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Abstract

This paper focuses on service deployment optimization
in cloud computing environments. In a cloud, each ser-
vice in an application is deployed as one or more service
instances. Different service instances operate at different
quality of service (QoS) levels. In order to satisfy given
service level agreements (SLAs) as end-to-end QoS require-
ments of an application, the application is required to op-
timize its deployment configuration of service instances.
E3/Q is a multiobjective genetic algorithm to solve this
problem. By leveraging queuing theory, E3|Q estimates the
performance of an application and allows for defining SLAs
in a probabilistic manner. Simulation results demonstrate
that E3 | Q efficiently obtains deployment configurations that
satisfy given SLAs.

1 Introduction

This paper envisions service-oriented applications in
cloud computing environments. A service-oriented appli-
cation consists of a set of services and a workflow. Each
service encapsulates the function of an application com-
ponent. Each workflow defines how services interact with
each other. When an application is uploaded to a cloud,
the cloud deploys each service in the application as one or
more service instances. Each service instance runs on a
process or a thread and operates based on a particular de-
ployment plan; different service instances operate at differ-
ent quality of service (QoS) levels. For example, Amazon
Elastic Compute Cloud (EC2)' offers five different deploy-
ment plans that allow service instances to yield different
QoS levels by providing different amounts of resources at
different prices?. If an application is intended to serve dif-

I www.amazon.com/ec2

2A deployment plan with a 1.0GHz CPU and 1.7GB memory costs
$0.1 per hour. Another deployment plan with four 2.0GHz CPU cores and
15.0GB memory costs $0.8 per hour.

oba@ogis-international.com

ferent categories of users (e.g., users with for-fee and free
memberships), it is instantiated with multiple workflow in-
stances, each of which is responsible for offering a specific
QoS level to a particular user category.

A service level agreement (SLA) is defined upon a work-
flow as its end-to-end QoS requirements such as through-
put, latency and cost (e.g., resource utilization fees). In or-
der to satisfy given SLAs, application developers (or cloud
engineers) are required to optimize a deployment configu-
ration of service instances for each user category by con-
sidering which deployment plans and how many service
instances to use for each service. For example, a deploy-
ment configuration may be intended to improve the latency
of a heavily-accessed service by deploying its instance with
an expensive deployment plan that allocates a large amount
of resources. Another deployment configuration may de-
ploy two service instances with two inexpensive deploy-
ment plans connected in parallel for improving the service’s
throughput.

This decision-making problem, called the SLA-aware
service deployment optimization (SSDO) problem, is a
combinatorial optimization problem that searches the op-
timal combinations of service instances and deployment
plans. There exist three research issues in this problem.
First, it is known NP-hard [1], which can take a significant
amount of time, labor and costs to find the optimal deploy-
ment configurations from a huge search space (i.e., a huge
number of possible combinations of service instances and
deployment plans). The second issue is that the SSDO prob-
lem often faces trade-offs among conflicting QoS objectives
in SLAs. For example, in order to reduce its latency, a ser-
vice instance may be deployed with an expensive deploy-
ment plan; however, this is against another objective to re-
duce cost. Moreover, if the service’s latency is excessively
reduced for a user category, the other user categories may
not be able to satisfy their latency requirements. The third
issue is that traditional SLAs often consider QoS require-



ments as their average (e.g., average latency). This fails to
consider fluctuation/variance in runtime QoS measures.

This paper proposes and evaluates an optimization al-
gorithm, called E*/Q, (Evolutionary multiobjective sEr-
vice deployment configuration optimizEr), which addresses
these research issues. E°/Q is a multiobjective genetic al-
gorithm (GA) that balances the trade-offs among conflicting
QoS objectives in SLAs and seeks a set of Pareto-optimal
deployment configurations that satisfy the SLAs. Given
multiple Pareto-optimal configurations, application devel-
opers can better understand the trade-offs among QoS ob-
jectives and make a well-informed decision to choose the
best deployment configuration for them according to their
requirements and preferences. E*/Q is practical enough to
be well-applicable to any clouds that differentiate resource
provision, in turn QoS, for services; for example, Amazon
EC2, FlexiScale® and GoGrid ¢. Simulation results demon-
strate that E£°/Q efficiently obtains quality deployment con-
figurations that satisfy given SLAs by heuristically examin-
ing very limited regions in the entire search space.

2 Service Deployment and QoS Models in
E*/Q

In E3/Q a workflow consists of a set of services. An
example workflow in Figure 1 consists of four services. It
has a branch after Service 1 (E3/Q assumes that branch-
ing probabilities are known from history data), and executes
Service 2 and Service 3 in parallel. In order to process re-
quests, each service is instantiated as a service instance(s)
and deployed on a particular deployment plan(s). A set
of service instances and deployment plans is collectively
called a deployment configuration. In Figure 2 Service 1
is instantiated as three service instances and deployed on
two Deployment Plan 1 and one Deployment Plan 3. E3/Q
assumes that a deployment plan cannot operate more than
two service instances of the same service but it can have in-
stances of different services at a time. (Deployment Plan
2 in Figure 2 has two service instances.) Each deploy-
ment configuration can have arbitrary number of deploy-
ment plans and service instances to improve the service’s
throughput and latency.

Workflow

Figure 1: An Example Workflow

Figure 3 illustrates how an application processes re-
quests from users. When a user sends a request to an appli-
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cation, it calls a series of service instances in its deployment
configuration according to its workflow and sends back a re-
sponse to the user. In this example, once receiving a request
from a user an application calls one of Service 1’s instances,
waits for a response from the service instance, calls Service
2 and Service 3’s instances in parallel, waits for responses
from them, then calls a Service 4’s instance. A deployment
configuration is assumed to have one access point equipped
with a load balancer (Figure 2). Load balancer’s algorithm
must be the same as that of a load balancer that an appli-
cation under development uses. Currently E*/Q supports
a round robin and CPU load balancing algorithm, which
dispatches requests to balance deployment plans’ CPU us-
age. When a deployment configuration uses a round robin
load balancer, requests for a certain service are dispatched
to corresponding service instances with equal probability.
For example, in Figure 2, when a deployment configuration
receives 1,500 requests for Service 1 every second, each in-
stance of Service 1 receives 500 requests every second since
three instances are deployed in a deployment configuration.
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Figure 3: An Example Application

Currently, a SLA is defined with the end-to-end through-
put, latency and cost of an application. In order to judge
whether an application satisfies a given SLA, it is required
to examine its end-to-end QoS by aggregating QoS mea-
sures of individual services. The cost of an application is



defined as a simple summation of deployment plan’s cost.
Therefore, the more number and the more expensive de-
ployment plans an application uses, the higher its cost be-
comes. The end-to-end throughput and latency are obtained
by applying queuing theory to a deployment configuration.

2.1 Throughput and Distribution of Latency of Service
Instances

Queuing theory is a well-established method for esti-
mating performance of distributed systems and applied to
a large number of research work [2, 3]. E3/Q estimates
each service instance’s throughput and latency by leverag-
ing queuing theory, and it obtains the end-to-end throughput
and latency ay applying QoS aggregate functions.

Let u, be mean unit service rate, which is the average
number of requests processed per unit time by a service in-
stance running on a unit CPU (e.g., 1GHz CPU). g, is the
inverse of the mean request processing time. E3/Q assumes
that y,, of all services in a workflow are known. Based on y,,,
queuing theory can estimate throughput and the probability
distribution of latency when a service instance runs on a de-
ployment plan with various CPU configurations (e.g., one
2.5GHz CPU core or four 1GHz CPU cores) under various
request arrival rate.

Assume only one service instance runs on a deployment
plan with n CPU cores each of then is p times faster than a
unit CPU. E3/Q models this service instance as a M/D/N
queue. (Possion arrival, deterministic service and multi-
ple service centers.) Equation 1 is an approximation of the
probability that the latency (waiting time W in a queue) is
greater than « [4].

Pr(W > a)
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A is the mean request arrival rate, which is the average
number of requests to a service instance per unit time. Since
wy, 1s know, Pr(W > a) can be calculated when A is given.
When 1 > npu,, however, the usage of all n CPU cores
exceeds 100%. Therefore, A must be reduced to A’ so that
A" = npy, is hold (e.g., by dropping A — A’ requests per
unit time). Hence, A is the throughput of a service instance
when A < npy,, while A’ (i.e., npy,) is the throughput of a
service instance when A > npu,. (1’ is also used instead of
A1in Equation 1 to obtain the distribution of latency.)

When multiple service instances run on one deployment
plan, portion of CPU power is assigned to each service in-
stance based on their CPU usage. Assume instances of two

services, a and b, run on a deployment plan. yu,, and y,;, are
their mean unit service rates, and A, and A, are their mean
request arrival rates, respectively. For each CPU core, ser-
vice a and b occupy p, = Au/(npu,,) and pp = Ap/(npL)
of CPU power. Therefore, for each CPU core, 1 — p, and
1 — p, are the available portion of CPU for service a and
b, respectively. Since each service cannot use 100% of
CPU power, their service rate are reduced to pu,./(1 — pp)
and pu,/(1 — pa). These reduced service rates are applied
to Equation 1 when calculating service instances’ latency.
When p, + pp > 1, i.e., CPU usage exceeds 100%, service
rates are reduced so that p, + p, = 1 is hold.

Figure 4 illustrates an example. Instances of service a
and b are deployed on a deployment plan withn = 1 and p =
1. A, 1s 3, pyq is 15, Ap is 15 and w,p is 32. The CPU usage
of a and b are 3/15 = 0.20 and 15/32 = 0.47, respectively.
Since the CPU usage does not exceed the capacity (0.20 +
0.47 < 1), throughput of a and b are the same as A, and 4;.
(All incoming requests are processed.) The ratio of CPU
power available for a is 1 —0.47 = 0.53, therefore a’s mean
service rate on this deployment plan is 0.54 x 15 = 8.1. The
mean service rate of b is 25.6 as well. Then, the distribution
of their latency is calculated based on their throughput and
Equation 1.
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Figure 4: Multiple Service Instances

To illustrate the validity of this model Figure 5 to 7 com-
pare latency (cumulative frequency) of a testbed system and
theoretical estimates. A testbed is an HTTP server that has
threads as the same number of CPU cores (e.g., two threads
when running on a two core CPU) and request arrival times
follow a Poisson process. In this experiment, what develop-
ers know is the only service rate of two services A and B on
a 1.66 GHz CPU, i.e., 9.17 and 6.25 requests per second, re-
spectively. Figure 5 compares latency of service A running
on a CPU consisting of two 1.66 GHz cores under various
request rates and theoretical estimates. (Dotted lines are
measured latency and solid lines are theoretical estimates.)
Figure 6 compares latency of service A running on a 2.2
GHz CPU and theoretical estimates. Figure 7 illustrates the
case when service A and B are deployed on a deployment
plan with a CPU consists of two 2.2 GHz cores. Service A
and B receive requests at 12 and 4 requests per second, re-
spectively. As these result illustrate M/D/N queues approx-
imate the latency of services under any CPU configurations
and request arrival rates well.
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Figure 5: Latency on two 1.66 GHz cores
2.2 End-to-End QoS Aggregation

In order to examine whether a deployment configuration
can achieve the end-to-end required throughput defined in a
SLA, E3/Q first distribute the required throughput to each
service instance by leveraging a load balancing algorithm.
For example, in Figure 2, when the end-to-end required
throughput is 1,500 requests per second, a round robin al-
gorithm distributes 500 requests to each instance of Service
1. Each instance of Service 2, 3 and 4 receives 750, 750
and 1500 requests per second, respectively. Then, E*/Q
examines each deployment plan whether its CPU usage ex-
ceeds 100% and calculates each service instances’ through-
put and latency distribution. The throughput of a service is
determined as the summation of service instances’ through-
put. (e.g., service A’s throughput is the summation of the
throughput of all service A’s instances.)

Then, the end-to-end throughput of a deployment plan
is determined by applying QoS aggregate functions (Table
1) according to a workflow. For example, in Figure 1, the
throughput of the part where Service 2 and Service 3 are
connected in parallel is the minimum throughput of Service
2 or Service 3. Then, as the end-to-end throughput, the min-
imum throughput of Service 1, the parallel part and Service
4 is selected.

In order to obtain the probability distribution of the end-
to-end latency E3/Q employs Monte Carlo method since
a simple aggregation (e.g., summation of each service’s
average latency) cannot reveal the probability distribution
and lead to a too pessimistic estimation [5]. E3/Q simu-
lates the end-to-end latency of one request by (1) select-
ing services to execute (a path in a workflow) according to
branching probabilities (all services are executed if a work-
flow has no branches.), (2) for each service selecting one
of instances according to their throughput (an instance with
larger throughput has higher change to be selected), (3) de-
termining each instance’s latency (a certain value) accord-
ing to the probability distribution, and (4) aggregating the
latency by applying aggregate functions in Table 1. By re-
peating this process many times, i.e., simulating many re-
quests to an application, E3/Q approximates the probability
distribution of the end-to-end latency.

Since E*/Q obtains the probability distribution of the
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Figure 7: Latency on two 2.2 GHz cores

end-to-end latency, it allows developers to define SLAs in
a probabilistic manner, e.g., using best-case, worst-case,
worst of the best 95%-case, average and the most frequent
latency as QoS objectives. It also allows for using multi-
ple types of latency in a SLA, e.g., a SLA can define both
average and worst-case latency as QoS objectives.

QoS Attribute Sequénce Branch Parallel
Throughtput (T") min T Z T, min T
SESservices sEs(’quemres
bebranches
Latency (L) Z L, N/A max L,
seservices sesequences

3 Multiobjective Optimization of Service De-
ployment with E3/Q

As a GA, E*/Q maintains a population of individuals,
each of which represents a service deployment configura-
tion for each user category and encodes it as genes. E>/Q
evolves and optimizes the individuals in generations by re-
peatedly applying genetic operations to them. Currently,
E3/Q assumes three user categories: platinum, gold and sil-
Ver users.

Figure 8 shows an example individual. An individual
consists of three sets of genes, each of which represents a
deployment configuration for each user category. A deploy-
ment configuration consists of deployment plans and ser-
vice instances. An example in Figure 8 assumes that four
types of deployment plans are available and three services
are defined in a workflow. A deployment plan is encoded as
a set of four genes; the first gene indicates the type of the de-
ployment plan (i.e., O to 3 represents the index of the type)
and the second to fourth genes indicate whether an instance
of a certain service is deployed on it. (i.e., 1 indicates that
an instance is deployed.) Therefore, the first four genes in
the example, i.e., 2011, represents a deployment plan of the
third type that instances of the second and third services are
deployed on. Since a deployment configuration can have
arbitrary number of deployment plans, the number of genes
varies depending on the number of deployment plans.
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3.1 Genetic Operations in E3/Q

Since the number of genes in an individual varies in
E3/Q, crossover and mutation, i.e., two most important
genetic operations, must be designed to deal with it. A
crossover operation in E3/Q performs one-point crossover
on genes for each user category. When it performs a
crossover on two individuals, the crossover operation first
picks a set of genes for platinum users from both two in-
dividuals, selects a crossover point on each genes and per-
forms a crossover (Figure 9). A crossover point is randomly
selected from points dividing deployment plans. For exam-
ple, in Figure 8, a crossover point must be between 4i-th and
4i+1-th genes, e.g., 4th and 5th or 8th and 9th genes, since a
deployment plan is encoded as a set of four genes. E3/Q’s
crossover operation performs crossover on genes for gold
users and silver users as well.

crossover point crossover point

1
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Figure 9: Crossover Operation in E*/Q

A mutation operation in E3/Q is designed to change the
value of genes and the number of genes in an individual.
First, in order to provide an opportunity to add a new de-
ployment plan to a deployment configuration, the mutation
operation adds an empty deployment plan, i.e., a deploy-
ment plan that no service instances run on it, before mutat-
ing genes (Figure 10). (The type of a deployment plan is
randomly selected.) Mutation occurs on genes with the mu-
tation rate of 1/n where n is the number of genes in an indi-
vidual. When a mutation occurs on a gene used for specify-
ing the type of a deployment plan, its value is randomly al-
tered to represent another type of deployment plan. When a
mutation occurs on a gene used for indicating the existence
of a service instance, its value is changed from zero to one
or one to zero. (i.e., non-existent to existent or existent to
non-existent.) Therefore, mutation may turn a newly added
empty deployment plan into non-empty and may turn ex-
isting non-empty deployment plans into empty. After that,

the mutation operation examines each deployment plan and
removes empty deployment plans from a deployment con-
figuration. This way, the number of genes (the number of
deployment plans) in an individual may change.

Add an empty
deployment plan
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Figure 10: Mutation Operation in E3/Q

3.2 Optimization Process in £3/Q

Listing 1 shows the optimization process in E3/Q. P#
denotes a population at the generation g. At each genera-
tion, two parents, p, and pg, are selected with binary tour-
naments. They reproduce two offspring by performing a
crossover operation. Then, the offspring’s genes are mu-
tated. This reproduction process is repeated until the num-
ber of offspring (Qf) reaches u. Of a union of P$ and Q%,
E3/Q selects the top u individuals with respect to their fit-
ness values. A fitness value indicates a quality (or good-
ness) of an individual; it is calculated with a fitness func-
tion in AssignFitnessToIndividuals(). E3/Q repeats the
above process for g,,,, times.

Listing 1: Evolution Process in E3/Q

g0
P’ — A population of randomly generated u individuals
repeat until g==guu {
AssignFitnessValuesToIndividuals (P#®)
Q-0
repeat until |Q%] == u {
// Parent selection via binary tournament
Pas P» < Randomly selected two individuals from P%
po < Either p, or p, with a higher fitness value
Pas Pb < Randomly selected two individuals from P*
pp < Either p, or p, with higher fitness value

// Reproduction via crossover
q1, g2 <« Crossover(p,, pg)

// Mutation on reproduced offspring
q1 < Mutation(q;)
Add ¢g; to Q% if Q% does not contain g¢.
q» < Mutation(qr)
Add ¢, to Q% if Qf does not contain ¢.
}
AssignFitnessValuesToIndividuals (P U Q%)
Pl « Top u of PEUQ® in terms of their fitness values
ge—g+1
}

AssignFitnessValuesToIndividuals (P){
DominationRanking (P)
foreach p in P {
if p is feasible
// Fitness function for a feasible individual
f « p’s domination value X
p’s distance from the worst point X
p’s sparsity



else
// Fitness function for an infeasible individual
f « 0 - p’s SLA violation / p’s domination value

p’s fitness value « f
}
}

E3/Q is designed to seek individuals that satisfy given
SLAs and exhibit the optimal trade-offs among QoS ob-
jectives in the SLAs. In order to fulfill the both require-
ments, E3/Q distinguishes feasible individuals, which sat-
isfy SLAs, and infeasible individuals, which do not. E3/Q
uses two different fitness functions for feasible and infea-
sible individuals. (See AssignFitnessToIndividuals().)
The fitness function for feasible individuals is designed to
encourage them to improve their QoS values in all objec-
tives and maintain diversity in their QoS values. The fit-
ness function for infeasible individuals is designed to en-
courage them to reduce SLA violations and turn into fea-
sible individuals. Feasible individuals have positive fitness
values, while infeasible ones have negative fitness values.
E3/Q considers higher-fitness individuals as higher qual-
ity (or better). Therefore, feasible individuals have higher
chances, than infeasible ones, to be selected as parents for
reproduction.

3.3 Domination Ranking

In the design of fitness functions, E3/Q employs the no-
tion of domination ranking [6]. An individual i is said to
dominate an individual j if any of the following conditions
are hold.

1. Individual i is feasible and j is not.

2. Both i and j are feasible, and i outperforms j in terms
of their QoS values.

3. Bothiand j are infeasible, and i outperforms j in terms
of their SLA violations.

In the second condition, an individual i is said to out-
perform an individual j if i’s QoS values are better than, or
equal to, j’s in all QoS objectives, and i’s QoS values are
better than j’s in at least one QoS objective. In the third
condition, an individual i is said to outperform an individ-
ual j if i’s SLA violations are lower than, or equal to, j’s in
all violated QoS attributes in SLAs, and i’s SLA violations
are lower than j’s in at least one of violated QoS attributes.
A SLA violation is measured as an absolute difference be-
tween an actual QoS measure and a required QoS level in a
SLA.

Figure 11 shows an example of the second condition
in domination ranking. It examines domination relations
among six feasible individuals in terms of their QoS values.
In this example, individuals A, B and C are at the first rank.
In other words, they are non-dominated. A, B and C do

not dominate with each other because each of them cannot
dominate the others. Since individuals D and E are dom-
inated by the top rank individuals, they are at the second
rank. Similarly, individual F is at the third rank. A domina-
tion rank is assigned to an individual based on the number
of individuals that dominate it.
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Figure 11: An Example Domination Ranking

3.4 Fitness Function for Feasible Individuals

For each feasible individual, E3/Q assigns a fitness value
based on its domination value, distance from the worst point
and sparsity. (See AssignFitnessToIndividuals() in List-
ing 1.) These values contribute to increase a fitness value.
An individual’s domination value indicates the number of
the other individuals in lower domination ranks than the in-
dividual in question. Therefore, non-dominated individuals
have the highest domination values (Figure 11).

It is known that most individuals tend to become non-
dominated when a problem has more than three objectives,
and it weakens the pressure to evolve individuals since most
solutions are in the same domination rank [7]. In order to
avoid this issue, E°>/Q-MOGA uses the distance from the
worst point, i.e., a point consists of the worst objective val-
ues in a population, to measure the excellence of individuals
as well as domination values. For each feasible individual,
E3/Q-MOGA calculates the Manhattan distance from the
worst point. (In this calculation, QoS values are normal-
ized in case QoS objectives have different scales.) Manhat-
tan distance is used because it becomes larger, compared
with the other p-norm distances (p > 2) including Euclid-
ian distance (p = 2), when individuals’ objective values are
balanced.

Sparsity represents diversity of individuals; how individ-
uals spread uniformly in the objective space. Maintaining
the diversity of individuals is an important consideration in
E3/0-MOGA to reveal wider variety of trade-offs in objec-
tives. For each individual, E3/Q calculates the Manhattan
distance to the closest neighbor individual in the objective
space and determines the distance as its sparsity. (In this
calculation, QoS values are normalized in case QoS objec-
tives have different scales.) Manhattan distance is used be-



cause it becomes larger when individuals are uniformly dis-
tributed over all objectives. E3/Q favors diversity of indi-
viduals because diverse individuals can reveal a wide range
of trade-offs among QoS objectives.

3.5 Fitness Function for Infeasible Individuals

For each infeasible individual, E3/Q assigns a fitness
value based on its fotal SLA violation and domination value.
(See AssignFitnessToIndividuals() in Listing 1.) The
total SLA violation is calculated as the sum of violations
against QoS requirements in SLAs. (In this calculation, vio-
lation values are normalized in case QoS requirements have
different scales.) The total SLA violation contributes to de-
crease a fitness value, while a domination value contributes
to increase it.

4 Simulation Evaluation

This section evaluates E3/Q through a simulation study.
This simulation study simulates a workflow shown in Fig-
ure 1. When running on a deployment plan with one
1.0GHz CPU, Service 1, 2, 3 and 4 process 28, 25, 23 and
20 req/sec, respectively. Table 2 are available deployment
plans.

Name | CPU Core péed (GHz) | # of Cores | Cost ($)
High 1.0 4 50
Mid 1.2 2 30
Low 1.5 1 10

Table 3 shows the SLAs used in this simulation study.
SLAs define each user category’s throughput, worst of
the best 95%-case latency (upper bound) and cost (upper
bound). This simulation study assumes that 25 of platinum,
90 of gold and 750 of silver users access to an application
on the average and allows uses in each category to send 2, 1
and 0.2 requests per second. Therefore, required throughput
of platinum, gold and silver users is 50, 90 and 150 req/sec,
respectively. Also, platinum and gold users have the worst
case latency while they have no cost (or budget) limits. Sil-
ver users have a cost limit. In addition, there is a limit on
the total costs incurred by all of three user categories. E>/Q
uses the population size (u) of 100 and the maximum gen-
eration (gqy) of 500.

Table 3: Service Level Agreements (SLAs)

SLAs
User Throughput | 95% Latency | Cost | Total Cost
Category (reg/sec) (sec) %) &)
Platinum 50 0.5 | N/JA
Gold 90 1.0 | N/A 2,000
Silver 150 N/A | 400

This problem has approximately 3.7 x 10*° of the search
space. A deployment plan is represented as one of D-(25—1)
combinations of genes where D is the number of deploy-
ment plan types and S is the number of services in a work-
flow. When a deployment configuration has M deployment
plans, there are p.os_1yHy = (M + D - 25 -1 -D/M!-
(D - (25 = 1)! = 1)) combinations of genes. Therefore, the
SSDO problem has a search space of = (i + D - (25 - 1) —
DY/G! - (D - (25 — 1) = 1)!) where N is the maximum num-
ber of deployment plans in a deployment configuration. In
this simulation study, D is three, S is four and N is 200
since the maximum total cost is $2,000 and the most inex-
pensive deployment plan is $10. Since E3/Q is configured
to run for 500 generations with 100 individuals, it examines
50,100 individuals in total, which is a very limited (only
2.2 x 107*%) regions in the entire search space.

Figure 12 to 19 show average objective values that fea-
sible individuals yield. Results are obtained through 50 in-
dependent GA runs. Throughput is not shown here since
feasible solutions’ throughput is the same as that in SLAs.
(e.g., Throughput of all feasible solutions is exactly 50 re-
g/sec for platinum users.)

Figure 12, 13 and 14 show the maximum, average and
minimum latency that individuals yield for platinum, gold
and silver users. Individuals successfully evolve and satisfy
SLAs for platinum and gold users. Although silver users do
not have a SLA for latency, E*/Q lowers latency for them
with the other SLAs satisfied. Moreover, the maximum la-
tency of each user category increases over generations, i.e.,
individuals evolve and reveal trade-offs in latency. For ex-
ample, application developers can select balanced one or
one with extremely high latency for silver users for opti-
mizing other objectives such as costs.

Figure 15, 16 and 17 show the maximum, average and
minimum cost that individuals incur for platinum, gold and
silver users. Figure 18 shows the total cost. Individuals suc-
cessfully evolve and satisfy SLAs for silver users. Although
platinum and gold users have no SLAs for costs, E*/Q low-
ers costs for them with the other SLAs satisfied. As well as
latency, individuals evolve to reveal trade-offs in cost over
generations.

Figure 19 shows the the number of (1) feasible in-
dividuals and (2) feasible and non-dominated individuals
over generations. Although all individuals become feasible
and non-dominated at around 100th generation, individuals
keep evolving to obtain better objective values and reveal
wider trade-offs sine the fitness function in E3/Q considers
distance from the worst point as well as domination values
(see Section 3.4).

Figure 20 shows results of another simulation study that
investigates the efficiency of E3/Q. This simulation study
sets up several deployment configurations whose search
space is 700 to 3.9 x 10* and obtains a set of true optimal
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solutions by leveraging brute force searches. Then, E3/Q
searches optimal solutions in the same set of deployment
configurations. Figure 20 shows the ratio of search space
that £3/Q examines to find true optimal solutions. (Aver-
age and standard deviation of independent ten runs.) The
ratio decreases as the search space increases, and E3/Q can
find optimal solutions in a very short time even in problems
with huge search space.

5 Related Work

This paper describes a set of extensions to the authors’
prior work [8]. Extensions includes (1) a performance es-
timation using queuing theory, (2) a revision of service de-
ployment and QoS models, (3) a support of probabilistic
SLAs, and (4) a revision of E*/Q-MOGA. By leveraging
a queuing theory based performance estimation and QoS
aggregation through Mote Carlo method, this paper allows

Figure 19: Ratio of Feasible Solutions
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Figure 20: Ratio of Search Space Examined

for defining SLAs in a probabilistic manner. Also, E3/Q’s
fitness functions are revised to represent the excellence of
solutions more properly.

Various research efforts have investigated the SSDO
problem. However, most of them do not support assump-
tions that the current clouds make. For example, they do
not consider binding multiple service instances to a service.
No existing work considers differentiating SLAs for differ-
ent user categories of an application. E3/(Q is the first at-
tempt to investigate the SSDO problem in the context of
cloud computing.

Currently, linear programming is a major method to
solve the SSDO problem (e.g., [9, 10]). However, it is not
designed to seek trade-offs among conflicting optimization
objectives. It also has a scalability issue; its computational
cost increases exponentially as a search space grows [1]. In
practice, the SSDO problem has a huge search space as dis-



cussed in Section 4. Therefore, linear programming does
not work well in the SSDO problem for large-scale applica-
tions.

In order to solve large-scale SSDO problems, it is re-
quired to use heuristic methods such as GAs [1, 11]. In
general, GAs scale better than linear programming. How-
ever, it is always non-trivial to manually tune weight pa-
rameters in a fitness function of a classical GA. (A classi-
cal GA has a fitness function as a weighted sum of objec-
tive values.) Also, similar to linear programming, classical
GAs do not seek the optimal trade-offs among conflicting
objectives. Multiobjective GAs avoids the above issues in
classical GAs. They seek the optimal trade-off (or Pareto-
optimal) solutions, and have no weight parameters in their
fitness functions thanks to domination ranking. A limited
number of research efforts have investigated multiobjective
GA:s for the SSDO problem (e.g., [12, 13]). However, none
of them consider SLAs as E3/Q does.

A number of research leverage queuing theory to esti-
mate the performance of distributed systems [2, 3]. E3/ Qis
the first attempt to apply queuing theory to the SSDO prob-
lem. Also, most of research work use queuing theory to
estimate only average latency and do not allow for consid-
ering the probability distribution. [5] leverages Monte Carlo
method to aggregation QoS and obtain the probability dis-
tribution. However, it uses the probability distributions to
estimate the performance of service oriented applications
rather than optimize them as E3/Q does.

Several research have investigated methods to aggregate
SLAs in service oriented applications [14]. They propose
functions to aggregate a set of SLAs into end-to-end SLAs
when an application consists of multiple services that have
their own SLAs. E3/Q assumes each service in an appli-
cation has no SLAs and QoS aggregate functions are used
to aggregate service instances’ QoS measures to investi-
gate whether aggregated QoS measures satisfies applica-
tion’s end-to-end SLAs. Therefore, aggregation of SLAs
is out of the scope of current E3/Q.

6 Conclusion

This paper proposes and evaluates E*/Q, which is a
multiobjective GA to solve the SSDO problem for service-
oriented cloud applications. Simulation results demonstrate
that E3/Q efficiently obtains quality deployment configu-
rations that satisfy given SLAs. As future work, empirical
evaluations are planned to use E3/Q with several clouds and
provide additional performance implications.
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