1.3409E+00 1.3408E+00 1.3406E+00
15 1.3145E+00 1.3409E+00 1.3409E+00 1.3408E+00
18 1.3328E+00 1.3409E+00 1.3409E+00 1.3409E+00
21 1.3378E+00 1.3409E+00 1.3409E+00 1.3409E+00
24 1.3397E+00 1.3409E+00 1.3409E+00 1.3409E+00

TABLE IX: SP Results with DTLZ3

m n PIBEA SPEA2 NSGA-II AbYSS

3

12 1.1428E+00 1.2630E+00 1.2549E+00 1.2712E+00
15 1.3230E+00 1.3387E+00 1.3359E+00 1.3360E+00
18 1.3237E+00 1.3401E+00 1.3367E+00 1.3376E+00
21 1.3326E+00 1.3402E+00 1.3391E+00 1.3384E+00
24 1.3344E+00 1.3394E+00 1.3393E+00 1.3393E+00

6

12 1.2818E+00 1.3407E+00 1.3407E+00 1.3404E+00
15 1.3234E+00 1.3408E+00 1.3408E+00 1.3407E+00
18 1.3336E+00 1.3408E+00 1.3408E+00 1.3407E+00
21 1.3364E+00 1.3408E+00 1.3408E+00 1.3408E+00
24 1.3389E+00 1.3409E+00 1.3409E+00 1.3408E+00

9

12 1.2160E+00 1.3408E+00 1.3407E+00 1.3405E+00
15 1.2958E+00 1.3408E+00 1.3408E+00 1.3408E+00
18 1.3326E+00 1.3409E+00 1.3409E+00 1.3408E+00
21 1.3377E+00 1.3409E+00 1.3409E+00 1.3408E+00
24 1.3392E+00 1.3409E+00 1.3409E+00 1.3409E+00

TABLE X: SP Results with DTLZ7

m n NODAME SPEA2 NSGA-II AbYSS

3

12 1.2051E+00 1.2315E+00 1.2329E+00 1.2428E+00
15 1.2089E+00 1.2375E+00 1.2621E+00 1.2547E+00
18 1.2107E+00 1.2417E+00 1.2432E+00 1.2398E+00
21 1.2140E+00 1.2354E+00 1.2172E+00 1.2611E+00
24 1.2103E+00 1.2477E+00 1.2420E+00 1.2632E+00

6

12 1.1983E+00 1.2885E+00 1.2625E+00 1.3103E+00
15 1.1984E+00 1.2973E+00 1.2424E+00 1.3124E+00
18 1.2002E+00 1.2788E+00 1.2617E+00 1.3095E+00
21 1.2135E+00 1.2682E+00 1.2414E+00 1.3137E+00
24 1.2150E+00 1.2729E+00 1.2528E+00 1.3152E+00

9

12 1.2730E+00 1.3055E+00 1.2850E+00 1.3112E+00
15 1.2694E+00 1.3134E+00 1.2972E+00 1.3106E+00
18 1.2829E+00 1.3118E+00 1.2959E+00 1.3094E+00
21 1.2776E+00 1.3068E+00 1.2954E+00 1.3126E+00
24 1.2865E+00 1.2895E+00 1.2850E+00 1.3130E+00

have better distribution than that from the other algorithms
in all combination of the number of objectives and decision
variables.

D. Stability

This section describes the stability of PIBEA and other
algorithms with the VGD metric. Tables XI, XII and XIII
show the results of VGD metric on DTLZ1, DTLZ3 and
DTLZ7 problems, respectively. The lower value indicated
better stability, i.e., less fluctuation of the GD value from
generation to generation. The results from the tables show
that the Pareto-optimal front from PIBEA are more stable
than that from the other algorithms in all combination of the
number of objectives and decision variables, except only one
configuration in DTLZ7 problem. The experimental results



TABLE XI: VGD Results with DTLZ1

m n PIBEA SPEA2 NSGA-II AbYSS

3

12 1.2581E-05 2.0156E+00 5.8892E-03 6.3816E+00
15 2.9353E-04 1.4628E+00 8.6292E-01 1.1681E+01
18 1.6589E-04 2.9451E+00 1.4882E+00 1.5173E+01
21 4.0068E-02 7.9902E+00 2.3463E+00 4.7788E+01
24 2.4267E-02 6.8764E+00 3.5538E+00 2.6704E+01

6

12 2.3797E-02 1.6900E+01 4.3322E+01 8.0781E+00
15 8.5834E-02 1.4285E+02 1.0470E+02 1.6212E+01
18 4.3545E-02 1.6356E+02 1.5827E+02 2.3014E+01
21 1.7039E-01 9.5904E+01 2.0596E+02 2.0612E+01
24 3.3212E-02 3.6222E+02 2.5297E+02 3.1111E+01

9

12 5.3941E-06 2.6161E+02 1.0868E+02 3.2979E+00
15 5.0623E-02 7.5924E+02 4.1223E+02 1.9750E+01
18 3.5187E-01 1.2626E+03 8.8118E+02 3.7077E+01
21 6.6444E-01 2.8234E+03 2.7988E+03 2.6021E+01
24 1.0937E+00 2.3589E+03 2.6697E+03 6.0432E+01

TABLE XII: VGD Results with DTLZ3

m n PIBEA SPEA2 NSGA-II AbYSS

3

12 6.6312E-09 2.5692E+00 1.7575E-02 5.8391E-01
15 2.1694E-01 3.5077E+00 2.8959E-01 9.2322E+00
18 1.1522E-01 8.0945E+00 2.2607E-01 1.0195E+01
21 1.1807E-01 1.2602E+01 4.2468E+00 2.6642E+01
24 3.4678E-01 7.0695E+00 2.9145E+00 2.9250E+01

6

12 1.8787E-03 2.5630E+01 2.1531E+01 6.8258E+00
15 3.7585E-01 2.1979E+01 1.7941E+01 1.7955E+01
18 8.4842E-01 2.2775E+01 7.5170E+01 2.4103E+01
21 4.1256E-01 4.4103E+01 5.9665E+01 6.8925E+01
24 1.2688E+00 4.3630E+01 9.0292E+01 1.8932E+01

9

12 6.7759E-05 7.7099E+00 4.1550E+01 1.6751E+01
15 1.8426E-03 3.4533E+01 4.8364E+01 7.4054E+00
18 2.4059E-01 6.0168E+01 7.9266E+01 3.5756E+01
21 3.1527E-01 3.3641E+01 3.1145E+02 2.1345E+01
24 2.0212E+00 5.5618E+01 8.5817E+01 4.0371E+01

TABLE XIII: VGD Results with DTLZ7

m n NODAME SPEA2 NSGA-II AbYSS

3

12 6.5603E-16 1.5021E-11 3.1399E-12 6.8922E-06
15 1.0236E-13 6.7161E-12 1.4847E-12 1.6725E-05
18 1.1940E-12 1.2446E-12 3.5992E-13 1.2875E-05
21 1.0216E-15 1.9177E-12 6.9211E-13 5.8130E-06
24 1.1220E-15 7.6102E-13 4.5970E-13 9.7151E-06

6

12 4.3418E-11 8.8891E-06 4.1124E-07 2.4329E-05
15 1.4807E-10 2.8530E-06 2.8575E-07 6.6064E-06
18 1.2706E-10 1.0514E-06 1.2183E-08 7.4371E-06
21 1.4458E-09 3.9028E-07 1.2570E-08 8.6652E-06
24 9.9971E-10 5.4039E-07 4.5637E-08 9.7190E-06

9

12 8.0629E-07 7.2187E-05 4.1225E-05 1.9459E-05
15 1.8890E-07 5.1641E-05 3.3974E-05 2.5634E-05
18 2.3071E-07 4.5090E-05 5.8939E-06 3.3440E-05
21 1.2109E-07 1.3246E-05 7.4884E-06 8.1323E-06
24 7.5690E-08 1.2843E-05 3.3090E-06 5.4421E-06

show that adaptive mutation rate adjustment in PIBEA allows
non-dominated individuals to have more stable convergence
toward the Pareto-optimal front.

V. CONCLUSION

This paper studies an EMOA that leverages a new quality
indicator, called the prospect indicator, for parent selection
and environmental selection operators. Experimental results
show that PIBEA effectively performs its operators in high
dimensional problems and outperforms three existing well-
known EMOAs, NSGA-II, SPEA2 and AbYSS, in terms of
convergence velocity, diversity of individuals, coverage of the
Pareto front and performance stability.
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