
0018-9162/99/$10.00 © 1999 IEEE September 1999 59

Re
se

ar
ch

T
he Internet has been changing the way we
collaborate on software development, offer-
ing certain advantages but also creating new
requirements. Internet-based collaboration
does make a wider base of talent available,

but the development cycles running at Internet
speeds—where your codevelopers might be working
as far away as the other side of the planet—require
maintaining higher levels of precision.

From a project-management perspective, commu-
nication is a key factor in Internet-based development.
Internet-based collaboration requires effective team
communication so that project managers can point all
team members in the right direction. When your devel-
opment team isn’t communicating well, it is nearly
impossible to create and validate design solutions and
effectively manage your team’s deliverables. So while
Internet collaboration offers a number of advantages,
the friction created by distributed—and therefore
delayed—communication typically increases the over-
head associated with sharing project information.1

Furthermore, the technology itself—including sys-
tem interoperability and the synchronous or asyn-
chronous collaboration tools you use—can create a
variety of problems in a distributed development envi-
ronment. Unfortunately, few development frameworks
have attempted to solve some of the problems that
have emerged in the context of Internet-based collab-
oration.

In addition to some of these general issues, several
specific issues are raised by the kind of Internet-based
collaboration that uses software components. For this
kind of distributed collaboration to be truly effective—
for it to solve more problems than it creates—the devel-
opment framework should allow you to

• model software components and the relationships
among them,

• describe and share component model informa-
tion, and

• ensure the integrity of component models.

The SoftDock2-4 infrastructure does just that. We
designed SoftDock to let developers—working in a dis-
tributed-collaboration environment—analyze, design,
and develop software from component models. In
addition to general distributed, component-based
development, we are currently using SoftDock as a
framework to develop applications as diverse as dis-
tance learning,3 digital libraries, hypermedia model
management, and medical records systems.

There are countless additional applications for
frameworks like SoftDock. As the complexities of dis-
tributed collaborative-development environments
increase, frameworks specifically designed for such
environments will become increasingly essential.

SOFTDOCK BASICS
SoftDock uses the Object Management Group’s

Unified Modeling Language (UML) for modeling com-
ponents. For exchanging information about these
UML models, SoftDock uses an application-indepen-
dent interchange format called the UML eXchange
Format (UXF).4 SoftDock distributes UXF descriptions
through W3C’s Document Object Model (DOM)
interface, which is implemented on top of OMG’s
Common Object Request Broker Architecture
(CORBA).

Figure 1 illustrates SoftDock’s architecture. SoftDock
stores the XML documents representing UML mod-
els—that is, UXF descriptions—in a resource server,

As the complexities of distributed collaborative-development environments
increase, frameworks specifically designed for such environments will
become increasingly essential. The authors describe one such
framework—called SoftDock—and the new technologies it exploits.

Cover Feature

Leveraging
Distributed
Software Development

Junichi
Suzuki
Yoshikazu
Yamamoto
Keio University

Co
ve

r F
ea

tu
re

60 Computer

which can create, log, and delete documents. The
resource server sends notification to client-side appli-
cations when a document changes. In theory, this repos-
itory could maintain documents either as flat files (for
storing model descriptions) or as full-fledged objects in
a repository. Currently, though, SoftDock supports only
flat file management.

In SoftDock’s architecture, the resource server has
two ways of distributing or exchanging model infor-
mation. In the first method, an HTTP route provides
one-way broadcasting to client applications. These
client applications—including XML-capable Web
browsers—access UXF descriptions that the resource
server replicates to a Web server through an FTP con-
nection. When a UXF description is updated in the
resource server, the server pushes the updated descrip-
tion to the potentially remote Web server.

In the second method, an Internet InterOrb Protocol
(IIOP) connection (described more completely later in
the article) provides two-way communication between
a client and a server. This method is much like the first,
except that when users modify remote UXF descrip-
tions, the server immediately reflects any changes.

This architecture has a number of advantages,
including

• increasing model reuse by allowing developers to
specify software models independently of their
implementation technologies, such as language,
network, or operating system;

• reducing the information overhead required by
the use of different tools in different locations or
development phases;

• allowing global scalability and system interoper-

ability by using a standardized interface; and
• supporting state-based development processes5—

based on systematic design and peer review—to
streamline development processes and increase
quality control.

We built these characteristics into SoftDock to foster
model continuity across development phases and to
help improve developer productivity. Specifically, we
designed SoftDock to make UML models more uni-
versal by providing interoperability on three levels:
through UXF, through DOM, and through CORBA.

UXF allows UML models to be interoperable
among UML-compliant tools. DOM allows UXF
descriptions to be interoperable with XML-compliant
tools. And CORBA provides the standard interfaces to
allow DOM-compliant tools to interact with each
other in a network environment.

CORBA will be familiar to most readers, but UXF
(which is our own creation) and DOM (which was
only recently finished by W3C) probably won’t be. In
the remainder of this article, we’ll discuss UXF, DOM,
and how SoftDock uses these technologies to facili-
tate distributed collaborative work.

UML EXCHANGE FORMAT
The emergence of UML—created by the joint efforts

of object technologists Grady Booch, Ivar Jacobson,
and James Rumbaugh—represents one of the most
significant developments in object technology.
Supported by a broad base of companies, UML defines
semantics of object model elements and their nota-
tions used by popular analysis and design method-
ologies to produce a single, universal modeling
language that can be used with any method. It is this
language that SoftDock uses to create models.

But in a distributed-collaboration development
environment—where exchanging models is a crucial
activity—it is important that the semantics within a
model be described explicitly. Being able to exchange
models is particularly important in environments
where there are few application-neutral exchange
formats that you can use to transfer models between
different development tools. To solve this problem,
we developed the UML eXchange Format (UXF),
which is similar in some respects to OMG’s recently
completed XML Metamodel Interchange (XMI) for-
mat.

Both UXF and XMI are based on XML and serve
as a communication vehicle for transferring model
information among development tools. We use UXF
in the SoftDock system both because OMG hadn’t fin-
ished XMI when we began developing our project and
because we believe UXF is much simpler to use than
XMI. However, SoftDock will eventually use XMI by
providing a UXF-XMI converter.

CORBA
clients

CORBA

DOM

Browsers

Web server

FilesRepository

Tools

IIOP

IIOP IIOP FTP

Resource
server

HTTP

Figure 1. SoftDock’s architecture is made up of a number of
different elements, all of which are designed to support a
high degree of interoperability so that developers in remote
locations can collaborate with different development tools
without having to sacrifice model information. SoftDock
stores these models on its resource server, which facilitates
distribution across the Web to XML-compliant browsers or on
a network through various interfaces defined by specifica-
tions like DOM and CORBA.

September 1999 61

Easy communication
The ability to maintain clear technical information

during the entire software life cycle is vital to devel-
opment teams. Every team typically has a large vol-
ume of information to manage. Members of the team
use this information to manipulate what they’re work-
ing on and to record the results of their tests. UXF
makes it relatively easy to communicate ideas about
the UML models by providing a well-structured, stan-
dard way of sharing model information.

In addition, because UXF can apply XSL style
sheets, you can convert your model information into
a variety of media, like RTF, HTML, LaTeX, or PDF.
Moreover, you can embed hyperlinks into UXF, which
allows you to link UML constructs to each other. We
designed all of these features to make it much easier
to keep track of model information across all stages
of the development process.

Seamless interoperability
UXF consists of a series of XML document type

definitions (DTDs), which are schema that specify
how a set of tags and their constraints will appear in
a certain XML document. Associated with each pack-
age in the UML metamodel specification, each DTD
maps UML model elements into document tags.
Furthermore, every DTD supports the XML name-
space, which means you can avoid tagname conflicts
between UXF DTDs and other DTDs.

The W3C designed XML as a sophisticated subset
of SGML to provide application neutrality, user exten-
sibility, and the ability to represent complex informa-
tion. Because UXF shares in these qualities, SoftDock
can provide the same kinds of features. For example,
the software tools used in each phase of development
usually employ their own proprietary formats to
describe model information. But once encoded with
UXF, the model information can be reusable—with-
out modification—in just about any tool.

Because UXF is a natural, transparent extension of
the existing Web environment, SoftDock allows you
to edit, publish, access, and exchange descriptions as
easily as writing and editing HTML. Most existing
Web applications—like the XML editor shown in
Figure 2—can be used for handling UXF, as can most
CASE, documentation, and visual-profiling tools.

DOCUMENT OBJECT MODEL
As we’ve implied, the primary goal of SoftDock is to

provide a framework for sharing and managing UML
models in the form of UXF descriptions. In general, the
APIs that support XML documents—and, by extension,
UXF documents—can be categorized into three groups:

• the source document API, which manages the
XML document instances directly,

• the element API, which manages the parsed ele-
ments of a document instance, and

• a custom API, which provides application-spe-
cific interfaces.

Custom APIs are not appropriate for exchanging
generic UXF descriptions because they need to be
modified when your UXF DTDs change.

If you were to implement the source document API
in SoftDock, a client application would fetch every
UXF description from the server and parse it to
inspect its model information. This means that the
larger a UXF description is, the longer the transfer
overhead will be. Since we would like systems as small

Figure 2. SoftDock makes editing model descriptions
relatively easy. The screen shot at the top shows UXF-
formatted data within an XML editor, while the one on the
bottom shows a hierarchical structure of UXF elements
within an XML browser.

62 Computer

as thin clients to be able to access remote UXF descrip-
tions in a more structured manner, SoftDock uses a
generic-element API that is based on an extension of
DOM.

DOM’s consistent interface
DOM is an API for HTML and XML documents

that defines the logical structure of documents and the
way a document can be accessed and manipulated. In
the DOM specification, the term “document” is used
in a fairly broad sense. Increasingly, XML is being
used as a way of representing many different kinds of
information, much of which would traditionally be
seen as data rather than as documents. Nevertheless,
XML presents this data as documents that DOM can
be used to manage.

W3C designed DOM to be used with any language.
In order to provide a precise, language-independent
specification of interfaces, W3C defined the specifica-
tions in OMG’s IDL, a language-neutral interface def-
inition language that is a primary component of
CORBA. Implementing DOM interfaces on top of
CORBA brings us closer to our goal of making UML
model information highly interoperable in a network
environment. This strategy allows the SoftDock inter-
faces to be created independently of UXF DTDs,
which means that changes in these DTDs don’t have
to be reflected in the interfaces.

In short, DOM provides a consistent interface to
SoftDock for accessing and manipulating the content
and structure of UXF documents. It gives SoftDock a
standard set of objects for representing documents, a
standard model for how these documents should be
combined, and a standard API for accessing the
objects. DOM basically serves as a standard parser
interface between XML documents and their appli-
cations. Having such an API makes it possible for
those using SoftDock to develop UXF models using
any DOM-compliant XML parsers.

SoftDock’s extension to DOM
DOM can be implemented using language-inde-

pendent systems like COM or CORBA; it can also be
implemented using language-specific bindings like
Java. In SoftDock, we implement DOM with
CORBA. Created by OMG, CORBA is the most
popular middleware standard for communications
between distributed objects. CORBA provides a way
to execute programs written in different languages
running on different platforms no matter where they
reside in the network. This kind of neutrality and
transparency are useful both to DOM and, by exten-
sion, to SoftDock.

It is important to realize that the DOM interfaces are
abstractions: They are a means of specifying a way to
access and manipulate an application’s internal repre-

#pragma prefix “jp.ac.keio.SoftDock”
#include <dom.idl>
#include <CosEventComm.idl>
module SoftDockExtention
{
exception MetadataNotSupported{};
exception AlreadyLocked{CorbaDocProxy proxy};
exception InvalidLockTypeSpecified{};

interface UXFDescription
:dom::Document,
:CosEventComm::TypedPushConsumer,
:CosEventComm::TypedPushSupplier

{
typedef long UID;
attribute UID nodeId;
void externalize();
sequence<string> content();
sequence<string> metadata()
raises(Metadata NotSupported);

sequence<string> query(in string xqlQuery)
boolean isLocked();
void requestLock (in CorbaDocProxy proxy

in short lockTypeId)
raises(AlreadyLocked,
InvalidLockTypeSpecified);

void releaseLock();
void update(in short changeTypeId,

in UXFDescription doc);
};

interface CorbaDocProxy
:UXFDescripion

{
attribute dom::UXFDescription remoteDoc;

};

interface CorbaDocFactory
{
UXFDescription checkIn(in sequence<string>
doc);

UXFDescription createDocument(in string
docName);

UXFDescription cloneDocument(
in UXFDescription doc);

void releaseLock(in UXFDescription target);
void destroyDocument(in UXFDescription doc);

};

interface NodeIterator
:dom::NodeList

{
boolean next(out dom::Node);
oneway void destroy();
readonly attribute unsigned long length;

};
};

Figure 3. SoftDock’s extension to the DOM interface consists of four IDL interfaces—
UXFDescription, CorbaDocFactory, CorbaDocProxy, and NodeIterator—each of which
has functions that correspond to its name.

September 1999 63

sentation of a document. Interfaces do not imply a par-
ticular concrete implementation. Each DOM appli-
cation can maintain documents in any convenient
representation as long as the DOM interfaces are
supported.

SoftDock now uses both a publicly available XML
parser from IBM and our own DOM-compliant
parser to work with DOM interfaces. But we needed
to extend the current DOM interfaces for use in a
SoftDock distributed environment. Our extension to
DOM, shown in Figure 3, provides the essential com-
ponents for extending the current DOM interfaces to
allow SoftDock to handle arbitrary XML descriptions
in a CORBA environment.

SoftDock’s IIOP connection
One of the most important components in our

extension of DOM is the document factory, which
helps manage the complete life cycle of XML docu-
ments. Another important component is the document
proxy, which fetches remote XML documents and
keeps them consistent on the client side. As Figure 4
illustrates, the document factory and the document
proxy are crucial elements in the relationship between
different APIs that handle XML documents across an
IIOP connection.

Generally speaking, a CORBA client at runtime
makes requests to remote CORBA objects via an
Object Request Broker (ORB). The ORB provides a
proxy object in the client’s address space, which cre-
ates the illusion that the remote object is a local one.
(SoftDock also enables local caching of these objects,
which will later be resynchronized on the remote
server.) The client and server communicate by
exchanging messages defined by the General Inter-
ORB Protocol (GIOP). GIOP is independent of any
specific network transport. However, when GIOP is
sent over TCP/IP, it is called IIOP.

In SoftDock, the IIOP connection provides the two-
way communication between a client and server,
which lets users at different locations create and mod-
ify remote XML documents. Client applications can
include CASE, documentation, design-metric, and
reverse-engineering tools. They can also include source
code editors and generators.

To create SoftDock’s IIOP connections, you manip-
ulate XML descriptions through either DOM or the
simple API for XML (SAX). As a parser interface
developed in the XML community (http://www.
megginson.com/SAX/index.html), SAX is event-
based, while the DOM interface is tree-based. Some
DOM-compliant parsers use a SAX-based parser
internally, but both APIs are now supported by vari-
ous parsers implemented in a variety of programming
languages. Any parsers supporting either DOM or
SAX can be plugged into the SoftDock system.

Managing UXF descriptions
SoftDock helps you manage UXF descriptions

through an IIOP connection by allowing client appli-
cations to

• locate and bind to remote UXF descriptions,
• match UXF descriptions with their metadata,
• explore and query internal elements of a UXF

document,
• cache remote UXF descriptions at client side,
• manipulate a UXF description synchronously and

asynchronously, and
• monitor every change (that’s happened) to a UXF

description.

Every UXF document is checked into the SoftDock
resource server with the document factory. Then it is
parsed into an object tree—according to its tag hier-
archy—with a DOM-compliant XML parser. The
object tree is maintained as a set of CORBA objects, as
illustrated in Figure 5. Client applications can find and
connect to remote UXF descriptions with a white-page
service that uses the CORBA naming service and a yel-
low-page service that uses the CORBA trading service.

A UXF document has its own metadata, which it
exposes to client applications in the form of W3C’s
Resource Description Framework (described below)
or through the CORBA trading service. A client appli-
cation can then search appropriate UXF descrip-
tions—that meet the client’s needs—on the basis of
the descriptions’ metadata contents.

SoftDock also allows client applications to explore and
query the internal elements of a UXF description with
an iterator function—see Figure 3—and by using the
XML Query Language (http://www.w3.org/TandS/
QL/QL98/pp/xql.html), which uses XML as a data
model.

SoftDock
applications

SoftDock extension to DOM

DOM

SAX

D
o

cu
m

en
t

fa
ct

o
ry

 a
n

d
 p

ro
xyInternet

CORBA

File system

Repository

UXF (XML)

Figure 4. SoftDock employs a number of APIs to handle XML documents—and UXF
model descriptions—over an IIOP connection.

64 Computer

Each UXF description can be cached on the client side
once it is accessed. SoftDock provides a proxy object
in the client address space—called a document proxy—
which creates the illusion that the remote object is a
local one. This reduces the number of messages sent
and, by extension, the communication overhead.

SOFTDOCK APPLICATIONS
The SoftDock application we’ve stressed in this arti-

cle is distributed, collaborative software development,
which will no doubt be one of SoftDock’s main appli-
cations. So far, we’ve used SoftDock for a number of
such projects, including using it to manage the model
information for Java application, applet, and Java
Bean development.

Personalizing model information
We deploy Persona,3 a toolkit we developed for per-

sonalizing the content and presentation of XML doc-
uments, at the back end of a Web server, where it
recognizes every participant’s role in the development
process by focusing on the client-side information that
is transferred with incoming HTTP requests. In
response to these requests, Persona delivers cus-
tomized content and presents information appropri-
ately tailored to each development role, such as project
manager, architect, programmer, or customer.

Persona provides two levels of personalization. The
first level involves simply generating an HTML docu-
ment from a requested XML document by applying a
particular XSL style sheet. The second level involves
rearranging the content or presentation of the gener-
ated document. For example, when a project manager
accesses a Persona-enabled Web server through the
SoftDock HTTP connection, Persona can create a doc-
ument—based on state-based development processes—
that displays a current development status report for

all software deliverables. If the same request were made
by a programmer, Persona could present detailed
model information instead of a status report.

Facilitating distance learning
SoftDock can provide self-paced learning through its

HTTP connection and group-paced training through
its IIOP connection.3 In such environments—where
roles can include educator, learner, and moderator—
Persona can also be useful. And for these environ-
ments—where metadata tagging can be particularly
useful—SoftDock provides additional services.

For example, SoftDock can use W3C’s Resource
Description Framework (RDF), which is a specifica-
tion that defines a way to describe metadata. RDF
allows SoftDock to understand metadata for tagging
each UXF description. In addition to RDF, SoftDock
can use the International Management Systems
metadata specification (http://www.imsproject.org/
metadata/) to increase metadata interoperability
between educational resources and computer-medi-
ated training systems.

Managing hypermedia user interface models
In addition to using SoftDock to facilitate software

development and support distributed learning, we’ve
also used SoftDock to manage the user interfaces of
Web-based applications. SoftDock can streamline the
requisite application design work and automate
deployment by sharing Web Interface Definition
Language (WIDL)6 descriptions.

In general, the purpose of WIDL is to enable
automation of all interactions with HTML or XML
documents. Because WIDL offers a general method of
representing request/response interactions over stan-
dard Web protocols, SoftDock can define and manage
interfaces for data and services that are not under the
direct control of programs that require such access.

B efore we release SoftDock to the public—which
will happen toward the end of 1999—we will
investigate more efficient event notification and

document updating mechanisms. We are also con-
sidering using SSL for document and communications
security. And we plan to build in support for new
OMG specifications like XMI and the Meta Object
Facility (MOF). Our ultimate goal is to create a highly
interoperable and semantics-interchangeable infra-
structure.

Currently, though, SoftDock supports the iterative
and consistent evolution of software model specifica-
tions—particularly for distributed collaborative devel-
opment—by combining some of the best emerging
technologies and standards available today. We believe
our work on SoftDock is a blueprint of the next logi-
cal step in distributed software development. ❖

Local
document
factory

Cached
document

Server sideClient side

C
lie

n
t-

si
d

e
to

o
ls

Remote
document
factory

Remote
document

Figure 5. SoftDock caches remote documents locally and maintains them in an object
tree as a set of CORBA objects.

Acknowledgments
We thank Ken Ichida, Hiroki Kamata, and Kumiko

Nakano for their support.

References

1. J. Suzuki and Y. Yamamoto, “Toward the Interoperable
Software Design Models: Quartet of UML, XML,
DOM, and CORBA,” Proc. 4th Int’l Software Eng.
Standards Symp. (ISESS 99), IEEE CS Press, Los Alami-
tos, Calif., 1999, pp. 163-172.

2. J. Suzuki and Y. Yamamoto, “SoftDock: a Distributed
Collaborative Platform for Model-Based Software
Development,” Proc. 10th Int’l Workshop Database and
Expert Systems Applications (DEXA 99), Springer-Ver-
lag, Berlin, Aug. 1999, to appear.

3. J. Suzuki and Y. Yamamoto, “Building a Next-Genera-
tion Infrastructure for Agent-based Distance Learning,”
Int’l J. Continuing Engineering Education and Life-Long
Learning, Nov. 1999, to appear.

4. J. Suzuki and Y. Yamamoto, “Making UML Models
Interoperable with UXF,” in L. Bezivin and P-A. Muller,
eds., The Unified Modeling Language: Beyond the Nota-

tion, Springer-Verlag, Berlin, 1999.
5. B.D. Tackett and B.V. Doren, “Process Control for Error-

Free Software: A Software Success Story,” IEEE Soft-
ware, May/June 1999, pp. 24-29.

6. M.G. Wales, “WIDL: Interface Definition for the Web,”
IEEE Internet Computing, Jan./Feb. 1999, pp. 55-59.

Junichi Suzuki is currently completing a PhD in the
Department of Computer and Information Science at
Keio University. His research interests include object-
oriented development methodology, software patterns
and frameworks, distributed object computing, reflec-
tion, intelligent user interfaces, agent communication,
and computational biology. Contact him at suzuki@
yy.cs.keio.ac.jp.

Yoshikazu Yamamoto is an associate professor in the
Department of Computer and Information Science at
Keio University. His research interests include dis-
tributed discrete event simulation and modeling,
object-oriented programming, agent programming,
intelligent interfaces, and documentation. Contact him
at yama@ics.keio.ac.jp.

