
Modeling Turnpike Frontend System: a Model-Driven
Development Framework Leveraging UML

Metamodeling and Attribute-Oriented Programming*

Hiroshi Wada and Junichi Suzuki

Department of Computer Science
University of Massachusetts, Boston

hiroshi_wada@otij.org and jxs@cs.umb.edu

Abstract. This paper describes and empirically evaluates a new model-driven
development framework, called Modeling Turnpike (or mTurnpike). It allows
developers to model and program domain-specific concepts (ideas and
mechanisms specific to a particular business or technology domain) and to
transform them to the final (compilable) source code. By leveraging UML
metamodeling and attribute-oriented programming, mTurnpike provides an
abstraction to represent domain-specific concepts at the modeling and
programming layers simultaneously. The mTurnpike frontend system
transforms domain-specific concepts from the modeling layer to programming
layer, and vise versa, in a seamless manner. Its backend system combines
domain-specific models and programs, and transforms them to the final
(compilable) source code. This paper focuses on the frontend system of
mTurnpike, and describes its design, implementation and performance
implications. In order to demonstrate how to exploit mTurnpike in application
development, this paper also shows a development process using an example
DSL (domain specific language) to specify service-oriented distributed systems.

1. Introduction

Modeling technologies have matured to the point where they can offer significant
leverage in all aspects of software development. Given modern modeling
technologies, the focus of software development has been shifting away from
implementation technology domains toward the concepts and semantics in problem
domains. The more directly application models can represent domain-specific
concepts, the easier it becomes to specify applications. One of the goals of modeling
technologies is to map modeling concepts directly to domain-specific concepts [1].

Domain Specific Language (DSL) is a promising solution to directly capture,
represent and implement domain-specific concepts [1, 2]. DSLs are the languages
targeted to particular problem domains, rather than general-purpose languages that are
aimed at any software problems. Several experience reports have demonstrated that
DSLs can improve the productivity in implementing domain-specific concepts [3].

This paper proposes a new model-driven development framework, called Modeling
Turnpike (or mTurnpike), which aids modeling and programming domain-specific
concepts with DSLs. mTurnpike allows developers to model and program domain-

*
 Research supported in part by OGIS International, Inc. and Electric Power Development Co., Ltd.

2 Hiroshi Wada and Junichi Suzuki

specific concepts in DSLs and to transform them to the final (compilable) source code
in a seamless and piecemeal manner. Leveraging UML metamodeling and attribute-
oriented programming, mTurnpike provides an abstraction to represent domain-
specific concepts at the modeling and programming layers simultaneously. At the
modeling layer, domain-specific concepts are represented as a Domain Specific Model
(DSM), which is a set of UML 2.0 diagrams described in a DSL. Each DSL is defined
as a UML metamodel that extends the UML 2.0 standard metamodel [4]. At the
programming layer, domain-specific concepts are represented as a Domain Specific
Code (DSC), which consists of attribute-oriented programs. Attributes are declarative
marks, associated with program elements (e.g. classes and interfaces), to indicate that
the program elements maintain application-specific or domain-specific semantics [5].
The frontend system of mTurnpike transforms domain-specific concepts from the
modeling layer to programming layer, and vise versa, by providing a seamless
mapping between DSMs and DSCs without any semantics loss.

The backend system of mTurnpike transforms a DSM and DSC into a more
detailed model and program by applying a given transformation rule. mTurnpike
allows developers to define arbitrary transformation rules, each of which specifies
how to specialize a DSM and DSC to particular implementation and deployment
technologies. For example, a transformation rule may specialize them to a database,
while another rule may specialize them to a remoting system. mTurnpike combines
the specialized DSM and DSC to generate the final (compilable) source code.

This paper focuses on the frontend system of mTurnpike, and describes its design,
implementation and performance implications. In order to demonstrate how to exploit
mTurnpike in application development, this paper also shows a development process
using an example DSL to specify service-oriented distributed systems.

2. Contributions

This section summarizes the contributions of this work.

• UML 2.0 support for modeling domain-specific concepts. mTurnpike accepts
DSLs as metamodels extending the UML 2.0 standard metamodel, and uses UML
2.0 diagrams to model domain-specific concepts (as DSMs). This work is one of
the first attempts to exploit UML 2.0 to define and use DSLs.

• Higher abstraction for programming domain-specific concepts. mTurnpike offers
a new approach to represent domain-specific concepts at the programming layer,
through the notion of attribute-oriented programming. This approach provides a
higher abstraction for developers to program domain-specific concepts, thereby
improving their programming productivity. Attribute-oriented programming makes
programs simpler and more readable than traditional programming paradigms.

• Seamless mapping of domain-specific concepts between the modeling and
programming layers. mTurnpike maps domain-specific concepts between the
modeling and programming layers in a seamless and bi-directional manner. This
mapping allows modelers1 and programmers to deal with the same set of domain-
specific concepts in different representations (i.e. UML models and attribute-
oriented programs), yet at the same level of abstraction. Thus, modelers do not
have to involve programming details, and programmers do not have to possess

1
 This paper assumes modelers are familiar with particular domains but may not be programming experts.

 Modeling Turnpike Frontend System: Leveraging UML Metamodeling and
Attribute-Oriented Programming 3

detailed domain knowledge and UML modeling expertise. This separation of
concerns can reduce the complexity in application development, and increase the
productivity of developers in modeling and programming domain-specific
concepts.

• Modeling layer support for attribute-oriented programs. Using the bi-directional
mapping between UML models and attribute-oriented programs, mTurnpike
visualizes attribute-oriented programs in UML. This work is the first attempt to
bridge a gap between UML modeling and attribute-oriented programming.

3. Background: Attribute-Oriented Programming

Attribute-oriented programming is a program-level marking technique. Programmers
can mark program elements (e.g. classes and methods) to indicate that they maintain
application-specific or domain-specific semantics [5]. For example, a programmer
may define a “logging” attribute and associate it with a method to indicate the method
should implement a logging function, while another programmer may define a “web
service” attribute and associate it with a class to indicate the class should be
implemented as a web service. Attributes separate application’s core (business) logic
from application-specific or domain-specific semantics (e.g. logging and web service
functions). By hiding the implementation details of those semantics from program
code, attributes increase the level of programming abstraction and reduce
programming complexity, resulting in simpler and more readable programs. The
program elements associated with attributes are transformed to more detailed
programs by a supporting tool (e.g. pre-processor). For example, a pre-processor may
insert a logging program into the methods associated with a “logging” attribute.

The notion of attribute-oriented programming has been well accepted in several
languages and tools, such as Java 2 standard edition (J2SE) 5.0, C# and XDoclet2. For
example, J2SE 5.0 implements attributes as annotations, and the Enterprise Java
Beans (EJB) 3.0 extensively uses annotations to make EJB programming simpler.
Here is an example using an EJB 3.0 annotation.

@entity class Customer{
String name;}

The @entity annotation is associated with the class Customer. This annotation
indicates that Customer will be implemented as an entity bean. A pre-processor in
EJB, called annotation processor, takes the above annotated code and applies a
certain transformation rule to generate several interfaces and classes required to
implement Customer as an entity bean (i.e. remote interface, home interface and
implementation class). The EJB annotation processor follows the transformation rules
predefined in the EJB 3.0 specification.

In addition to predefined annotations, J2SE 5.0 allows developers to define their
own (user-defined) annotations. There are two types of user-defined annotations:
marker annotations and member annotations. Here is an example marker annotation.

public @interface Logging{ }

In J2SE 5.0, a marker annotation is defined with the keyword @interface.
public class Customer{

@Logging public void setName(...){...} }

2
 http://xdoclet.sourceforge.net/

4 Hiroshi Wada and Junichi Suzuki

In this example, the Logging annotation is associated with setName(), indicating
the method logs method invocations. Then, a developer specifies a transformation rule
for the annotation, and creates a user-defined annotation processor that implements
the transformation rule. The annotation processor may replace each annotated method
with a method implementing a logging function.

A member annotation, the second type of user-defined annotations, is an
annotation that has member variables. It is also defined with @interface.

public @interface Persistent{
String connection();
String tableName(); }

The Persistent annotation has the connection and tableName variables.
@Persistent(

connection = “jdbc:http://localhost/”,
tableName = “customer”)

public class Customer{}

Here, the Persistent annotation is associated with the class Customer,
indicating the instances of Customer will be stored in a database with a particular
database connection and table name. A developer who defines this annotation
implements a user-defined annotation processor that takes an annotated code and
generates additional classes and/or methods implementing a database access function.

4. Design and Implementation of mTurnpike

mTurnpike consists of the frontend and backend systems (Fig. 1). The frontend
system is implemented as DSC Generator, and the backend system is implemented as
DSL Transformer. Every component in mTurnpike is implemented with Java.

The frontend system transforms domain-specific concepts from the modeling layer
to programming layer, and vise versa, by providing a seamless mapping between
DSMs and DSCs. In mTurnpike, a DSL is defined as a metamodel that extends the
UML 2.0 standard (superstructure) metamodel with UML’s extension mechanism3.
The UML extension mechanism provides a set of model elements such as stereotype
and tagged-value in order to add application-specific or domain-specific modeling
semantics to the UML 2.0 standard metamodel [6]. In mTurnpike, each DSL defines a
set of stereotypes and tagged-values to express domain-specific concepts. Stereotypes
are specified as metaclasses extending UML’s standard metaclasses, and tagged-
values are specified as properties of stereotypes (i.e. extended metaclasses).

Given a DSL, a DSM is represented as a set of UML 2.0 diagrams (class and
composite structure diagrams). Each DSC consists of Java interfaces and classes
decorated with the J2SE 5.0 annotations. The annotated code follows the J2SE 5.0
syntax to define marker and member annotations.

The backend system of mTurnpike transforms a DSM and DSC into a more
detailed model and program that specialize in particular implementation and
deployment technologies. Then, it combines the specialized DSM and DSC to
generate the final (compilable) code (Fig. 1).

In mTurnpike, the frontend and backend systems are separated by design.
mTurnpike clearly separates the task to model and program domain-specific models

3
 An extended metamodel is called a UML profile. Each DSL is defined as a UML profile in mTurnpike.

 Modeling Turnpike Frontend System: Leveraging UML Metamodeling and
Attribute-Oriented Programming 5

(as DSMs and DSCs) from the task to transform them into the final compilable code.
This design strategy improves separation of concerns between modelers/programmers
and platform engineers 4 . Modelers and programmers do not have to know how
domain-specific concepts are implemented and deployed in detail. Platform engineers
do not have to know the details of domain-specific concepts. As a result, mTurnpike
can reduce the complexity in application development, and increase the productivity
of developers in modeling and programming domain-specific concepts.

This design strategy also allows DSMs/DSCs and transformation rules to evolve
independently. Since DSMs and DSCs do not depend on transformation rules,
mTurnpike can specialize a single set of DSM and DSC to different implementation
and deployment technologies by using different transformation rules. When it comes
time to change a running application, modelers/programmers make the changes in the
application’s DSM and DSC and leave transformation rules alone. When retargeting
an application to a different implementation and/or deployment technology, e.g. Java
RMI to Java Messaging Service (JMS), platform engineers define (or select) a
transformation rule for the new target technology and regenerate the final compilable
source code. As such, mTurnpike can make domain-specific concepts (i.e. DSMs and
DSCs) more reusable and extend their longevity, thereby improving productivity and
maintainability in application development.

4.1. Mapping between DSMs and DSCs in the mTurnpike Fontend System

mTurnpike implements the mapping rules shown in Table 1 to transform DSMs to
DSCs, and vice versa. Fig. 2 shows an example DSM, the class Customer
stereotyped as <<entitybean>> with a tagged-value. mTurnpike transforms the
UML class (DSM) to the following Java class and member annotation (DSC).

4
 Platform engineers possess expertise in platform technologies on which DSMs and DSCs are deployed.

They are responsible for defining transformation rules applied to DSMs and DSCs.

DSM

Final
Code

Transformation rules

DSC

Visual Models Textual Code

DSC
Generator

A
bs

tra
ct

io
n

le
ve

l

Representation

H
ig

he
r

A
bs

tra
ct

io
n

Le
ve

l

Lo
w

er

A
bs

tra
ct

io
n

Le
ve

l

Fig. 1. mTurnpike Architecture and its Key Components.

DSC
Transformer

Skeleton Code
Generator

DSM
Transformer

Plain
UML

Models

DSL Transformer

Programmers Modelers

Describe models Write method code Application Developers

mTurnpike
Frontend

mTurnpike
Backend

6 Hiroshi Wada and Junichi Suzuki

Table 1. Mapping rules between DSMs and DSCs.

UML Elements in DSM Java Elements in DSC
Definition of a stereotype that has no
tagged-values Definition of a marker annotation

Definition of a stereotype that has tagged-
values Definition of a member annotation

DSL
or

Profile
 (M2)

Definition of a tagged-value Definition of a member variable in a
member annotation

Package Package
Class and interface Class and interface
Method and data field Method and data field
Modifier and visibility Modifier and visibility
Primitive type Primitive type
Stereotype that has no tagged-values Marker annotation
Stereotype that has tagged-values Member annotation

DSM
(M1)

Tagged-value Member annotation’s member variable

(1) Java class Customer (DSC)
@entitybean(

jndi-name = “ejb/Customer”)
public class Customer{
public String getName(){} }

(2) Member annotation entitybean (DSC)
@interface entitybean{

String jndi-name(); }

4.2. Design and Implementation of the mTurnpike Frontend System

The mTurnpike frontend system is implemented by DSC Generator (Fig. 1). It
performs transformations between DSMs and DSCs based on the mapping rules
described in Section 4.1. The following five steps involve in the transformation.

(1) Loading a DSM to build a UML tree: DSC Generator imports a DSM as a
representation of the XML Metadata Interchange (XMI) 2.0 [7]. Developers can
generate XMI descriptions of their DSMs using any UML tools that support XMI 2.0.
Here is an example XMI description showing the class Customer in Fig. 2.

<UML:Class xmi.id=“id_class” owner=“id_project” name=“Customer”
appliedSteotype= “profile.xmi#//*[@xmi.id="id_profile"]”>

<UML:Element.ownedElement>
<UML:Operation xmi.id=“id_operation”
name=“getName” owner=“id_class”>
<UML:Element.ownedElement>
<UML:Parameter xmi.id=“id_param” type=“id_string”
name=“Unnamed” direction=“result” owner=“id_operation”/>

</UML:Element.ownedElement>
</UML:Operation>
<UML:TaggedValue xmi.id=“id_taggedvalue”
name=“jndi-name” owner=“id_class”>
<UML:TaggedValue.dataValue>
ejb/Customer
</UML:TaggedValue.dataValue>

</UML:TaggedValue>
</UML:Element.ownedElement>
</UML:Class>
<UML:DataType xmi.id=“id_string” owner=“id_project” name=“String”/>

Fig. 2. UML Class Customer (DSM)

<<entitybean>>
Customer

{j di ” jb/C ”}
+ getName() : String

Fig. 2. UML Class Customer (DSM)

<<entitybean>>
Customer

{jndi-name=”ejb/Customer”}

+ getName() : String

 Modeling Turnpike Frontend System: Leveraging UML Metamodeling and
Attribute-Oriented Programming 7

The <UML:Class> tag defines a class, and its attribute appliedStereotype
references, with XPath directives, a stereotype defined in another XMI file
(profile.xmi). In this example, the stereotype <<entitybean>> is referenced
with its identifier id_profile. The <UML:TaggedValue> tag defines a tagged-
value associated with the class Customer.

When accepting a DSM, DSC Generator identifies a DSL that the input DSM
follows. DSLs are also represented as XMI descriptions. In the above example, a DSL
is defined in a file named profile.xmi. DSC Generator parses a DSM and its
corresponding DSL, as XMI files, to build an in-memory tree structure, called UML
tree. A UML tree is an instance of the UML standard metamodel. For building UML
trees, DSC Generator follows the data structures provided by the Eclipse Modeling
Framework (EMF)5 and Eclipse-UML26.

Once a UML tree is constructed, DSC Generator validates the UML tree (i.e. an
input DSM) against the standard UML metamodel. It examines if the DSM follows
the syntax and semantics defined in the standard UML metamodel. DSC Generator
also validates the UML tree (i.e. an input DSM) against a corresponding DSL. For
example, it checks if the DSM uses appropriate stereotypes and tagged-values defined
in the DSL. The validation of UML trees (DSMs) is performed by traversing the trees
using a visitor class, named UML2Switch provided by Eclipse-UML2.

(2) Building a JAST for a DSL: Once a UML tree is built and validated, DSC
Generator constructs a Java Abstract Syntax Tree (JAST) corresponding to a DSL
represented in the UML tree. DSC Generator traverses a UML tree, using
UML2Switch in Eclipse-UML2, and constructs a JAST node corresponding to each
node in the UML tree based on the mapping rules described in Section 4.1.

Fig. 3 shows some key data structures to construct JASTs. Annotation
represents an annotation. In order to represent a member annotation, Annotation
has an association with AnnotationMembers, each of which represents its
member variable. AnnotationMember keeps a value of member variable.
AnnotationDefinition and AnnotationMemberDefinition represent

5 www.eclipse.org/emf/
6
 www.eclipse.org/uml2/. Eclipse-UML2 implements the UML metamodel as a set of Java objects on EMF.

<< interface >>
Element

Type

DataType
Class Interface

PrimitiveTypeEnum

Property

*

Operation

Field

<< interface >>
AnnotationMemberType

AnnotationMemberDefinition AnnotationDefinition

type+

Annotation

meta+

AnnotationMember

-value:Object

*

meta+

*

parent+

*

parent+

*implements

type+

<< interface >>
AnnotatableElement

Classifier << enumeration >>
VisibilityKind

visibility+

visibility+

annotations+

Package

*

Fig. 3. Key data structures to construct Java Abstract Syntax Trees

8 Hiroshi Wada and Junichi Suzuki

the definitions of an annotation and an annotation’s member variable. They are
powertypes Annotation and AnnotationMember, respectively.

(3) Building a JAST for a DSC: After constructing a JAST corresponding to a DSL
represented in a UML tree, DSC Generator completes the JAST by transforming the
rest of the UML tree into JAST nodes. Transformations are performed with the JAST
data structures shown in Fig. 3, following the mapping rules described in Section 4.1.
In Fig. 3, AnnotatableElement is the root interface for the Java program
elements that can be decorated by J2SE 5.0 annotations.

The following code fragment shows how DSC Generator transforms a stereotyped
UML class (i.e. a class in DSM) to an annotated Java class (i.e. a class in DSC). The
method convertClass() takes a UML class and instantiates the class Class in a
JAST, which represents a Java class (see also Fig. 3). Then, the method transforms
the stereotypes applied to the UML class to Java annotations by instantiating the class
Annotation in resolveStereotypes() and convertStereotype().

import edu.umb.cs.dssg.mturnpike.java.ast.*;
Class convertClass(org.eclipse.uml2.Class c_) {
Class c = new Class(); // create a Java class as a JAST node
resolveStereotypes(c, c_);// create a Java annotation(s), if a UML class is stereotyped.
return c;

}
void resolveStereotypes(AnnotatableElement annotatableElement,
org.eclipse.uml2.Element element) {
foreach(Stereotype s in element.getAppliedStereotypes()){

Annotation annot = convertStereotype(element, s);
annotatableElement.addAnnotation(annot); }

}
Annotation convertStereotype(org.eclipse.uml2.Element element,
org.eclipse.uml2.Stereotype stereotype) {
Annotation annotation = new Annotation();
String name = stereotype.getName();
annotation.setName(name);
AnnotationDefinition annotDefinition = getAnnotDefinition(name);
annotation.setMeta(annotationDefinition);
foreach(Property p in stereotype.getAttributes()){

AnnotationMember annotMember = new AnnotationMember();
... // set the name, type and definition of the created annotation member.
annotation.addMember(annotationMember); }

return annotation;
}

(4) Building a DSC (annotation definitions): Once a JAST is constructed, DSC
Generator generates annotation definitions in a DSC. Each JAST node has the
toString() method, which generates Java source code corresponding to the JAST
node. DSC Generator traverses a JAST and calls the method on instances of
AnnotationDefinition and AnnotationMemberDefinition (Fig. 3).

(5) Building a DSC: Once generating annotation definitions, DSC Generator
generates the rest of annotated code in a DSC. DSC Generator traverses a JAST and
calls the toString() method on each node in the JAST.

After DSC Generator generates a DSC (i.e. annotated code), programmers write
method code in the generated DSC in order to implement dynamic behaviors for
domain-specific concepts7. Please note that the methods in the generated DSC are

7
 Please note that the methods in DSC are empty because both DSMs and DSCs only specify the static

structure of domain-specific concepts (a DSM consists of class and composite structure diagrams).

 Modeling Turnpike Frontend System: Leveraging UML Metamodeling and
Attribute-Oriented Programming 9

empty because DSMs specify only the static structure of domain-specific concepts
(using UML class diagrams and composite structure diagrams).

In addition to transformations from DSMs to DSCs, mTurnpike can perform
reverse transformations from DSCs to DSMs. In a reverse transformation, mTrunpike
parses a DSC (i.e. annotated Java code) with a J2SE 1.5 lexical analyzer (J2SE 1.5
parser) 8, and builds a JAST following the data structure shown in Fig. 3. The JAST is
transformed to a UML tree and an XMI file using Eclipse-UML2

4.3. Design and Implementation of the mTurnpike Backend System

The mTurnpike backend system consists of three components: DSM Transformer,
Skeleton Code Generator and DSC Transformer (Fig. 1).

DSM Transformer: DSM Transformer accepts a DSM as a UML tree built by DSC
Generator, and transforms it to a more detailed model (Fig. 1). Given a transformation
rule that a platform engineer defines, DSM Transformer transforms (or unfolds) DSM
model elements associated with stereotypes and tagged-values into plain UML model
elements that do not have any stereotypes and tagged-values. In this transformation, a
DSM is specialized to particular implementation and deployment technologies. For
example, if a transformation specializes an input DSM to Java RMI, the classes in the
DSM are converted to the classes implementing the java.rmi.Remote interface.

DSM Transformer is implemented with the Model Transformation Framework
(MTF) 9 , which is implemented on EMF and Eclipse-UML2. MTF provides a
language to define transformation rules between EMF-based models. mTurnpike
follows the syntax of MTF’s transformation rule language to specialize DSMs. Each
transformation rule consists of conditions and instructions. DSM Transformer
traverses a DSM (i.e. a UML tree built by DSC Generator), identifies the DSM model
elements that meet transformation conditions, and applies transformation instructions
to them. This process generates another UML tree that represents a model specializing
in particular implementation and deployment technologies. The following is an
example transformation rule.
relate class2class(
uml:Class src when equals(match over src.stereotypes.name, “Service”),
uml:Class tgt,
uml:Interface tgt2 when equals(tgt2.name, “Remote”)
) when equals(src.name, tgt.name){

implementation(tgt, tgt2)
}
relate implementation(uml:Class c1, uml:Interface c2){

realize(over c1.implementation, c2)
}
relate realize(uml:Implementation i, uml:Interface c){

check interfaces(g.contract, c)
}
relate interfaces(uml:Interface c1, uml:Interface c2)
when equals(c1.name, c2.name)

The keyword relate is used to define a transformation rule. This example defines
four transformation rules. Each rule accepts model elements as parameters and
instructs how to transform them. For example, the first rule (class2class) accepts
the classes stereotyped with <<Service>>, and transform each of them to two

8
 mTurnpike’s lexical analyzer is implemented with JavaCC (http://javacc.dev.java.net/).

9 http://www.alphaworks.ibm.com/tech/mtf/

10 Hiroshi Wada and Junichi Suzuki

classes. One of the two classes has the same name as an input <<Service>> class,
and it extends an interface whose name is Remote.

Skeleton Code Generator: Skeleton Code Generator takes a UML tree created by
DSM Transformer, and generates skeleton code in Java (Fig. 1). It traverses an input
UML tree, builds a JAST corresponding to the UML tree using the JAST package
shown in Fig. 3, and generates Java code from the JAST. Since the mTurnpike
frontend system only supports structural UML diagrams (class and composite
structure diagrams), the methods in the generated code are empty.

DSC Transformer: DSC Transformer accepts a DSC generated by DSC Generator,
method code written on the generated DSC by programmers, and skeleton code
generated by Skeleton Code Generator. Then, DSC Transformer combines them to
generate the final compilable code (in Java). DSC Transformer extracts method code
embedded in an input DSC, and copies the method code to an input skeleton code.
DSC Transformer analyses a transformation rule, which is used by DSM Transformer,
in order to determine where each method code is copied in an input skeleton code.

5. An Example DSL

This section describes an example DSL to develop service-oriented distributed
systems, and overviews a development process using the DSL with mTurnpike.

5.1. SOA DSL

Service Oriented Architecture (SOA) is a distributed systems architecture that
connects and operates network services in a platform independent manner. SOA
models a distributed system as a collection of services. It abstracts distributed systems
using two concepts, service interface and connections between services, and hides the
details of implementation and deployment technologies, such as programming
languages used to implement services and remoting infrastructures used to operate
services. In SOA, each service maintains its own interface that makes its functionality
accessible to other services via network. Each connection between services is an
abstraction to specify how to interact (or exchange messages) between services.

The proposed SOA DSL focuses on connectivity between services, and allows
developers to visually design the connections between services as UML diagrams. It

0..*
1

1

0..*
1..* 1..*

UML 2.0
metamodel

InternalStructures::StructuredClassifier

input

output
1

1 1..*

1

Ports::EncapsulatedClassifier Ports::Port

0..1 *

InternalStructures::Property

Kernel::Class

part

1..* 1..*

source

sink

InternalStructures::Class

0..1 *

Fig. 4. The proposed SOA DSL

<<stereotype>>
Filter

<<stereotype>>
Connector

<<stereotype>>
Service

<<stereotype>>
Message

 Modeling Turnpike Frontend System: Leveraging UML Metamodeling and
Attribute-Oriented Programming 11

is defined as a UML profile extending the standard UML metamodel. Fig. 4 shows
the core part of the proposed SOA DSL.
Service and Message are stereotypes used to specify network services and

messages exchanged between services. They are defined as a metaclass extending the
Class metaclass in the standard UML metamodel.
Connector is used to represent connections between services. It is a stereotype

extending the Class metaclass in the InternalStructures package (Fig 4).
This metaclass defines a model element used in the UML composite structure
diagram. It allows developers to define nested model structures, such as a class
composed of several internal (nested) classes. Connector maintains two different
semantics: connection semantics and invocation semantics (Fig. 5).
ConnectionSemantics is used to specify how to establish a connection between
services. It defines four different semantics (Fig. 5). The Reliability option
guarantees that messages are delivered to destinations. The Encryption option
instructs that messages are encrypted on a connection. The Stream option enables
streaming messages. The Queuing option deploys a message queue between
services to enable a store-and-forward messaging policy. InvocationSemantics
is used to specify how to invoke a service through a connection. Supported invocation
semantics include synchronous, asynchronous and oneway invocations.

A Connector can contain Filters to customize its behavior (Fig. 4). The proposed
SOA DSL currently defines four different filters (Fig. 6). MessageConverter converts
the schema of messages exchanged on a connection. MessageAggregator
synchronizes multiple invocations and aggregates their messages. Multicast
simultaneously sends out a message to multiple filters or services. Interceptor is a
hook to intercept invocations and examine messages.

5.2. Development Process Using mTurnpike and SOA DSL

Using a SOA DSL described in Section 5.1, this section overviews an application
development process with mTurnpike.

(1) Defining a DSM. Modelers define a DSM in the UML 2.0 class diagrams or
composite structure diagrams. Fig. 7 shows an example DSM using the SOA DSL
described in Section 5.1. Customer orders a product to Supplier by sends out an
OrderMessage. If a Supervisor approves the order by issuing an
Authorization, Aggregator aggregates the OrderMessage and
Authorization, and sends an aggregated message to Supplier. Connection

Fig. 5. Connector stereotypes

<<enumeration>>
InvocationSemantics

Sync
Async
Oneway

<<enumeration>>
ConnectionSemantics

Reliability
Encryption
Stream
Queuing

1
1

InvocationSematics

1

0..*

ConnectionSemantics

<<stereotype>>
Filter

Fig. 6. Filter stereotypes

<<stereotype>>
Multicast

<<stereotype>>
MessageAggregator

<<stereotype>>
MessageConverter

<<stereotype>>
Interceptor

<<stereotype>>
Connector

12 Hiroshi Wada and Junichi Suzuki

is responsible for connecting services and delivering messages between them. It
establishes a synchronous and secure connection between services.

(2) Generating a DSC from a DSM. DSC Generator takes a DSM and generates a
DCS (Fig. 1). The following is a DSC (annotated code) for Supplier.
@Service
public class Supplier{ public onMessage(OrderMessage message){} }

(3) Writing Method Code. Programmers write method code in the generated DSC
in Java (Fig. 1). For example, they write onMessage()in the Supplier class.

(4) Defining Transformation Rules. Platform engineers define a transformation
rule to specialize a DSM in particular implementation and deployment technologies
(Fig. 1). For example, if a DSM specifies a synchronous connection, a transformation
rule may transform a UML class stereotyped with <<service>> into several UML
interfaces and classes that are required to implement the <<service>> class as a
Java RMI object (Fig. 8). If a DSM specifies an asynchronous connection, a
transformation rule may specialize the <<service>> class to a JMS object (Fig. 8).
The transformation rule also may specialize a <<Message>> class (e.g.
OrderMessage) to implement the interface javax.jms.Message.

(5) Generate Final Code. DSL Transformer takes a DSM and a DSC as inputs, and
generates the final (compilable) code (Fig. 1). It applies a transformation rule
described in the step (4) to an input DSM to specialize the DSM. Then, it generates
skeleton code in Java from the specialized DSM. Finally, DSL Transformer extracts
method code from a DSC, and copies the method code to the generated skeleton code.

Fig. 8. Service implementations with JavaRMI and JMS

+ onMessage(javax.jms.Message)

javax.jms.MessageListener

<<Service>>Supplier

+onMessage(OrderMessage)

Supplier

+ onMessage(OrderMessage)

javax.rmi.Remote

JavaRMI model JMS model

Supplier

<<Service>>
Customer

<<Service>>
Supplier

<<Service>>
Supervisor

<<Interceptor>>
: Logger

<<Message>>
Authorization

<<MessageAggregator>>
: Aggregator

《Connector》Connection

input

source

output

InvocationSemantics = Sync
ConnectionSemantics = Encryption

source sink

input

Fig. 7. An example DSM using the proposed SOA DSL

<<Message>>
OrderMessage

+onMessage(
OrderMessage)

 Modeling Turnpike Frontend System: Leveraging UML Metamodeling and
Attribute-Oriented Programming 13

6. Preliminary Performance Evaluation

This section empirically evaluates the efficiency and memory footprint of the
mTurnpike frontend system. Measurements are obtained with nine configurations
(Table 2). For example, in the A1 configuration, mTurnpike loads a DSM that
contains 10 classes, each of which has five data fields, one stereotype and five tagged-
values (120 model elements in total). Measurements uses a Sun J2SE 5.0.2 VM
running on a Windows 2000 PC with an Athlon 1.7 Ghz CPU and 512MB memory.

In order to evaluate the efficiency of the mTurnpike frontend system, Fig. 9 shows
the time for mTurnpike to execute each of the five functional steps to transform a
DSM to a DSC (see Section 4.2). The numbers placed in the figure depicts how long
it takes for mTurnpike to execute functional steps 1, 3 and 5. Fig. 9 shows mTurnpike
is efficient enough in the configurations A1 to B2 (its overhead is up to 5 seconds).
The transformation overhead is acceptable in small-scale to mid-scale application
development. mTurnpike does not interrupt developers’ modeling and programming
work severely. Fig. 9 also shows that it takes 8 up to 33 seconds for mTurnpike to
execute its frontend process in the C1 to C3 configurations. Several optimization
efforts are currently underway, and they are expected to reduce the latency.

In order to examine the memory footprint of the mTurnpike frontend system, Fig.
10 shows how much memory space mTurnpike consumes to transform a DSM to a
DSC. mTurnpike consumes no more than 15MB memory to handle models produced
in small-scale up to large-scale projects (in the configurations A1 to C2). Since the
memory utilization of mTurnpike is fairly small, it is not necessary for developers to
upgrade their development environments (e.g. memory modules in their PCs).

5.87

11.78

14.62

0.58 0.96 0.96 1.14 1.63 2.030.52 1.92
0.67 1.28 1.20 1.52 2.16 3.070.58 3.63
0.69 1.33 1.42 1.74 3.31 4.25

0.61
4.21

0

10

20

30

A1 A2 A3 B1 B2 B3 C1 C2 C3
measurement configurat ions

tim
e

(s
)

5) Generat ing a DSC
4) Generat ing a DSC (annotat ion definit ions)
3) Building a JAST for a DSC
2) Building a JAST for a DSL
1) Loading a DSM to build a UML t ree

Fig. 9. Overhead of mTurnpike to transform a DSM to a DSC.

Table 2. Measurement configurations.

1 0 1 0 0 5 0 0

A 1 B1 C1
(1 2 0) (1 2 0 0) (6 0 0 0)

A 2 B2 C2
(2 3 0) (2 3 0 0) (1 1 5 0 0)

A 3 B3 C3
(1 1 1 0) (1 1 1 0 0) (5 5 5 0 0)

5 0 dat a f ields an d 1 0 st ereo t y p es (5
t agged-v alues fo r each st ereo t y p e)

5 dat a f ields an d 1 st ereo t y p e (5
t agged-v alues fo r each st ereo t y p e)
1 0 dat a f ields an d 2 st e reo t y p es (5
t agged-v alues fo r each st ereo t y p e)

T h e n um ber o f classes
T h e n um ber o f m o del elem en t s

def in ed in each class

14 Hiroshi Wada and Junichi Suzuki

7. Related Work

mTurnpike reuses the J2SE 5.0 syntax to write annotated code (i.e. marker and
member annotations). However, mTurnpike and J2SE 5.0 follow different approaches
to define transformation rules between annotated code and compilable code. In J2SE
5.0, transformation rules are defined in a procedural manner (i.e. as programs). It
allows developers to define arbitrary transformation rules in user-defined annotation
processors (see Section 2). A user-defined annotation processor examines annotated
code using the Java reflection API, and generates compilable code based on a
corresponding transformation rule. Although this transformation mechanism is
generic and extensible, it tends to be complicated and error-prone to write user-
defined annotation processors. Also, transformation rules are difficult to maintain in
annotation processors, since updating a transformation rule requires modifying and
recompiling the corresponding annotation processor.

In contrast, mTurnpike allows developers to define transformation rules in a
declarative manner. Declarative transformation rules are more readable and easier to
maintain than procedural ones. It is not required to recompile mTurnpike when
updating transformation rules. Also, transformation rules are defined at the modeling
layer, not the programming layer. This raises the level of abstraction for handling
transformation rules, resulting in higher productivity of users in managing them.

mTurnpike has some functional commonality with existing model-driven
development (MDD) tools such as OptimalJ10, Rose XDE11, Together12, UMLX [8]
and KMF [9] They usually have two functional components: Model Transformer and
Code Generator (Fig. 11). Similar to DSM Transformer in mTurnpike, Model
Transformer accepts UML models that modelers describe with UML profiles, and
converts them to more detailed models in accordance with transformation rules.
Similar to Skeleton Code Generator in mTurnpike, Code Generator takes the UML
models created by Model Transformer, and generates source code.

A major difference between existing MDD tools and mTurnpike is the level of
abstraction where programmers work. In existing MDD tools, programmers and
modelers work at different abstraction levels (Fig. 11). Although modelers work on
UML modeling at a higher abstraction level, programmers need to handle source
code, at a lower abstraction level, which is generated by Code Generator (Fig. 11).
The generated source code is often hard to read and understand. It tends to be
complicated, time consuming and error-prone to modify and extend the source code.

10

 http://www.compuware.com/products/optimalj/
11

 http://www.ibm.com/software/awdtools/developer/rosexde/
12

 http://www.borland.com/together/architect/

Fig. 10. Memory footprint of mTurnpike to transform a DSM to a DSC.

0
10
20
30
40
50

10 100 500
t he num ber o f classes

m
em

or
y

ut
ili

za
tio

n
(M

B) A1 -B1-C1
A2-B2-C2
A3-B3-C3

 Modeling Turnpike Frontend System: Leveraging UML Metamodeling and
Attribute-Oriented Programming 15

Unlike existing MDD tools, mTurnpike allows both programmers and modelers to
work at a higher abstraction level (Fig. 1). Programmers implement behavioral
functionalities (i.e. method code) in DSCs, before DSL Transformer transforms DSCs
to more detailed programs that specialize in particular implementation and
deployment technologies. This means that programmers can focus on coding
application’s core logic (or business logic) without handling the details in
implementation and deployment technologies. Also, DSCs (i.e. annotated code) are
much more readable and easier to maintain than the source code generated by Code
Generators in existing MDD tools (see Sections 2 and 3.1). Therefore, mTurnpike
provides a higher productivity of programmers in implementing their applications.

8. Conclusion

This paper describes and empirically evaluates a new model-driven development
framework called mTurnpike. In addition to an overview of architectural design, this
paper focuses on the frontend system of mTurnpike and describes its design,
implementation and performance implications. In order to demonstrate how to exploit
mTurnpike in application development, this paper also shows a development process
using an example DSL to specify service-oriented distributed systems.

References

1. G. Booch, A Brown, S Iyengar, J. Rumbaugh and B. Selic, “An MDA Manifesto,” In The MDA Journal:
Model Driven Architecture Straight from the Masters, Chapter 11, Meghan-Kiffer Press, December 2004.

2. S. Cook, “Domain-Specific Modeling and Model-driven Architecture,” In The MDA Journal: Model
Driven Architecture Straight from the Masters, Chapter 3, Meghan-Kiffer Press, December 2004.

3. S. Kelly and J. Tolvanen, “Visual Domain-specific Modeling: Benefits and Experiences of using
metaCASE Tools,” In Proc. of Int’l workshop on Model Engineering, ECOOP, 2000.

4. Object Management Group, UML 2.0 Superstructure Specification, Otober, 2004.
5. D. Schwarz, “Peeking Inside the Box: Attribute-Oriented Programming with Java 1.5,” In ON Java.com,

O’Reilly Media, Inc., June 2004.
6. L. Fuentes, A. Vallecillo. “An Introduction to UML Profiles”. UPGRADE, The European Journal for the

Informatics Professional, 5 (2): 5-13, April 2004.
7. Object Management Group, MOF 2.0 XML Metadata Interchange, 2004.
8. E. Willink, “UMLX: A Graphical Transformation Language for MDA,” In Proc. of OOPSLA, 2002.
9. O. Patrascoiu, “Mapping EDOC to Web Services using YATL,” In Proc. of the 8th IEEE International

Enterprise Distributed Object Computing Conference, September 2004.

Final
Code

Transformation rules

Visual Models Textual Code
Representation

Fig. 11. Development process using traditional model-driven development tools.

Code
Generator

Model
Transformer

Folded Model
(Platform independent)

Unfolded Model
(Platform specific)

Programmers

Modelers Describe
models

Write
method code

Platform Engineers

Define
rules

A
bs

tra
ct

io
n

le
ve

l

H
ig

he
r

A
bs

tra
ct

io
n

Le
ve

l

Lo
w

er

A
bs

tra
ct

io
n

Le
ve

l

