
International Journal of Web Services Research , Vol.X, No.X, 200X

 1

A Model-Driven Development Framework for
Non-Functional Aspects in Service Oriented Architecture

Hiroshi Wada and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125-3393
{shu, jxs}@cs.umb.edu

Katsuya Oba
OGIS International, Inc.
San Mateo, CA 94404

oba@ogis-international.com

ABSTRACT:

Service Oriented Architecture (SOA) is an emerging style of software architectures to reuse and
integrate existing systems for designing new applications. Each application is designed in an
implementation independent manner using two major abstract concepts: services and connections
between services. In SOA, non-functional aspects (e.g., security and fault tolerance) of services
and connections should be described separately from their functional aspects (i.e., business logic)
because different applications use services and connections in different non-functional contexts.
This paper proposes a model-driven development (MDD) framework for non-functional aspects
in SOA. The proposed MDD framework consists of (1) a Unified Modeling Language (UML)
profile to graphically model non-functional aspects in SOA, and (2) an MDD tool that accepts a
UML model defined with the proposed profile and transforms it to application code. This paper
also demonstrates how the proposed framework is used in model-driven development of service-
oriented applications. Empirical evaluation results show that the proposed MDD framework
improves the reusability and maintainability of service-oriented applications by hiding low-level
implementation technologies in UML models.

KEY WORDS:
Service Oriented Architecture, Visual Non-functional Modeling, UML, Metamodeling, Model
Driven Development

INTRODUCTION

A key challenge in large-scale distributed systems is to reuse and integrate existing systems to
build new applications in a cost effective manner (Vinoski, 2003; Zhang, 2004). Service Oriented
Architecture (SOA) addresses this challenge by improving the reusability and maintainability of
distributed systems (Papazoglou, 2003; Endrei et al., 2004; Lewis et al., 2005; Foster, 2005;
Bichler et al., 2006; Arsanjani et al., 2007). It is an emerging style of software architectures to
design applications in an implementation independent manner using two major abstract concepts:
services and connections between services. Each service encapsulates the function of a subsystem
in an existing system. Each connection defines how services are connected with each other and
how messages are exchanged through the connection. SOA hides the implementation details of
services and connections (e.g., programming languages and remoting middleware) from
application developers. They can reuse and combine services to build their applications without
knowing the implementation details of services and connections.

In order to make this vision of SOA a reality, this paper focuses on a research issue of increasing
the reusability of services and connections, and addresses this issue by separating non-functional
aspects (e.g., security and fault tolerance) of services and connections from their functional
aspects. The separation of functional and non-functional aspects can improve the reusability of

International Journal of Web Services Research , Vol.X, No.X, 200X

 2

services and connections because it allows different applications to use services and connections
in different non-functional contexts. For example, an application may unicast messages to a
service, and another may manycast messages to multiple replicas of the service to improve fault
tolerance. Also, an application may send signed and encrypted messages to a service, when the
messages travel to the service through third-party intermediaries, in order to prevent the
intermediaries from maliciously sniffing or altering the messages. Another application may send
plain messages to the service via unsecured connection when the service is hosted in-house. The
separation of functional and non-functional aspects can also improve the ease of understanding
application design and enable the two different aspects to evolve independently. This results in
higher maintainability of applications.

This paper describes a model-driven development (MDD) framework for non-functional aspects
in SOA. The MDD framework consists of (1) a Unified Modeling Language (UML) profile to
model non-functional aspects in SOA, and (2) an MDD tool that accepts a UML model defined
with the proposed profile and transforms it to application code (e.g., program code and
deployment descriptors). The proposed UML profile allows application developers to graphically
describe and maintain non-functional aspects in SOA as UML diagrams (composite structure
diagrams and class diagrams). Using the proposed UML profile, non-functional aspects can be
modeled without depending on any particular implementation technologies. The proposed MDD
tool, called Ark, transforms implementation independent UML models into implementation
specific application code.

This paper describes design details of the proposed UML profile, and demonstrates how Ark
transforms an input UML model to application code that runs with certain implementation
technologies such as Enterprise Service Buses (ESBs) (Chappell, 2004), secure file transfer
protocols and grid computing platforms. Empirical evaluation results show that the proposed
MDD framework improves the reusability and maintainability of service-oriented applications by
hiding implementation technologies in UML models.

CONTRIBUTIONS

This paper offers the following three contributions to the design space of service-oriented
applications.

• Modeling Support for Non-functional Aspects in SOA: This work is the first attempt to

investigate a UML profile to consistently model a wide range of non-functional aspects in
SOA, although there exist several UML profiles for specific aspects (e.g., functional aspects
and service discovery) in SOA. (See the Related Work section for more details.) The
proposed UML profile covers the following four areas of non-functional aspects.

1. Service Deployment Semantics: Service redundancy.
2. Message Transmission Semantics: Messaging synchrony, message delivery assurance,

message queuing, multicast, manycast, anycast, message routing, message prioritization,
messaging timeout, message logging, and message retention.

3. Message Processing Semantics: Message conversion, message split, message
aggregation, message validation, and message filtering.

4. Security Semantics: Transport-level encryption, message-level encryption (entire/partial
message encryption), message signature, message access control, and service access
control.

International Journal of Web Services Research , Vol.X, No.X, 200X

 3

• Modeling Support for Regulatory Compliance: As regulatory compliance has been
becoming an important factor in software development and maintenance, regulatory
mandates (e.g., the Sarbanes-Oxley Act and HIPPA) dramatically increase the number of
non-functional aspects that application developers need to consider (O’Grady, 2004). This
work is the first attempt to investigate a visual modeling language to describe non-functional
aspects derived from regulatory mandates. The proposed UML profile allows application
developers (or compliance management staffs) to graphically specify and verify how their
applications meet regulatory mandates. Currently, the proposed UML profile addresses data
retention, data/process validation (e.g., consistency validation among an order, invoice and
payment) and security (e.g., access control and data integrity).

• MDD Support for Service-Oriented Applications: Non-functional requirements change

during application lifecycle more often than functional aspects (Bieberstein et al., 2005). It
can be expensive to manage frequent changes in non-functional requirements. This results in
escalating maintenance cost, in turn total cost of owning. When a non-functional requirement
(e.g., security policy) changes in an application, the proposed MDD framework allows
application developers to make the change in a UML model specifying the application’s non-
functional aspects and keep its functional part intact. The proposed MDD tool (Ark)
generates non-functional code from the updated UML model and combines the generated
code with existing functional code. Ark makes application’s functional aspects reusable
across the changes in non-functional requirements, thereby improving the productivity of
application development and maintenance.

BACKGROUND AND A MOTIVATING EXAMPLE

UML is a modeling language to describe application designs as graphical diagrams. It specifies
the syntax (or notation) and semantics of every model element that appears in diagrams (e.g.,
class, interface and association). The syntax and semantics are defined in the UML metamodel
(Object Management Group, 2004), which is the grammar specification for standard (default)
model elements in UML.

In addition to standard model elements, UML provides extension mechanisms (e.g., stereotypes
and tagged-values) to specialize them to precisely describe domain or application specific
concepts (Fuentes et al., 2004). A stereotype is applied to a standard model element, and
specializes its semantics to a particular domain or application. Each stereotyped model element
can have data fields, called tagged-values, specific to the stereotype. Each tagged-value consists
of a name and value. A particular set of stereotypes and tagged-values is called a UML profile.

For example, a UML profile for Enterprise Java Beans (EJB) (Java Community Process, 2001)
defines the stereotype <<EJBEntityBean>>, which extends Class in the UML metamodel.
This means the stereotype can be applied to classes. Thus, a UML class stereotyped with
<<EJBEntityBean>> indicates that the class is designed as an EJB entity bean. The
stereotype <<EJBEntityBean>> has a tagged-value, called EJBPersisitenceType, to
specify who provides persistence to an entity bean. The tagged-value can have a value Bean or
Container. Bean indicates an individual entity bean is responsible for its own persistence, and
Container indicates an EJB container takes care of persistence.

Figure 1 overviews an example purchasing system across buyers, retailers, suppliers and
inventory managers. All example models in this paper focus on and define several particular parts

International Journal of Web Services Research , Vol.X, No.X, 200X

 4

of this system. In this example system, a Buyer purchases a product from a Supplier via
Retailer. A Supervisor authorizes each order that a Buyer places. An Accountant
performs accounting tasks for a Retailer. An InventoryManager manages a
Retailer’s inventory.

Figure 2 shows an example model built with the proposed UML profile. This model focuses on
an interaction between a Retailer and Supplier in Figure 1, and defines an order
processing scenario in which a Retailer places an order and a Supplier issues an invoice.
In this example, two services (Retailer and Supplier) exchange messages. Each service is
represented by a class stereotyped with <<service>>. These services exchange two types of
messages (OrderMsg and InvoiceMsg), each of which is stereotyped with <<message>>.
Each message can have multiple tagged-values to specify additional message
transmission/processing semantics. In this example, the tagged-value signatureMethod
specifies that an OrderMsg carries a digital signature created with DSA (Digital Signature
Algorithm). Each pair of a request and reply messages is represented by a class stereotyped with
<<messageExchange>>.

<<connector>> represents a connection that transmits messages between services. In this
example, messages are delivered through a connector called OrderConn. Every message
exchange is bound with a connector in order to specify which connector is used to deliver
messages. A connector has a provided interface (represented as a "ball" notation) and a required
interface (represented as a "socket" notation) to transmit messages between services. Services use
the provided and required interfaces to send and receive messages, respectively. The two
interfaces are intended to show how services use (connect with) a connector.

Figure 1. The Structural Architecture of an Example Purchasing System

Buyer

《service》
Buyer

《service》
Supervisor

Retailer

《service》
Retailer

《service》
Accountant

Supplier

《service》
Supplier

InventoryMgr

《service》
InventoryManager

《service》
Warehouse

Figure 2. An Example UML Model

timeout = 00:05:00.00
synchrony = Sync
messageReliability::deliveryAssurance = ExactlyOnce
encryptionAlgorithm =

“http://www.w3.org/2001/04/xmlenc#aes256-cbc”
msgTransmissionLogRetained = true
retentionPeriod = “01/01/2008”

《service》
Retailer

《service》
Supplier

request

《message》
OrderMsg

《messageExchange》
Order

source sink
reply

《message》
InvoiceMsg

《connector》
OrderConn

《logger》
Logging

1 * 1*

signatureMethod =
“http://www.w3.org/2000/09/xmldsig#dsa-sha1”

timeout = 00:05:00.00
synchrony = Sync
messageReliability::deliveryAssurance = ExactlyOnce
encryptionAlgorithm =

“http://www.w3.org/2001/04/xmlenc#aes256-cbc”
msgTransmissionLogRetained = true
retentionPeriod = “01/01/2008”

《service》
Retailer

《service》
Supplier

request

《message》
OrderMsg

《messageExchange》
Order

source sink
reply

《message》
InvoiceMsg

《connector》
OrderConn

《logger》
Logging

1 * 1*

signatureMethod =
“http://www.w3.org/2000/09/xmldsig#dsa-sha1”

《service》
Retailer

《service》
Supplier

request

《message》
OrderMsg

《messageExchange》
Order

source sink
reply

《message》
InvoiceMsg

《connector》
OrderConn

《logger》
Logging

1 * 1*

signatureMethod =
“http://www.w3.org/2000/09/xmldsig#dsa-sha1”

International Journal of Web Services Research , Vol.X, No.X, 200X

 5

Each connector can have multiple filters inside. They are used to define message
transmission/processing semantics in a connector. This example uses a Logger in the
OrderConn connector. Logger logs messages that transmitted through the filter (OrderMsg
and InvoiceMsg in this example).

Also, each connector can have multiple tagged-values to specify additional message
transmission/processing semantics. In this example, OrderConn specifies the timeout of
message transmissions (five minutes), the synchrony of message transmissions (synchronous), the
assurance level of message delivery (exactly once) and the message encryption algorithm
(Advanced Encryption Standard). Also, through the use of tagged-values
msgTransmissionLogRetained and retentionPeriod, OrderConn specifies to
retain the logs of message transmissions until a certain date.

As shown above, the proposed UML profile provides a visual and intuitive abstraction to model
the architectures and non-functional aspects of service-oriented applications.

DESIGN OF THE PROPOSED UML PROFILE

The proposed UML profile provides key model elements to specify service-oriented applications:
service, message exchange, message, connector and filter, each of which is defined as stereotypes
(Table 1). Figure 3 shows how the proposed profile defines these stereotypes by extending the
UML metamodel. Each stereotype is defined as a metaclass stereotyped with
<<stereotype>>1. Except Connector, four stereotypes inherit the Class metaclass in the
Kernel package of the UML metamodel. Thus, they are applied to classes in user-defined
models (see Figure 2). A Service can be a source or sink of each request/reply message. The
source and sink are identified with source and sink, roles on two associations between a
MessageExchange and Services (Figure 2). Each MessageExchange may have multiple
reply messages per request message (Figure 3). Using multiplicity on two associations between a
MessageExchange and Services, MessageExchange can indicate one-to-one (unicast)
and one-to-many (multicast or manycast) message exchanges. For example, Figure 2 shows a

1 According to the UML specification, the first letter of a stereotype’s name is capitalized when the
stereotype is defined (Figure 3). However, it is not capitalized when the stereotype is used in UML models
(Figure 2).

Figure 3. Definition of Stereotypes

《stereotype》
Connector

0..*1

1
0..*

UML 2.0 metamodel

Proposed UML profile

InternalStructues::
StructuredClassifier

1..*

Ports::
EncapsulatedClassifierPorts::Port

0..1*

InternalStructures::
Property

0..1*

part

1..*
0..*1

0..*1..*

source

sink 1

0..*《stereotype》
MessageExchange

《stereotype》
Service

11
request reply1 0..*《stereotype》

Filter

Kernel::Class

InternalStructures::
Class

《stereotype》
Message

International Journal of Web Services Research , Vol.X, No.X, 200X

 6

one-to-one message exchange between a Retailer and a Supplier.

Connector is a stereotype extending the Class metaclass in the InternalStructures
package of the UML metamodel (Figure 3). This metaclass defines a composite class, a special
type of class, which can contain other model elements (e.g., inner classes)2 and have Ports to
specify how internal model elements interact with external elements. In the proposed UML
profile, a Connector can contain Filters to specify the semantics of message transmission
and message processing. The Ports connected with a Connector identify the Messages it
receives and sends out, using association roles input and output. For example, Figure 2
shows the OrderConn connector , which contains a filter (a Logger). This filter receives,
records message's log, and sends out OrderMsg or InvoiceMsg messages.

Table 1. Key Model Elements (Stereotypes) in the Proposed UML Profile
Stereotype Description

<<service>> Represents a service.
<<messageExchange>> Represents a pair of a request and reply messages. Specifies which services

send and receive the messages.
<<message>> Represents a (request or reply) message.
<<connector>> Represents a connection between services (i.e., message source and

destination). Defines the semantics of message transmission and processing.
Specifies which messages (message exchange) to transmit.

<<filter>> Customizes the semantics of message transmission and message processing
in a connector.

Connector

Connector has 10 tagged-values (Figure 4). timeout is a mandatory tagged-value to specify
the timeout period (in millisecond) in which a connector needs to deliver each message. If a
message is not delivered to its destination (sink) within the timeout period, a connector discards
the message. In Figure 2, the timeout period of the connector OrderConn is specified as five
minutes.

synchrony is a mandatory tagged-value to specify the synchrony semantics of message
transmissions between a message source and destination. Synchronous, asynchronous and
oneway non-blocking semantics are defined as an enumeration in Synchrony (Figure 4), and
each connector chooses one of them. In Figure 2, a Retailer and a Supplier exchange
OrderMsg and InvoiceMsg messages synchronously.

priority is a mandatory tagged-value to specify the priority of each message that a connector
delivers. The range of priority is from 0 to 255 (0 is the lowest and 255 is the highest), and
the default value is 0 (Figure 4).

inOrder is a mandatory tagged-value to specify whether the order of messages that a service
(message destination) receives is same as the order of messages that the other service (message
source) sends out. The default value of inOrder is false.

2 Precisely, a composite class can contain any classifiers, defined in the UML metamodel.

International Journal of Web Services Research , Vol.X, No.X, 200X

 7

deliveryAssurance is an optional tagged-value to specify the assurance level of message
delivery. Three different semantics are defined as an enumeration in DeliveryAssurance
(Figure 4), and each Connector chooses one of them at a time. AtLeastOnce means that a
connector retries delivering a message until its destination receives the message. (A message
retransmission is triggered with the timeout tagged-value.) However, the message may be
delivered to its destination more than once. AtMostOnce means that a connector discards a
message if the message has already been delivered to its destination; however, there is no
guarantee of message delivery. ExactlyOnce satisfies the requirements of the above both
semantics. It guarantees that a connector delivers a message to its destination without duplications.
When inOrder is true, ExactlyOnce is implicitly (automatically) set to
deliveryAssurance because duplicated or missing messages violate the inOrder
semantics.

Figure 5 shows an example model using inOrder and deliveryAssurance. This example
illustrates an extension to an order processing application in Figure 2. In this example, a Buyer
transmits an OrderMsg to a Supplier via Retailer (See also Figure 1.) After a
Retailer forwards an OrderMsg from a Buyer to a Supplier, the Buyer can cancel the
order by transmitting a CancellationMsg to the Retailer, and in turn, to the Supplier.
In this example, the order of message transmissions is important between Retailer and
Supplier because an order must be delivered to a Supplier before a corresponding order
cancellation. Therefore, the inOrder semantics is assigned to the OrderConn connector. This
semantics implicitly assigns ExactlyOnce to the deliveryAssuarance semantics in the
OrderConn connector.

Figure 5. An Example of inOrder and deliveryAssurance

《service》
Buyer

request
《message》
OrderMsg

source sink

reply
《message》

ConfirmationMsg

timeout = 00:05:00.00
synchrony = Sync
inOrder = true

《connector》
BuyerConn

《messageExchange》
OrderCancellation

《service》
Retailer

sinksource

request
《message》

CancellationMsg

orderID: Integer

orderID: Integer

《connector》
OrderConn

《service》
Supplier

timeout = 00:05:00.00
synchrony = Sync
messageReliability::deliveryAssurance

= ExactlyOnce

《messageExchange》
Order

source

source

sink

sink

1

*

1

*

1

*

1

*

1
*

1
*

1
*

1
*

Figure 4. Tagged-Values of Connector

0..1

《enumeration》
Synchrony

Sync
Async
Oneway

1synchrony

《enumeration》
DeliveryAssurance

AtMostOnce
AtLeastOnce
ExactlyOnce

0..1

deliveryAssurance

QueueParameters

size: Integer
persistent: Boolean
flushTime [0..*]: Time
flushInterval [0..1]: Time
flushWhenFull: Boolean

0..1

queueParameters
0..1

discardPolicy

《enumeration》
SelectingPoilcy

FIFO
LIFO
PriorityBased
DeadlineFirst

orderingPolicy

《stereotype》 Connector
timeout: Time
priority: Integer = 0
inOrder: Boolean = false
encryptionAlgorithm[0..1]: String
messageIntegrity: Boolean = false
msgTransmissionLogRetained: Boolean = false
retentionPeriod[0..1]: Date

International Journal of Web Services Research , Vol.X, No.X, 200X

 8

encryptionAlgorithm is an optional tagged-value used for transport-level encryption in a
connector. This tagged-value defines an algorithm to secure a connection upon which request and
response messages are transmitted. (See Figure 2 for an example.) The encryption algorithm is
specified as a URI defined in the XML Encryption specification (World Wide Web Consortium,
2002). For example Triple DES is represented with
http://www.w3.org/2001/04/xmlenc#tripledes-cbc, and AES-256 (Advanced
Encryption Standard) is represented with
http://www.w3.org/2001/04/xmlenc#aes256-cbc.

queueParameters is an optional tagged-value to deploy a message queue between services
(i.e., message source and destination) and specify the semantics of message queuing between
them. size specifies the maximum number of queued messages. flushWhenFull specifies
whether queued messages are flushed from a queue to their destinations when the queue
overflows. When flushWhenFull is false, the overflowing queue discards a message
according to discardPolicy (Figure 4); discarding the oldest message (First-In-First-Out),
the newest message (Last-In-First-Out), the lowest priority message or the closest deadline
message. These four policies are defined as an enumeration in SelectionPolicy (Figure 4).
flushTime and flushInterval specify when and how often a queue flushes messages,
respectively. orderingPolicy specifies how to order messages in a queue: FIFO, LIFO,
highest-priority-first or earliest-deadline-first. persistent specifies whether a queue stores
messages in a storage (e.g., a file or database) so that the queue can recover them when it crashes
unexpectedly.

Figure 6 shows an example using queueParameters. It illustrates an inventory management
application for retailers. (See also Figure 1) Each Retailer transmits an OrderMsg to an
InventoryManager when it has no or few products in stock. The InventoryManager
receives OrderMsgs from multiple Retailers every two hours in a batch manner. The
OrderConn connector implements a synchronous queue that stores and forwards OrderMsgs.
The InventoryManager schedules which warehouses deliver which products to which retail
stores (every two hours), and based on the shipping schedule, sends ShippingMsgs to

Figure 6. An Example of Queue

《message》
ShippingMsg

request1

*

1

*

source

sink

《service》
Retailer

《connector》 OrderConn

《service》
InventoryManager

《messageExchange》
Order

sink

source

1

*

1

*

《service》
Warehouse

《message》
OrderMsg

《messageExchange》
Shipping

request

synchrony = Sync
timeout = 00:10:00.00
queueParameters::size = 10000
queueParameters::persisitent = true
queueParameters::flushInterval = 02:00:00.00
queueParameters::flushWhenFull = true

itemID: Integer
amount : Integer

1sink
*

《service》
Supplier

《connector》
InventoryConn

《message》
PurchasingMsg

*

1

《messageExchange》
Purchasing

request
source

reply

《message》
OrderConfirmationMsg
orderID: Integer
estimatedTime : Date

timeout = 00:05:00.00
synchrony = Sync
deliveryAssurance = ExactlyOnce

International Journal of Web Services Research , Vol.X, No.X, 200X

 9

Warehouses. If a warehouse has a small inventory of a particular product, the
InventoryManager orders the product by sending a PurchasingMsg to a Supplier.

msgTransmissionLogRetained is a mandatory tagged-value to specify whether to retain
logs on message transmissions. (See Figure 2 for an example.) Regulatory mandates require
applications to retain the logs and make them auditable for the third party organizations in the
future. A connector with this tagged-value records (1) which messages are transmitted, (2)
message source and destination (services), and (3) when the messages are transmitted. If
msgTransmissionLogRetained is true, retentionPeriod must be specified to define
the period to retain each message transmission log. The default value of
msgTransmissionLogRetained is false. If it is false, retentionPeriod is ignored.

messageIntegrity is a mandatory tagged-value to specify whether to ensure the message
integrity. The default value of messageIntegrity is false. A connector with this tagged-
value checks whether messages are changed during their transmission.

Figure 7 illustrates an order processing application in which a Buyer places an order and a
Retailer receives it via authorization by a Supervisor. By assigning a signature to the
authSignature data field of an OrderMsg, Supervisor authorizes the message (order).
Services are connected through a connector with the messageIntegrity semantics. This
semantics ensures that OrderMsg messages are not altered during their transmission, and
eliminates the possibility of malicious alteration.

A package stereotyped with <<messageRetention>> specifies that contained connectors
have the msgTransmissionLogRetained semantics implicitly if the connectors omit it
(Figure 7). Each connector follows the retentionPeriod specified in the package. When a
connector specifies msgTransmissionLogRetained and retentionPeriod explicitly,
they override the retentionPeriod specified in a package. Also, a package stereotyped with
<<messageRetention>> enforces contained services and messages to log their message
transmissions. Connectors, services and messages retain their logs independently, and the third
party organizations can discover fraud activities by checking the inconsistencies between their
logs.

Figure 7. An Example Model for Regulatory Compliance

requestsource
sink

《messageExchange》
AuthReqExchange

source
sink

《connector》
RetailerConn

《service》
Supervisor《service》

Retailer

《service》
Buyer

request

reply

《digester》

《accessControlledMessage》
OrderMsg

orderID : Integer
numOfItem : Integer
authSignature : String

synchrony = Sync
timeout = 00:05:00.00
messageIntegrity = true

《MessageRetention》 {retentionPeriod = “year = 2, month = 6”}
AuditablePurchasing

《accessControlledMessage》
InvoiceMsg

1

*

1

*

1

*

1

*

numOfItem: Integer

securityTokens = {X509v3}
revisionHistoryRetained = true

securityTokens
= {X509v3}

《messageExchange》
OrderReqExchange OrderMsg.numOfItem ==

Invoice.numOfItem

International Journal of Web Services Research , Vol.X, No.X, 200X

 10

Application developers can specify constraints using the Object Constraint Language (OCL).
Constraints are used to ensure the consistency among application data and check whether services
work correctly. For example, in Figure 7, OrderReqExchange has a constraint that ensures
the number of items in an order (OrderMsg) and a corresponding invoice (InvoiceMsg) are
always equal. When this constraint is violated, fraud activities could be committed.

Filter

This paper describes eight of the filters that the proposed UML profile defines. Filters are defined
as stereotypes extending the Filter stereotype (Figure 8). New filters can be defined as its
subclasses. This section shows six filters to specify message transmission semantics and two
filters to specify message processing semantics.
The stereotypes Multicast, Manycast, Anycast, Router, Logger and Digester are
used to define the message transmission semantics in a connector. A Multicast filter receives
a request message from its source and transmits it to multiple destinations (services)
simultaneously (one-to-many message exchange). A group of destinations can contain different
types of services. When the Multicast filter receives reply messages from the destinations, it
sends them back to the source of the request message. Multicast is used to improve the
efficiency of message transmissions.

Figure 9 shows an example that models an application for wholesale price notification using
Multicast. A Retailer subscribes for the price changes of a particular supply, and a
Supplier notifies (or publishes) any price changes to the Retailer. A Retailer transmits
a Subscription message to a Supplier in a synchronous and exactly-once manner. A
Supplier multicasts a PriceNotificationMsg message, which contains a supply’s GTIN

Figure 8. Tagged-Values of Filters

《stereotype》
Validator《stereotype》

Router

《stereotype》
MessageRemover

《stereotype》
Logger 《stereotype》

Anycast

《stereotype》
Manycast

groupSize : Integer
standby : Standby
backtracking: Backtracking
quorum : Integer
timeout : Time

selection : Selection
retry : Integer
timeout : Time

《enum》 Selection
Random, RoundRobin, Priority

《enum》 Backtracking
FCFB, Voting

《enum》 Standby
Hot, Warm, Cold

《stereotype》
Filter

《stereotype》
Digester

priority : Integer

digestAlgorithm: String

schemata: Message[1..*]

《stereotype》
Multicast

Figure 9. An Example of Multicast

timeout = 00:02:00.00
synchrony = Sync
deliveryAssurance = ExactlyOnce

timeout = 00:02:00.00
synchrony = Async
deliveryAssurance = AtMostOnce

《connector》 SubConn

《service》
Supplier

《service》
Retailer 《messageExchange》

SubscriptionExchange

《messageExchange》
StockInfoExchange

source

source sink

sink

《message》
PriceNotificationMsg

《message》
SubscriptionMsg

request

request

1*
1*

* *
1 *

GTIN: String
price: Integer

《connector》 NotifConn

《multicast》
Multicaster

International Journal of Web Services Research , Vol.X, No.X, 200X

 11

(Global Trade Item Number)3 and price, to multiple Retailers in asynchronous and at-most-
once semantics.

Manycast is used to improve fault tolerance by forwarding a request message to a group of
replicated destinations (i.e., to the same type of services). The tagged-value groupSize
specifies how many services are deployed as a group. standby specifies the operation of
replicated services: hot standby, warm standby or cold standby. In hot standby, all services in a
group remain active to receive request messages. A Manycast filter sends a message to all
services in a group. Manycast returns only one reply message to the source of a request
message, out of multiple replies from services. backtracking defines two policies to decide
which reply message to be returned. When FCFB (first-come-first-backtracked) is selected, a
Manycast filter returns the first reply that it receives from destination services. When Voting
is selected, the Manycast filter performs a voting process. It counts the number of reply
messages and inspects their contents. If the number of replies that have the same content reaches
quorum, the Manycast filter returns one of the replies. If the number does not reach quorum
within timeout, the Manycast filter returns the reply that generates the highest voting count.

In warm standby, all services in a group remain active to receive request messages. A Manycast
filter sends a message to all services in a group, but only one service returns a reply. In this case,
backtracking is not used. In cold standby, only one service in a group is active, and a
Manycast filter sends a message to the service. If the service does not respond within
timeout, the filter activates another service in the group and sends a message to the service. In
cold standby, backtracking is not used.

In an example model shown in Figure 10, a supplier sends an inquiry to a cluster of transaction
record servers to obtain a transaction record containing a set of orders. A manycast filter,
Replicator, is used in the connection RecordConn. The filter intercepts each Inquiry
(request) message and sends it to three replicated instances of TransactionRecServer,
which is maintained with the hot standby policy. Replicator returns a
TransactionRecordMsg (reply message) to a Supplier on FCFB basis.

3 http://www.gtin.info/

Figure 10. An Example of Manycast

《service》
Supplier

《manycast》
Replicator

《connector》 RecordConn

reply

sinksource

* 3

groupSize = 3
Standby = Hot
backtracking = FCFB
timeout = 00:05:00.00

redundancy = 3
securityTokens = {
X509v3, Kerberosv5ST}
backupParameters::

generation = 5
backupParameters::

full = “0/0/0 10:00pm Sat”
backupParameters::

inc = “0/0/0 2:00am Week”

《messageExchange》
RecordExchange

《accessControlledService》
TransactionRecServer

《message》
TransactionRecordMsg

request

《message》
InquiryMsg

encryptionAlgorithm =
http://www.w3.org/2001/04/xmlenc#tripledes-cbc

*1

timeout = 00:05:00
synchrony= Sync

TransactionRecord
orderId: Integer
scannedContract: String

《EncryptedProperty》
records

1..*1

signatureMethod =
http://www.w3.org/ 2000/09/xmldsig#dsa-sha1

International Journal of Web Services Research , Vol.X, No.X, 200X

 12

Anycast is a variation of the hot standby policy in Manycast. It forwards a request message
to only one destination in a group of replicated services. This filter is used to balance workload
placed on services. selection defines how to choose a destination from multiple services;
randomly, on round robin or on destination's priority basis (the service with the highest priority in
a group is selected). If an Anycast filter fails to deliver a request message within timeout, it
retries to forward the request message. retry specifies the maximum number of retries. If the
Anycast filter fails the maximum number of retries, it returns an error message to the source of
the request message.

Figure 11 shows an example model describing a content delivery system, e.g., for delivering
contents among supplier’s on-line catalogs of their supplies. (For simplicity, tagged-values of the
connector RedirectionConn and CacheUpdateConn are omitted, but both have the
synchronous semantics and their timeout is five minutes.) A user agent (UserAgent) sends a
request (ContentReqMsg) to a content server (OriginServer) through a connector
(ContentDeliveryConn). To balance workload, the content server redirects the request to a
surrogate server (SurrogateServer). This model has a cluster of surrogate servers which
consists of 10 replica servers. An Anycast filter in the connector RedirectionConn selects
one of servers on their priority basis, and redirects a request to it. (tagged-values of the Anycast
filter is described on the upper left corner.) If a surrogate server does not have data to process a
request, it sends a request (CacheReqMsg) to a content server to obtain cache data
(CacheMsg). After processing a request, a surrogate server returns content (ContentMsg) to
an user agent.

Router routes an incoming message to one or more destinations with certain criteria. Since
UML does not provide a means to define rules, the proposed profile has no facility to specify
routing rules at design time. Supporting tools transform a Router to a skeleton source code (e.g.,
in Java) or a rule description (e.g., in XPath) that performs message routing. Developers are
expected to complete the skeleton code/description.

Logger records the transmission of each message whose priority value is higher than
priority. When priority is omitted, all message transmissions are recorded.

Digester records digest values of all messages. This filter can be used to check whether a
message is altered after its transmission. The digest algorithm is specified as a URI defined in the

Figure 11. An Example of Anycast

《service》
OriginServer

《service》
SurrogateServer

《connector》
RedirectionConn

《anycast》
Redirector

《connector》
CacheUpdateConn

《logger》
CacheLogger

《messageExchange》
RequestRedirection

《messageExchange》
CacheUpdate

《message》
CacheMsg

requestreply

11

* *

sink source

source sink
11

**

redundancy= 10

《message》
ContentReqMsg

request

《service》
UserAgent

《connector》
ContentDeliveryConn

《messageExchange》
ContentDelivery

《messageExchange》
ContentRequest

《message》
ContentMsg

source
1

sink
1

requestselection = Priority
retry = 2
timeout = 00:02:00.00

《Anycast》 Redirector’s
tagged-values

synchrony = Async
timeout = 00:05:00.00

《message》
CacheReqMsg

1
sink

source 1

* *

*

*

International Journal of Web Services Research , Vol.X, No.X, 200X

 13

XML Encryption specification (The World Wide Web Consortium, 2002a). For example,
http://www.w3.org/2000/09/xmldsig#sha1 specifies SHA-1.

In addition to the stereotypes for message transmission semantics, the proposed UML profile
provides two other stereotypes to define the message processing semantics in each connector:
Validator and MessageRemover (Figure 8). Validator and MessageRemover
validate incoming messages against the message schema specified in its tagged-value
schemaURI and a given criteria (e.g., rules specifying valid data ranges) respectively, and
transmit only validated messages. Since UML does not provide a means to define rules, the
proposed profile has no facility to specify message filtering rules for MessageRemover at
design time. Supporting tools transform a Validator and MessageRemover to a skeleton
source code (e.g., in Java) or a rule description (e.g., in XPath) that performs message filtering.
Developers are expected to complete the skeleton code/description. When a connector is
encrypted with encryptionParameter, Validator and MessageRemover in the
connector cannot validate messages (all messages are transmitted to their destinations.)

Service

Service has six tagged-values (Figure 12). timeout is an optional tagged-value to specify the
timeout period (in millisecond) of each message that a service issues. If a message is not
delivered to its destination within this time period, a connector discards the message.

priority is an optional tagged-value to specify the priority of each message that a service
issues. Anycast filter uses priority to select its destinations. Also, it is used to order
messages in a message queue when a connector has queueParameters.

Each service is expected to have data fields corresponding to the priority and timeout
tagged-values. Usually, class instances cannot read and write tagged-values because tagged-
values are defined in a metamodel (see Figure 3) and used in a model. The data fields allow
different class instances to have different tagged-values, and tagged-values specified in a model
behave as default values of corresponding data fields.

redundancy is an optional tagged-value to specify the number of runtime instances of a service.
This tagged-value must be specified when a service is accessed by Manycast or Anycast
filters. In Figure 10, three instances of TransactionRecServer are used for fault tolerance
with the manycast filter Replicator.

Same as a connector, a service with msgTransmissionLogRetained and
retentionPeriod records information on its message transmissions. A package stereotyped
with <<messageRetention>> specifies that enclosed services have the

Figure 12. Tagged-Value of Service

《stereotype》 Service
priority[0..1] : Integer
timeout[0..1] : Time
redundancy : Integer = 1
msgTransmissionLogRetained: boolean = false
retentionPeriod [0..1] : Date

《stereotype》
AccessControlledService

securityTokens [1..*] : String
Date

xor

full

inc

diff

backupParameters 0..1

BackupParameters
generation: Integer
encryptionAlgorithm[0..1]: String
securityTokens [0..*] : String

year: Integer
month: Integer
day: Integer
dayOfWeek: Integer
time: Time

0..*

0..*

1..*

International Journal of Web Services Research , Vol.X, No.X, 200X

 14

msgTransmissionLogRetained semantics implicitly if the services omit it (Figure 7).
When a service specifies msgTransmissionLogRetained and retentionPeriod
explicitly, they can overrides package’s ones.

backupParameters is an optional tagged-value to specify service's backup policy. full,
diff, and inc specify the time when full, differential and incremental backups is performed
respectively. The class Calendar can specify a specific time in point and a repetition time. For
example, when year is omitted (value zero means omission), the backup is performed every
year (the date and time to perform a backup is specified by other data fields in Calendar). Full
backup stores all data in a service, differential backup stores all data which have been modified
since the last full backup, and incremental backup stores all data which have been modified since
the last full or incremental backup. Differential backup requires much amount of storage and
longer time to perform than incremental backup, but it can restore data faster. Also, data
redundancy in differential backup reduces the risk of data loss. Differential and incremental
backups must be used with full backup, and full backup must be performed at least once before
differential or incremental backups are performed. One backup policy can have either differential
or incremental backup at a time (xor). If diff and inc are omitted, only full backup is
performed. generation specifies the number of full backups retained in a storage.
encryptionAlgorithm specifies an algorithm to secure backup data.
encryptionAlgorithm specifies an algorithm to secure backup data. securityTokens
specifies security tokens for the purpose of authentication (see below). In Figure 10, the service
TransactionRecServer has a backup policy. The backup policy specifies the generation
(five), the time when full and incremental backup are performed (10:00pm on every Saturday and
2:00am on week days respectively).

AccessControlledService is a stereotype extending the stereotype Service (Figure 12).
It is a special type of service that enforces an access control policy. The tagged-value
securityTokens is mandatory to specify security tokens (or certificates). The security tokens
are used to authenticate entities (e.g., services) that access a message. This tagged-value can
contain multiple values in order of precedence. The values use the names defined in the WS-
SecurityPolicy specification (Organization for the Advancement of Structured Information
Standards, 2005). In Figure 10, TransactionRecServers control accesses from
Suppliers using X.509 certificates or Kerberos tickets. Since UML does not provide a good
means to describe policies (or rules), the proposed UML profile does not define how to specify
access control policies. <<accessControlledService>> is used only for indicating a
service implements a certain access policy. A supporting tool transforms an
AccessControlledService to a skeleton program code or an access control description in
accordance with an implementation technology that an application designer chooses. Application
developers are required to complete implementing access control policies.

In addition to the general type of service, the proposed UML profile provides three special types
of services, MessageConverter, MessageSplitter, MessageAggregator, to define
the message processing semantics. They inherit the Service stereotype.

MessageConverter converts an incoming message with a given rule. Similar to Router,
supporting tools transform a MessageConverter to a skeleton source code or rule description
(e.g., in XSLT) that performs message conversions, and developers complete the skeleton
code/description.

International Journal of Web Services Research , Vol.X, No.X, 200X

 15

MessageSplitter divides an incoming message into multiple fragments with a certain rule.
Similar to MessageConverter, supporting tools transform a MessageSplitter to a
skeleton code or rule description that performs message split, and developers complete the
skeleton. In an example model shown in Figure 13, a Retailer sends an order message
(OrderMsg) to a MessageSplitter, and the splitter divides the message into two fragments
(PurchasingMsg and AccountingMsg), and sends them to different destinations
(Supplier and Accountant). The destinations directly returns reply messages
(PurchasingConf and AccountingConf) to the Retailer. The connector OrderConn
encrypts all messages with Triple DES. Also, the message OrderMsg retains routing
information, which includes source of a message. (i.e., it is auditable which customer sends which
message.)

MessageAggregator combines multiple incoming messages. Figure 14 shows an example
extending the model in Figure 2. In addition to OrderMsg, Retailer sends a message
AuthReqMsg to ask the service Supervisor to authorize the order. Aggregator
synchronizes and combines OrderMsg and AuthMsg (an authorization message from
Supervisors), and it sends new message AuthedOrderMsg to Supplier. The connector
OrderConn retains logs on message exchanges between Buyer, Supervisor and

Figure 13. An Example of MessageSplitter

request

《message》
OrderMsg

source sink

《connector》
OrderServiceConn

《messageExchange》
AccountingOrder

《service》
Accountant

《service》
Supplier

sink

sink

source

source

request

《message》
PurchacingMsg

request

《message》
AccountingMsg

reply

《message》
PurchacingConfMsg

reply

《message》
AccountingConfMsg

reply

reply

timeout = 00:05:00.00
synchrony= Async

《service》
Retailer

1 * 1*

1
*

1*

1
*

1*

timeout = 00:05:00.00
synchrony= Sync
encryptionAlgorithm =
“http://www.w3.org/2001/04/
xmlenc#tripledes-cbc”

routingHistoryRetained = true
retentionPeriod = …

《messageExchange》
Order

《messageSplitter》
Splitter

《messageExchange》
RetailOrder

《connector》
OrderConn

Figure 14. An Example of MessageAggregator

《service》
Retailer

《connector》
OrderConn

request

《message》
OrderMsg

source sink

《messageExchange》
AuthReq

《messageExchange》
Order

request

《message》
AuthReqMsg

《messageExchange》
Auth

request
《message》
AuthMsg

request

《message》
AuthedOrderMsg

《messageExchange》
AuthedOrder

《connector》
AuthedOrderConn

timeout = 00:05:00.00
synchrony = Sync
deliveryAssurance = ExactlyOnce
msgTransmissionLogRetained = true
retentionPeriod = …
messageIntegrity = true

source

source

sourcesink

sink

sink

《service》
Supplier

《logger》
Logging

《messageAggregator》
Aggregator

1
*

1
*

1

*

1

1 1 *

1

*

1

*

timeout = 00:05:00.00
synchrony = Sync
deliveryAssurance = ExactlyOnce

signatureMethod = …

《service》
Supervisor

International Journal of Web Services Research , Vol.X, No.X, 200X

 16

Aggregator. It makes logs on order and authorization process auditable. Also, OrderConn
ensure the integrity of messages.

Message

Message has seven tagged-values (Figure 15). schemaURI is a mandatory tagged-value to
identify the schema of a message. The default value of schemaURI is message's qualified name
(a combination of a package name and message's name).

priority and timeout are optional tagged-values to specify the priority and timeout period
of messages. Connector has timeout, and Service also have those two tagged-values. The
precedence is that Message's tagged-values override Service's ones, and Service’s tagged-
values override Connector's ones. Same as Service, each message is expected to have data
fields corresponding to the priority and timeout tagged-values, and different message
instance can have different priority and timeout.

signatureMethod is used an optional tagged-value to ensure the integrity of a message. It
specifies an algorithm for generating the message's digital signature. The algorithm is represented
with a URI defined in the XML Signature specification (The World Wide Web Consortium,
2002b). For example, DSA (Digital Signature Algorithm) is represented with
http://www.w3.org/2000/09/xmldsig#dsa-sha1. In Figure 10, each Inquiry and
TransactionRecord message is signed with DSA. When signatureMethod is specified,
each message is expected to maintain its signature in a data field called signature.

Same as a connector, a message with routingHistoryRetained and retentionPeriod
records information on its message transmissions. A package stereotyped with
<<messageRetention>> specifies that enclosed messages have the
routingHistoryRetained semantics implicitly if the services omit it (Figure 7). When a
message specifies routingHistoryRetained and retentionPeriod explicitly, they
can overrides package ones.

revisionHistoryRetained is an optional tagged-value to specify whether to retain
message's revision history (Figure 7). It makes the revision history to auditable in the future. A
message with this semantics records 1) which data fields are revised, 2) how they revised (i.e.,
newly created, replaced, or deleted), 3) when they revised, and 4) who revised them. The tagged-
value retentionPeriod is used to specify the period to retain the history. A package

Figure 15. Tagged-Values of Message

《stereotype》 Message

schemaURI : String
priority : Integer = 0
timeout[0..1] : Time
signatureMethod[0..1] : String
routingHistoryRetained: Boolean = false
retantionPeriod[0..1] : Date
revisionHistoryRetained: Boolean = false

Kernel::Class Kernel::Property
0..*

《stereotype》
EncryptedProperty

encryptionAlgorithm : String

UML 2.0 metamodel

Proposed UML Profile

《stereotype》
AccessControlledMessage

securityTokens [1..*] : String

International Journal of Web Services Research , Vol.X, No.X, 200X

 17

stereotyped with <<messageRetention>> specifies that enclosed messages have the
revisionHistoryRetained semantics implicitly

The stereotype EncryptedProperty is used for message-level (end-to-end) encryption. It is
defined as a stereotype extending Property in the UML metamodel (Figure 15). This
stereotype is attached to data fields to be encrypted in a message. EncryptedProperty has a
tagged-value, encryptionAlgorithm, to specify an algorithm used to encrypt a message.
The semantics of this tagged-value is same as that of encryptionAlgorithm in
Connector. An encryption algorithm is specified as a URI that the XML Encryption
specification defines (World Wide Web Consortium, 2002a). Different data fields in a message
can be encrypted with different encryption algorithms. In Figure 10, orders in
TransactionRecordMsg are encrypted with Triple DES, which is represented with
http://www.w3.org/2001/04/xmlenc#tripledes-cbc.

AccessControlledMessage is a stereotype extending Message (Figure 15). Similar to
AccessControlledService it is a special type of message that enforces an access control
policy. It removes the possibility of unauthorized accesses (i.e., altering messages by
unauthorized users) and accidental altering (i.e. altering messages mistakenly by authorized
users). The tagged-value securityTokens must be specified in
AccessControlledMessage for the purpose of authentication. Since UML does not provide
a good means to describe policies (or rules), the proposed UML profile does not define how to
specify access control policies. AccessControlledMessage is used to indicate a message
implements a certain access policy. A supporting tool transforms an
AccessControlledMessage to a skeleton program code or an access control description in
accordance with an implementation technology that an application developer chooses.
Application developers are required to complete implementing access control policies.

APPLICATION DEVELOPMENT WITH THE PROPOSED
MDD FRAMEWORK

This section describes a model-driven development (MDD) tool, called Ark, which accepts a
UML model designed with the proposed UML profile and transforms the model into a skeleton of
application code (program code and deployment descriptor). Currently, Ark implements
transformations between the proposed UML profile and three middleware technologies: Mule
ESB4, ServiceMix ESB5 and GridFTP6 (Figure 16). UML models in this work are maintained

4 http://mule.mulesource.org/
5 http://servicemix.apache.org/
6 An extension to FTP for transmitting files of large size (Allcock et al., 2005)

App.
codeApp.
code

UML Profile for SOAUML Profile for SOA

UML Models
w/ UML Profile for SOA

meta-model

model

UML Metamodel

Ark

App.
code

Ecore (EMF)meta-meta-
model

The proposed MDD framework

App.
codeApp.
code

UML Profile for SOAUML Profile for SOA

UML Models
w/ UML Profile for SOA

meta-model

model

UML Metamodel

ArkArk

App.
code

Ecore (EMF)meta-meta-
model

The proposed MDD framework

Application Model
with UML

The Proposed
UML Profile

uses

1. define

Application
Designers

Ark
Transformer

Application Code
for MuleESB

- Source code
- Deployment

Descriptor

Ark Library
for MuleESB

3. implement

Application
Developers

uses

2. Transform

XMI

Transformation
Rules

Figure 16. The Architecture of Ark Figure 17. Application Development with Ark

International Journal of Web Services Research , Vol.X, No.X, 200X

 18

with the metameta model of the Eclipse Modeling Framework (EMF;
http://www.eclipse.org/emf/). The proposed UML profile is defined as an extension to the UML
metamodel. Each application designer gives his/her UML model to Ark, and instructs Ark which
transformation to use for generating skeleton application code.

Figure 17 shows the development process using Ark. (This figure assumes that generated
application code uses Mule ESB.) Application designers define application models using the
proposed UML profile (e.g., an example model in Figures 2). Ark Transformer, one of the
components in Ark, takes the application models in the format of XML Metadata Interchange
(XMI) and transforms the input models into application code compliant with Mule ESB.

Ark has been tested with MagicDraw7, a visual UML modeling tool that can serialize UML
models to XMI (Figure 18). Ark Transformer is implemented based on openArchitectureWare8, a
model transformation engine. Each input UML model (XMI file) is validated against the UML
standard metamodel and the proposed profile’s metamodel (see Figure 3), and transformed to
application code for Mule ESB (Java programs and deployment descriptors in XML). A
transformation rule between UML models and application code is implemented as a set of
transformation templates, which define how to transform UML model elements to program
elements in application code.

Transformation Rules for ESB Applications

Figure 19 shows some of the Java classes and deployment descriptors that Ark generates from the
UML model in Figure 7 when Mule ESB is selected as middleware to operate applications. Table
2 shows the transformation between model elements in the proposed UML profile and program
elements in Mule ESB. Ark transforms a UML class stereotyped with <<message>> to a Java
class that has the same class name and the same data fields. The Java class implements the
interface Serializable. This is required to implement messages exchanged with Mule ESB.

A UML class stereotyped with <<service>> is transformed to a Java class that has the same
class name and the same data fields. Ark inserts several operations to the Java class, depending on
whether its association role is source or sink against a message exchange. The operations are
used to send and receive messages: _sendX() to send messages where X references the name of
a message exchange, and receiveX() to receive messages. For example, in Figure 19,
Supervisor has _sendOrderReqExchange() and receiveAuthReqExchange() to
send and receive OrderMsg messages to Supplier and from Retailer respectively.

7 http://www.magicdraw.com/
8 http://www.openarchitectureware.org/

Figure 18. A UML Model in MagicDraw

International Journal of Web Services Research , Vol.X, No.X, 200X

 19

_sendX() is supposed to be invoked by methods in the same service class. (This is why its
visibility is private.) receiveX() is called by source services that have messages to deliver. A
fragment of a deployment descriptor in Figure 19 specifies the URL of Supervisor.
<endpoint-identifier> specifies a name of an end point (name) and its URL (value),
e.g., when a service is deployed to be accessed via HTTP, value is http://.... <mule-
descriptor> specifies the implementation (implementation) of a service (name), and
<inbound-router> specifies the URL of a service by referencing an end point.

A template fragment of this transformation rule is shown below. <<service.name>> in the
template represents the name of a UML class stereotyped with <<service>>. (Note that the
variables and keywords in a transformation rule are embraced with << and >>.)
<<messageExchange.name>> references the name of an UML class stereotyped with
<<messageExchange>>. <<requestMessage.name>> and
<<replyMessage.name>> represent the names a request and reply messages, respectively.
Ark replaces each variable in a transformation template with the name of a UML model element
(e.g., class name), and generates Java code. When a service transmits multiple pairs of request
and reply messages, Ark generates corresponding sets of _sendX() and receiveX().
<<sinkID>> represents the logical name of a destination service. Each pair of a logical service
name and its access point is specified in a deployment descriptor. For example, if a service is
deployed to be accessed via HTTP, its access point starts with http://.

public class <<service.name>> {
 private void _send<<messageExchange.name>>(
 <<requestMessage.name>> request){
 MuleClient muleClient = new MuleClient();
 String endpointName = <<sinkID>>;
 UMOEndpoint url =
 MuleManager.getInstance().lookupEndpoint(endpointName);

int timeout = <<connector.timeout>>000;
<<IF connector.synchrony == Sync>>
UMOMessage result =
muleClient.send(url, message, timeout);

 <<ELSEIF connector.synchrony == Oneway>>
// generating code for an oneway call
<<ELSE>>

Figure 19. Generated Code for Mule ESB

Buyer

- _sendAuthReqExchange(
OrderMsg) : void

Supervisor

+ receiveAuthReqExchange(
OrderMsg) : void

- _sendOrderReqExchange(
OrderMsg): InvoiceMsg

OrderMsg

Retailer

+ receiveOrderReqExchange(
OrderMsg) : InvoiceMsg

InvoiceMsg
+ numOfItem: int

+ orderID: int
+ numOfItem: int
+ authSignature: String

…
MuleClient client = new MuleClient()
UMOMessage req = new MuleMessage(arg);
int timeout = 300000; // five minutes
UMOMessage result = Client.send(url, message, timeout)
…

Code Fragment of
_sendAuthReqExchange()

…
<endpoint-identifiers>
<endpoint-identifier

name="Supervisor_in_AuthReqExchange“
value=“http://..."/>

</endpoint-identifiers>
<model name="ReguratoryCompliance">
<mule-descriptor

name="Supervisor“
implementation="Supervisor">

<inbound-router>
<endpoint

address="Supervisor_in_AuthReqExchange"/>
</inbound-router>
</mule-descriptor>

</model>
…

Fragment of a
deployment descriptor
(retated to Suervisor)

International Journal of Web Services Research , Vol.X, No.X, 200X

 20

// generating code for an asynchronous call
<<ENDIF>>

 }

 public void receive<<messageExchange.name>>(
 <<replyMessage.name>> reply){
 }
}

UML classes stereotyped with <<messageExchange>> and <<connector>> are not
transformed to particular Java classes. The message transmission/processing semantics specified
in a UML model is implemented in Java classes of message sender and destination. For example,
in Figure 7, a Buyer sends an OrderMsg message to a Supervisor synchronously.
Therefore, Ark generates a Java code to send the message synchronously using Mule ESB’s API9,
and embeds the code in _sendAuthReqExchange() of Buyer.
<<connector.synchrony>> in the above transformation template references the synchrony
of a connector, and Ark interprets it to generate Java code to send messages to a destination
service. (<<IF>>, <<ELSEIF>> and <<ENDIF>> are the reserved keywords for branching
statements.) Ark also generates Java code to handle timeout using Mule ESB’s API
(<<connector.timeout>> references the timeout period specified in a UML model.), and
embeds the code in _sendAuthReqExchange() of Buyer (see also Figure 19).

As Figure 7 shows, a connector has the messageIntegrity semantics. To support this
semantics, Ark provides a pair of message transformers to generate and verify a message’s hash
value. (These transformers are implemented as a part of Ark Library. See Figure 19.) In Mule
ESB, each service can have an arbitrary number of message transformers as the classes
implementing the interface org.mule.transformer.UMOTransformer. Message
transformers are invoked (or hooked) when a service sends/receives a message. At a message
source, a transformer (edu.umb.cs.MessageIntegrityGenerator) generates a
message’s hash value and embeds it into the message’s header. At a message sink, a transformer
(edu.umb.cs.MessageIntegrityVerifier) verifies the message’s integrity using the
hash value. Ark Library also implements the msgTrasmissionLogRetained and
routingHistoryRetained semantics as message transformers
edu.cs.umb.TransmissionLogger and edu.cs.umb.RoutingHistoryLogger).

When a UML model specifies a connector as a message queue, Ark generates application code
that uses Java Message Service (JMS) because Mule ESB supports message queues through the
use of JMS. For example, in Figure 6, OrderConn is specified as a message queue. Ark
generates a corresponding deployment descriptor to configure and establish JMS connector that
exchanges OrderMsg and OrderConfirmationMsg between Retailer and
InventoryManager.

When a UML model uses the MessageSplitter or MessageAggregator filter (e.g.,
Figures 14 and 15), Ark generates application code that uses corresponding class in Ark Library.
Corresponding to MessageSplitter, Ark generates a class implementing the interface
org.mule.routing.outbound.AbstractMessageSplitter. In Mule ESB, the

9 Mule ESB provides three different APIs to send messages in synchronous, asynchronous and oneway
(non-blocking) manners.

International Journal of Web Services Research , Vol.X, No.X, 200X

 21

implementation class can be attached to arbitrary services in order to split an outgoing message
into fragments and route them to different services. When Ark transforms a UML model in Figure
14, the implementation class is attached to a Retailer for intercepting an OrderMsg message
from the Retailer and spliting it to a PurchasingMsg and AccountingMsg.

Similarly, corresponding to MessageAggregator, Ark generates a class implementing the
interface org.mule.routing.outbound.AbstractEventAggregator. The
implementation class can be attached to arbitrary services to aggregate an incoming message into
a single message. In order to transform a UML model in Figure 15, Ark attaches the
implementation class to a Supplier to aggregate a OrderMsg and a AuthMsg to a
AuthedOrderMsg and pass the aggregated message to the Supplier.

The Logger, MessageFilter, Router and Validator filters are transformed to and
implemented with corresponding classes built in Mule ESB. Those classes are attached to
services to perform message loging, filtering, routing and validation functionalities as specified in
an input UML model.

Table 2. Transformation between the Proposed UML Profile and Mule ESB
Model Element in

the Proposed UML Profile Program Element in Mule ESB

<<service>>
<<accessControlledService>>

A Java class with the same name.

securityTokens A security filter implemented in Ark library
<<message>> A Java class implementing Serializable interface
signatureMethod A security filter implemented in Ark library
<<encryptedProperty>> A property in a corresponding Java class
encryptionAlgorithm A message transformer implemented in Ark library
<<messageExchange>> Methods to send/receive messages
sink (Service's role) Service's operations sending messages.
source (Service's role) Service's operations receiving messages.
<<connector>> A set of entities in a deployment descriptor
timeout An operation's parameter to specify message's timeout period
synchrony Different types of Mule ESB's operation used to send a message.
deliveryAssurance A filter implemented in Ark library
queueParameters JMS parameters specified in a deployment descriptor
encryptionAlgorithm A message transformer implemented in Ark library
msgTransmissionLogRetained A message transformer implemented in Ark library
routingHistoryRetained A message transformer implemented in Ark library
messageIntegrity A message transformer implemented in Ark library
<<messageAggregator>> A class implementing AbstractEventAggregator in Mule ESB
<<messageConverter>> A class implementing DefaultTransformer in Mule ESB
<<messageSplitter>> A class implementing AbstractMessageSplitter in Mule ESB
<<logger>>
<<messageFilter>>
<<router>>
<<validator>>

Filters provided by Mule ESB

<<multicast>> A filter implemented in Ark library
<<manycast>> A filter implemented in Ark library
<<anycast>> A filter implemented in Ark library

International Journal of Web Services Research , Vol.X, No.X, 200X

 22

Transformation Rules for Secure and Broadband File Transfer Applications

When an application designer chooses GridFTP to operate his/her application, the application is
deployed on Mule ESB and configured to use GridFTP as a message transport. Figure 20 shows
some of the Java classes and deployment descriptors that Ark generates from a UML model in
Figure 10.

As Figure 10 shows, the data field records is encrypted in TransactionRecordMsg. Since
Mule ESB does not support message-level encryption, Ark Library provides a pair of message
transformers to encrypt and decrypt data fields in messages
(edu.cs.umb.MessageEncryptor and edu.cs.umb.MessageDecryptor). Ark
generates a deployment descriptor to configure services so that they use those
encryption/decryption transformers when they send/receive messages. Figure 20 shows a
fragment of generated deployment descriptor for TransactionRecServer. It configures
TransactionRecServer to use a message encryption transformer
(edu.cs.umb.MessageEncryption) to encrypt the data field records in
TransactionRecordMsg using Triple DES.

As Figure 10 shows, each InquiryMsg and TransactionRecordMsg message is signed
with DSA, and TransactionRecServer performs authentication with X.509 or Kerberos.
Since Mule ESB does not support DSA signatures and X.509/Kerberos security tokens, Ark
Library provides a set of security filters to write/read signatures and security tokens by
implementing the interface org.mule.umo.security.UMOEndpointSecurityFilter.
Similar to message transformers, security filters are invoked when a service sends/receives a
message. Ark generates a deployment descriptor that configures services to use the security filters
Ark provides. Figure 20 shows a fragment of generated deployment descriptor for Supplier. It
configures Supplier to include a DSA signature and an X.509 security token in each
Inquiry message using two filters (edu.cs.umb.securityfilter.Signature and
edu.cs.umb.securityfilter.SecurityToken).

Figure 20. Generated Code for Mule ESB and GridFTP

TransactionRecordMsg

Supplier

<security-filter className=“edu.cs.umb.securityfilter.Signature”>
<properties>

<property name=“element” value=“Inquiry”>
<property name=“algorithm“

value=" http://www.w3.org/2000/09/xmldsig#dsa-sha1 "/>
</properties>

</security-filter>

<security-filter className=“edu.cs.umb.securityfilter.SecurityToken”>
<properties><property name=“algorithm" value="X509v3"/></properties>

</security-filter>
…
<transformer name=“Encrypt" className=“edu.cs.umb.MessageEncryptor">
<properties><property name=“algorithm“ value=“TripleDES"/></properties>

</transformer>
…
<connector name="gridftpConnector“ className="edu.cs.umb.GridFTPConnector">
<properties><property name="specification" value="4.0.1"/></properties>

</connector>

InquiryMsg TransactionRecServer

- _sendRecordExchange(
Inquiry): TransactionRecord

+ receiveRecordExchange(
Inquiry): TransactionRecord

<transformer
name=“Encrypt"
className=“edu.cs.umb.MessageEncryptor">
<properties>
<property

name=“element”
value=“TransactionRecord.records”>

<property
name=“algorithm“
value=“…xmlenc#tripledes-cdc”/>

</properties>
</transformer>

TransactionRecordMsg

Supplier

<security-filter className=“edu.cs.umb.securityfilter.Signature”>
<properties>

<property name=“element” value=“Inquiry”>
<property name=“algorithm“

value=" http://www.w3.org/2000/09/xmldsig#dsa-sha1 "/>
</properties>

</security-filter>

<security-filter className=“edu.cs.umb.securityfilter.SecurityToken”>
<properties><property name=“algorithm" value="X509v3"/></properties>

</security-filter>
…
<transformer name=“Encrypt" className=“edu.cs.umb.MessageEncryptor">
<properties><property name=“algorithm“ value=“TripleDES"/></properties>

</transformer>
…
<connector name="gridftpConnector“ className="edu.cs.umb.GridFTPConnector">
<properties><property name="specification" value="4.0.1"/></properties>

</connector>

InquiryMsg TransactionRecServer

- _sendRecordExchange(
Inquiry): TransactionRecord

+ receiveRecordExchange(
Inquiry): TransactionRecord

<transformer
name=“Encrypt"
className=“edu.cs.umb.MessageEncryptor">
<properties>
<property

name=“element”
value=“TransactionRecord.records”>

<property
name=“algorithm“
value=“…xmlenc#tripledes-cdc”/>

</properties>
</transformer>

International Journal of Web Services Research , Vol.X, No.X, 200X

 23

In Figure 10, a TransactionRecordMsg is expected to contain a huge amount of data (e.g.,
scanned contract). When this example application uses GridFTP as a message transport to
improve its throughput, Ark generates a deployment descriptor that configures Supplier and
TransactionRecordServer to use GridFTP to transmit InquiryMsg and
TransactionRecordMsg messages (Figure 20). Although Mule ESB does not support
GridFTP, it provides a plug-in mechanism to implement arbitrary message transports. Ark
Library implements a plug-in for GridFTP (edu.cs.umb.GridFTPConnector) so that
services can use it in Mule ESB.

Extensibility of the Proposed MDD Framework

The proposed MDD framework (i.e., the proposed UML profile and Ark) is designed and
implemented extensible. For example, application developers can change the default
transformation rules that Ark provides. They can also integrate arbitrary implementation
technologies with Ark in addition to currently-supposed three middleware (e.g., other ESBs and
databases). These extensions can be made by changing the default set of transformation templates.

Moreover, the proposed MDD framework allows application developers to introduce arbitrary
non-functional aspects that it does not support currently. Since the proposed UML profile is built
on the UML standard metamodel with the standard extension mechanism (i.e., stereotypes and
tagged-values), application developers can add new stereotypes and tagged-values representing
their own non-functional aspects. This extension can be made by defining a set of transformation
rules for new stereotypes and tagged-values. These newly-defined stereotypes/tagged-values and
transformation rules have no effects on existing UML models and Ark itself (e.g., existing
transformation rules, Ark Transformer and Ark Library).

Another type of extensibility of the proposed MDD framework is the ability to support arbitrary
UML modeling tools. As described earlier, MagicDraw has been used as the default UML
modeling tool; however, Ark can accept UML models from any modeling tools that serialize
them in XMI. Choices of modeling tools have no effects on existing models and Ark.

EVALUATION

This section evaluates how the proposed MDD framework (i.e., the proposed UML profile and
Ark) improves the reusability and maintainability of service-oriented applications. Given its two
properties, the proposed MDD framework allows UML models (i.e., non-functional models built
with the proposed profile) to be reusable across different implementation technologies. The first
property is that the proposed UML profile allows application developers to model non-functional
aspects in their applications in an implementation independent manner by abstracting away low-
level details of implementation technologies (e.g., ESBs). As the second property, Ark can map a
single UML model to different implementation technologies by switching transformation rules,
even if those technologies are very different with each other. For example, Ark currently supports
very different ESBs as implementation technologies: Mule ESB and ServiceMix ESB; their APIs
and deployment descriptor schemata have no compatibility. The following code fragments are
Java classes that Ark generates from the Supervisor class in Figure 7 to Mule ESB and
ServiceMix ESB. In Mule ESB, a service can be implemented as a simple Java class.

public class Supervisor {

 public void receiveAuthReqExchange(OrderMsg reply){/*…*/}

International Journal of Web Services Research , Vol.X, No.X, 200X

 24

private void _sendOrderReqExchange (OrderMsg request){
MuleClient muleClient = new MuleClient();
String endpointName = …
UMOEndpoint url = …
Int timeout = …
FutureMessageResult result =
muleClient.sendAsync(url, request, timeout);

}}

On the other hand, in ServiceMix ESB, a service is implemented as a class that extends the
ComponentSupport class and implements the MessageExchangeListener interface.
Messages are received through the onMessageExchange method.

public class Supervisor extends ComponentSupport
 implements MessageExchangeListener {
 public void onMessageExchange(MessageExchange exchange)
 throws MessagingException {
 if (exchange.getRole() == Role.CONSUMER) {
 ServiceEndpoint ep = exchange.getEndpoint();
 if (ep.getServiceName().getLocalPart().equals(RETAILER)) {
 receiveAuthReqExchange(exchange);
 }}}
 private void receiveAuthReqExchange(MessageExchange exchange)
 throws MessagingException {/*…*/}
 private void _sendOrderReqExchange(OrderMsg orderMsg){
 InOut inout = createInOutExchange(SUPPLIER, null, null);
 NormalizedMessage msg = inout.createMessage();
 // ...
 inout.setInMessage(msg);
 sendSync(inout);
 }}

By making UML models (i.e., non-functional models) reusable across different implementation
technologies, the proposed MDD framework allows application developers to reuse or repurpose
services without knowing the details of implementation technologies.

Table 3 shows the program elements (Java code and/or deployment descriptors: DD) that Ark
generates for Mule ESB and ServiceMix ESB from a single UML model element. Table 3 also
shows the lines of code (LOC) of each generated program element. (LOC is shown in
parentheses.) As this figure illustrates, a single model element represents multiple program
elements in the proposed MDD framework. For example, queueParamters represents 34
LOC in Mule ESB and 33 LOC in ServiceMix ESB. This contributes to improve the
maintainability of service-oriented applications by freeing application developers from manually
and carefully dealing with many lower-level program elements in a consistent manner.

RELATED WORK

This paper is a set of extensions to the authors’ prior work (Wada et al., 2006a; Wada et al.,
2006b; Wada et al., 2006c). As one of the extensions, this work investigates new non-functional
aspects for regulatory compliance, which were beyond of the scope of the prior work. Another

International Journal of Web Services Research , Vol.X, No.X, 200X

 25

Table 3. Generated Program Elements and their LOC
Model Elements in the
Proposed UML Profile

Program Elements and their
LOC in Mule ESB

Program Elements and their
LOC in ServiceMix ESB

<<service>>
<<accessControlledService>>

A Java class (8)
An endpoint identifier in DD (1)
A service entry in DD (7)

A Java class (9)
A service entry in DD (6)

securityTokens An in-bound filter in DD (3) An in-bound filter in DD (3)
<<message>> A Java class (2) A Java class (2)
signatureMethod In-bound and out-bound filters in

DD (6)
In-bound and out-bound filters in
DD (6)

<<encryptedProperty>> An attribute in a Java class (1) An attribute in a Java class (1)
encryptionAlgorithm In-bound and out-bound filters in

DD (6)
In-bound and out-bound filters in
DD (10)

<<messageExchange>> In-bound and out-bound routers in
DD (6)

A routing conf. in DD (14)

sink (Service's role) A method to send in Java (10) A method to send in Java (10)
source (Service's role) A method to receive in Java (2) A method to receive in Java (12)
<<connector>> No code generated (0) No code generated (0)
synchrony Java code in Mule ESB API (1) Java code in ServiceMIX API

(1)
deliveryAssurance A configuration entry in DD (3) A configuration entry in DD (6)
queueParameters A configuration entry in DD (14)

A JMS configuration file (20)
A configuration entry in DD (6)
JNDI configuration in DD (7)
A JMS configuration File (20)

encryptionAlgorithm In-bound and out-bound filters in
DD (6)

In-bound and out-bound filters in
DD (10)

msgTransmissionLogRetained In-bound and out-bound filters in
DD (6)

In-bound and out-bound filters in
DD (6)

routingHistoryRetained In-bound and out-bound filters in
DD (6)

In-bound and out-bound filters in
DD (6)

messageIntegrity In-bound and out-bound filters in
DD (6)

In-bound and out-bound filters in
DD (6)

<<messageAggregator>> A Java class (4)
An In-bound filter in DD (3)

A Java class (4)
An endpoint conf. in DD (2)

<<messageConverter>> A Java class (4)
An out-bound filter in DD (3)

A Java class (4)
An endpoint conf. in DD (2)

<<messageSplitter>> A Java class (4)
An out-bound filter in DD (3)

A Java class (4)
An endpoint conf. in DD (2)

<<logger>> An out-bound filter in DD (3) An out-bound filter in DD (3)
<<messageFilter>> An out-bound filter in DD (3) A filter conf. in DD (7)
<<router>> An out-bound filter in DD (3) A routing conf. in DD (7)
<<validator>> An out-bound filter in DD (3) An out-bound filter in DD (3)
<<multicast>> An out-bound filter in DD (3) A routing conf. in DD (7)
<<manycast>> An out-bound filter in DD (3) A routing conf. in DD (7)
<<anycast>> An out-bound filter in DD (3) A routing conf. in DD (7)

extension is that Ark currently supports a wider range of implementation technologies. As a result,
the proposed MDD framework now allows application developers to model SOA’s non-
functional aspects through hiding the implementation differences across two of the most major
ESBs (Mule ESB and ServiceMix ESB). Given these extensions, this paper fully discusses the
updated details in the design and implementation of the proposed MDD framework. Moreover,

International Journal of Web Services Research , Vol.X, No.X, 200X

 26

unlike the prior work, this work empirically evaluates how the proposed MDD framework
contributes to the reusability and maintainability of service-oriented applications.

There are several UML profiles proposed for SOA. Marcos et al. (2003) and Amsden et al. (2005)
propose UML profiles to specify functional aspects in SOA. Both profiles are designed based on
the XML schema of Web Service Description Language (WSDL). Each profile provides a set of
stereotypes and tagged-values that correspond to the elements in WSDL, such as Service,
Port, Messages and Binding10. Since WSDL is designed to define only functional aspects
of web services, non-functional aspects are beyond of the scope of Marcos et al. (2003) and
Amsden et al. (2005). Ermagan et al. (2007) proposes and Object Management Group (2006b)
standardizes UML profiles for functional aspects in SOA. Unlike the above profiles, the proposed
profile focuses on specifying non-functional aspects in SOA.

Amir et al. (2005) propose a UML profile to describe both functional and non-functional aspects
in SOA. This profile is generic enough to specify a wide range of non-functional aspects. For
example, the stereotypes for non-functional aspects include <<policy>> and
<<permission>>. However, their semantics tend to be ambiguous. This profile does not
precisely define what non-functional aspects developers can (or are supposed to) specify and how
to represent them with tagged values in accordance with given stereotypes. Ortiz et al. (2006) also
propose a generic UML profile to describe various non-functional aspects (called extra-functional
properties). Arbitrary non-functional aspects can be defined as stereotypes extending the
<<Extra-Functional Property>> stereotype. However, it is ambiguous how to define
particular non-functional aspects with user-defined stereotypes and tagged-values. The World
Wide Web Consortium (2006) standardizes the WS-Policy specification, a generic XML format
to specify arbitrary non-functional aspects of web services. No explicit principles and guidelines
are available on how to define particular non-functional aspects with XML document elements.
Unlike the above three schemes, the proposed UML profile carefully and precisely defines a
variety of stereotypes and tagged-values for non-functional aspects in SOA so that the proposed
MDD tool (Ark) can interpret and transform models to code in an unambiguous manner.

Vokäc (2005) proposes a UML profile for data integration in SOA. It provides data structures to
specify messages. Application developers can use the data structures for building dictionaries that
maintain message data used in existing systems and new applications. This profile separates data
integration as a non-functional aspect from functional aspects, and enables specifying data
integration in an implementation independent manner. This UML profile and the proposed profile
focus on different issues in SOA. Data integration is beyond of the scope of the proposed profile,
and Vokäc (2005) does not consider non-functional aspects in message transmission, message
processing, security and service deployment.

Heckel et al. (2003) propose a UML profile for dynamic service discovery in SOA. This profile
provides a set of stereotypes (e.g., <<uses>>, <<requires>> and <<satisfies>>) to
specify relationships among service interfaces, service implementations and functional
requirements. For examples, a relationship can specify that a service uses other services, and
another relationship can specify that a service requires other services that satisfy certain
functional requirements. These relationships are intended to aid dynamic discovery of services.

10 In WSDL, a Service defines an interface of a web service. A Port specifies an operation in a
Service, and Messages defines parameters for a Port. A Binding specifies communication
protocols used by Ports.

International Journal of Web Services Research , Vol.X, No.X, 200X

 27

Rather than service discovery, the proposed UML profile focuses on non-functional semantics in
message transmission, message processing, security and service deployment.

Object Management Group (2007) standardizes a UML profile for Data Distribution Service
(DDS). DDS is a standard specification for publish/subscribe middleware, and it supports several
non-functional aspects in real-time messaging. OMG’s UML profile for DDS allows UML
models to specify these non-functional aspects. In contrast, the proposed profile is not limited to
real-time messaging, but supports a wider range of non-functional aspects. Moreover, OMG’s
profile is designed to be mapped into only DDS implementations. In contrast, the proposed
profile is designed in an implementation independent manner; it can be mapped to arbitrary
implementation technologies.

Gardner (2003), List et al. (2005), Johnston (2004) and Object Management Group (2005a)
define UML profiles to specify service orchestration and map it to Business Process Execution
Language (BPEL) (Organization for the Advancement of Structured Information Standards,
2003). These profiles provide a limited support of non-functional aspects in message transmission,
such as messaging synchrony. The proposed profile does not focus on service orchestration, but a
comprehensive support of non-functional aspects in message transmission, message processing,
security and service deployment.

Lodderstedt et al. (2002) propose a UML profile, called SecureUML, to define role-based access
control for network applications. SecureUML provides stereotypes to assign roles
(<<security.role>>) and access control permissions (<<security.constraint>>) to
applications (e.g., UML interfaces and classes). SecureUML uses Object Constraint Language
(OCL) to define access control. Jürjens (2002) propose another UML profile, called UMLsec, to
define data encryption (<<data security>>) and secure network links (<<encrypted>>).
Wang et al. (2005) and Nakamura et al. (2005) also propose UML profiles to define security
aspects. In addition to security aspects, Soler et al. (2006) propose a UML profile extending the
Common Warehouse Metamodel (Object Management Group, 2003) in order to define regulatory
audit policies in data warehouses. For example, the profile provides stereotypes to specify
whether a data warehouse retains logs to access data sources. Gönczy et al. (2006) propose a
formal definition of reliable messaging mechanisms as a metamodel. These profiles/metamodels
are parallel to the proposed UML profile in terms of the ability to describe security aspects, audit
policies and reliable messaging in network applications. However, the proposed UML profile
covers not only security, auditing or reliable messaging aspects but also many other non-
functional aspects in SOA (e.g., message queuing, message validation/filtering, and message.

Zhu et al. (2007) and Zou et al. (2006) propose UML profiles to visually define non-functional
requirements such as desirable response time and throughput. However, they do not consider
model transformation to map non-functional requirements to certain implementation technologies.
In contrast, the proposed profile is designed to consider model transformation, although non-
functional requirements are beyond of the scope of the proposed profile.

There are several specifications and research efforts to investigate implementation techniques for
non-functional aspects in SOA (Organization for the Advancement of Structured Information
Standards, 2003; Organization for the Advancement of Structured Information Standards, 2004a;
Organization for the Advancement of Structured Information Standards, 2004b; Baligand et al.,
2004; Wang et al., 2004; Mukhi et al., 2004). Each specification and technique provides a means
to implement non-functional requirements in, for example, performance, reliability and security
and to enforce services to follow the requirements. Rather than investigating specific
implementations of non-functional aspects in SOA, the proposed MDD framework is intended to

International Journal of Web Services Research , Vol.X, No.X, 200X

 28

provide a means for application developers to model and maintain non-functional aspects in an
implementation independent manner so that they can be mapped on different specifications or
implementation technologies.

CONCLUDING REMARKS

This paper proposes a model-driven development (MDD) framework for non-functional aspects
in SOA. The proposed MDD framework consists of (1) a UML profile to graphically specify and
maintain SOA non-functional aspects in an implementation independent manner, and (2) an
MDD tool that accepts a UML model defined with the proposed profile and transforms it to
application code (program code and deployment descriptors). This paper presents design details
of the proposed UML profile, and describes how the proposed MDD tool uses the profile to
develop service-oriented applications that can run with different implementation technologies
such as Mule ESB, ServiceMix and GridFTP. Empirical evaluation results show that the proposed
MDD framework contributes to improve the reusability and maintainability of service-oriented
applications by hiding the details of implementation technologies.

Several extensions to the proposed MDD framework are planned as future work. As described in
the Related Work section, there are several other UML profiles for SOA. The proposed profile
will be co-used or integrated with some of them (e.g., Oba et al., 2005; Object Management
Group, 2005b) in order to investigate a more comprehensive development framework for SOA.

Another extension is to integrate the proposed UML profile with a modeling language for
business processes such as Business Process Modeling Notation (Object Management Group,
2006a). The proposed profile is designed to specify applications from a structural point of view; it
does not consider a viewpoint of processes or workflows. Therefore, as the size of a model
(application) increases, it becomes harder to understand how messages are exchanged among
services and define non-functional aspects along with message flows. For example, in order to
specify secure messaging for a certain business process (e.g., order processing process), it can be
time-consuming and error-prone to find all the services associated with the process and define a
security aspect for the connections among those services. The integration with a business process
modeling language can make non-functional modeling more intuitive by providing both structural
and process viewpoints.

The proposed MDD framework will be evaluated in several different application domains11. One
of them is service-oriented system integration in a natural gas utility company. The proposed
UML profile and Ark are planned to be used in a system integration project, and their design and
implementation will be enhanced through the project experience. Another application domain is
eco-informatics. The proposed framework has been used to design and maintain ecological
observation systems (Wada et al., 2006d). Ecological observation systems monitor ecosystems,
record various observation data (e.g., a niche of a particular species and weather in the niche), and
help ecologists understand and predict the observation of ecosystems. Currently, ecological
observation systems are often implemented monolithic; their extensibility and customizability are
limited. SOA is expected to overcome this issue by decomposing an observation system into
multiple services, implementing the system as a combination of services, and
extending/customizing it through a recombination of services (Bermudez et al., 2006). The
proposed MDD framework has been used to separate functional and non-functional aspects in an

11 A software engineering discipline suggests investigating at least three applications on a framework in
order to examine the framework’s generality and reusability. (Roberts et al., 1997)

International Journal of Web Services Research , Vol.X, No.X, 200X

 29

ecological observation system and model/implement non-functional aspects in the system.
Through this practice, the proposed MDD framework will be enhanced to improve its generality.

ACKNOWLEGMENT

This work is supported in part by OGIS International, Inc.

REFERENCES

Amir, R., & Zeid, A. (2004). A UML profile for service oriented architectures. ACM Object-Oriented

Programming, Systems, Languages, and Applications Poster session.
Amsden, J., Gardner, T., Griffin C., & Iyengar, S. . (2005). UML 2.0 profile for software services. IBM

developerWorks.
Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I., & Foster, I. (2005). The

Globus striped GridFTP framework and server. ACM Super Computing.
Arsanjani A., Zhang L., Ellis M., Allam A., & Channabasavaiah K. (2007) S3: A service-oriented reference

architecture. IT Professional, 9(3).
Baligand, F., & Monfort, V. (2004). A concrete solution for web services adaptability using policies and

aspects. UNITN/Springer International Conference on Service Oriented Computing.
Bermudez, L., Bogden, P., Bridger, E., Creager, G., Forrest, D., & Graybeal, J. (2006). Toward an ocean

observing system of systems. MTS/IEEE Oceans.
Bichler, M., & Lin, K. (2006). Service-oriented computing. IEEE Computer, 39(6).
Bieberstein N., Bose S., Fiammante M., Jones K., & Shah R. (2005). Service-oriented architecture (SOA)

compass: business value, planning, and enterprise roadmap. IBM Press.
Chappell, D. (2004). Enterprise service bus. O’Reilly.
Ermagan, V., & Krüger, H. (2007). A UML2 profile for service modeling. ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems.
Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M., & Newling, T. (2004).

Patterns: service-oriented architecture and web services. IBM Red Books.
Foster, I. (2005). Service-oriented computing. Science, 308(5723).
Fuentes, L., & Vallecillo, A. (2004). An introduction to UML profiles. The European Journal for the

Informatics Professional, 5(2).
Gardner, T. (2003). UML modeling of automated business processes with a mapping to BPEL4WS.

European Conference on Object-Oriented Programming Workshop on Object Orientation and
Web Services.

Gönczy, L., & Varró, D. (2006). Modeling of reliable messaging in service oriented architecture. Telcert
International Workshop on Web Services Modeling and Testing.

Heckel, R., Lohmann, M., & Thöne, S. (2003). Towards a UML profile for service-oriented architectures.
Workshop on Model Driven Architecture: Foundations and Applications.

Java Community Process. (2001). UML profile for Enterprise Java Beans.
Johnston, S.. (2004). UML 1.4 profile for software services with a mapping to BPEL 1.0. IBM

developerWorks.
Jürjens, J. (2002). UMLsec: extending UML for secure systems development. ACM/IEEE International

Conference on Unified Modeling Language
Lewis, G., Morris, E., Brien, L., Smith, D., & Wrage, L. (2005). Smart: the service-oriented migration and

reuse technique. Technical report, Software Engineering Institute, Carnegie Mellon University.
List, B., & Korherr, B. (2005). A UML 2 profile for business process modelling. ACM International

Conference on Conceptual Modeling Workshop on Best Practices of UML at the International
Conference on Conceptual Modeling.

Lodderstedt, T., Basin, D., & Doser, J. (2002). SecureUML: a UML-based modeling language for model-
driven security. ACM/IEEE International Conference on Unified Modeling Language.

Marcos, E., Castro, V., & Vela, B. (2003). Representing web services with UML: a case study.
UNITN/Springer International Conference on Service Oriented Computing.

International Journal of Web Services Research , Vol.X, No.X, 200X

 30

Mukhi, N., Konuru, R., & Curbera, F. (2004). Cooperative middleware specialization for service oriented
architectures. ACM International World Wide Web Conference.

Nakamura, Y., Tatsubori, M., Imamura, T., & Ono, K. (2005). Model-driven security based on a web
services security architecture. IEEE International Conference on Services Computing.

Organization for the Advancement of Structured Information Standards. (2003). Web services business
process execution language.

Organization for the Advancement of Structured Information Standards. (2004a). Web service reliability
1.1.

Organization for the Advancement of Structured Information Standards. (2004b). Web service reliable
messaging.

Organization for the Advancement of Structured Information Standards. (2005). Web services security
policy language.
Oba, K., Hashimoto, M., Fujikura, S., & Munehira, T. (2005). The status quo and challenges of service-

oriented architecture based application design. IPSJ Workshop on Software Engineering.
Object Management Group. (2003). Common warehouse metamodel, version 1.1.
Object Management Group. (2004). UML 2.0 super structure specification.
Object Management Group. (2005a). Business process definition metamodel.
Object Management Group. (2005b). UML profile for modeling quality of service and fault tolerance

characteristics and mechanisms.
Object Management Group. (2006a). Business process modeling notation, version 1.0.
Object Management Group. (2006b). UML profile and metamodel for services, request for proposal.
Object Management Group. (2006c) UML profile for data distribution service, request for proposal.
Object Management Group. (2007) Data Distribution Service for Real-time Systems, version 1.2.
O’Grady, S. (2004). SOA meets compliance: compliance oriented architecture. White paper, RedMonk.
Ortiz, G., & Hernández, J. (2006). Toward UML profiles for web services and their extra-functional

properties. IEEE International Conference on Web Services.
Papazoglou, M. (2003). Service-oriented computing: concepts, characteristics and directions. IEEE

International Conference on Web Information Systems Engineering.
Roberts, D., & Johnson, R. (1997). Evolving frameworks: a pattern language for developing object-oriented

frameworks. Pattern Languages of Program Design 3, Chapter 26. Addison Wesley.
Soler, E., Villarroel, R., Trujillo, J., Medina, E., & Piattini, M. (2006). Representing security and audit rules

for data warehouses at the logical level by using the common warehouse metamodel.IEEE
International Conference on Availability, Reliability and Security.

Vinoski, S. (2003). Integration with web services. IEEE Internet Computing, 7(6).
Vokäc, M. (2005). Using a domain-specific language and custom tools to model a multi-tier service-

oriented application - experiences and challenges. ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems.

Wang, L., & Lee, L. (2005). UML-based modeling of web services security. IEEE European Conference on
Web Services, poster paper.

Wang, G., Chen, A., Wang, C., Fung, C., & Uczekaj, S. (2004). Integrated quality of service (QoS)
management in service-oriented enterprise architectures. IEEE Enterprise Distributed Object
Computing Conference.

Wada, H., Suzuki, J., & Oba K. (2006a). A model-driven development framework for non-functional
aspects in service oriented grids. IEEE International Conference on Autonomic and Autonomous
Systems.

Wada, H., Suzuki, J., & Oba K. (2006b). Modeling non-functional aspects in service oriented architecture.
IEEE International Conference on Services Computing.

Wada, H., Suzuki, J., & Oba K. (2006c). A service-oriented design framework for secure network
applications. IEEE International Conference on Computer Software and Applications Conference

Wada, H. & Suzuki, J. (2006d). Designing Ecological Observation Systems using Service Oriented
Architecture. Elsevier/ISEI International Conference on Ecological Informatics, poster paper.

World Wide Web Consortium. (2002a). XML encryption syntax and processing.
World Wide Web Consortium. (2002b). XML signature syntax and processing.
World Wide Web Consortium. (2006). Web services policy framework.
Zhang, Z., & Yang, H. (2004). Incubating services in legacy systems for architectural migration. IPSJ/IEEE

Asia-Pacific Software Engineering Conference.

International Journal of Web Services Research , Vol.X, No.X, 200X

 31

Zhu, L., & Gorton, I. (2007) UML profiles for design decisions and non-functional requirements.
ACM/IEEE International Conference on Software Engineering Workshop on Sharing and Reusing
Architectural Knowledge - Architecture, Rationale, and Design Intent.

Zou, J., & Pavlovski, C. (2006) Modeling architectural non functional requirements: from use case to
control case. IEEE International Conference on e-Business Engineering.

ABOUT THE AUTHORS

Hiroshi Wada Hiroshi Wada received his M.S. degree in computer science from Keio University, Japan, in
2002. He started the Ph.D. program in the University of Massachusetts, Boston in 2005. His research
interests include model-driven software development, and service oriented architecture. Before enrolling in
the Ph.D. program, he worked for Object Technology Institute, Inc., and engaged in consulting and
educational services in the field of object oriented technologies, distributed systems and software modeling.

Junichi Suzuki Junichi Suzuki received a Ph.D. in computer science from Keio University, Japan, in 2001.
He joined the University of Massachusetts, Boston in 2004, where he is currently an Assistant Professor of
computer science. From 2001 to 2004, he was with the School of Information and Computer Science, the
University of California, Irvine (UCI), as a postdoctoral research fellow. Before joining UCI, he was with
Object Management Group Japan, Inc., as Technical Director. His research interests include model-driven
software development, autonomous adaptive distributed systems, biologically-inspired software adaptation
and self-organizing sensor networks. He is an editor of International Journal of Software Patterns,
International Journal of Software Architecture and International Journal of Software Reuse. He was the
Program Co-Chair of the 2008 IEEE International Workshop on Methodologies for Non-functional
Properties in Services Computing. He served on over 35 conference program committees, and served as a
workshop co-chair for the ACM/IEEE/ICST/Create-Net BIONETICS 2007 conference. He is an active
participant and contributor in the ISO SC7/WG19 and the Object Management Group, Super Distributed
Objects SIG. He is a member of IEEE and ACM.

Katsuya Oba Katsuya Oba received the Batchelor of Arts degree from Osaka University, Osaka, Japan, in
1989. He joined Osaka Gas Information System Research Institute Co., Ltd. (OGIS-RI) as a systems
engineer. From 2000 to 2005, he worked for OGIS International, Inc. in Palo Alto, California as General
Manager and leaded several software product development and R&D projects. He returned to OGIS-RI in
2006, and is leading R&D and business development relating to Service Oriented Architecture (SOA). His
research interests include software architecture, business and systems modeling and software development
processes. He is a member of Information Processing Society of Japan.

