
Modeling Turnpike Frontend System: a Model-Driven 
Development Framework Leveraging UML 

Metamodeling and Attribute-Oriented Programming* 

Hiroshi Wada and Junichi Suzuki 

Department of Computer Science 
University of Massachusetts, Boston 

hiroshi_wada@otij.org and jxs@cs.umb.edu 

Abstract. This paper describes and empirically evaluates a new model-driven 
development framework, called Modeling Turnpike (or mTurnpike). It allows 
developers to model and program domain-specific concepts (ideas and 
mechanisms specific to a particular business or technology domain) and to 
transform them to the final (compilable) source code. By leveraging UML 
metamodeling and attribute-oriented programming, mTurnpike provides an 
abstraction to represent domain-specific concepts at the modeling and 
programming layers simultaneously. The mTurnpike frontend system 
transforms domain-specific concepts from the modeling layer to programming 
layer, and vise versa, in a seamless manner. Its backend system combines 
domain-specific models and programs, and transforms them to the final 
(compilable) source code. This paper focuses on the frontend system of 
mTurnpike, and describes its design, implementation and performance 
implications. In order to demonstrate how to exploit mTurnpike in application 
development, this paper also shows a development process using an example 
DSL (domain specific language) to specify service-oriented distributed systems. 

1. Introduction 

Modeling technologies have matured to the point where they can offer significant 
leverage in all aspects of software development. Given modern modeling 
technologies, the focus of software development has been shifting away from 
implementation technology domains toward the concepts and semantics in problem 
domains. The more directly application models can represent domain-specific 
concepts, the easier it becomes to specify applications. One of the goals of modeling 
technologies is to map modeling concepts directly to domain-specific concepts [1]. 

Domain Specific Language (DSL) is a promising solution to directly capture, 
represent and implement domain-specific concepts [1, 2]. DSLs are the languages 
targeted to particular problem domains, rather than general-purpose languages that are 
aimed at any software problems. Several experience reports have demonstrated that 
DSLs can improve the productivity in implementing domain-specific concepts [3]. 

This paper proposes a new model-driven development framework, called Modeling 
Turnpike (or mTurnpike), which aids modeling and programming domain-specific 
concepts with DSLs. mTurnpike allows developers to model and program domain-
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specific concepts in DSLs and to transform them to the final (compilable) source code 
in a seamless and piecemeal manner. Leveraging UML metamodeling and attribute-
oriented programming, mTurnpike provides an abstraction to represent domain-
specific concepts at the modeling and programming layers simultaneously. At the 
modeling layer, domain-specific concepts are represented as a Domain Specific Model 
(DSM), which is a set of UML 2.0 diagrams described in a DSL. Each DSL is defined 
as a UML metamodel that extends the UML 2.0 standard metamodel [4]. At the 
programming layer, domain-specific concepts are represented as a Domain Specific 
Code (DSC), which consists of attribute-oriented programs. Attributes are declarative 
marks, associated with program elements (e.g. classes and interfaces), to indicate that 
the program elements maintain application-specific or domain-specific semantics [5]. 
The frontend system of mTurnpike transforms domain-specific concepts from the 
modeling layer to programming layer, and vise versa, by providing a seamless 
mapping between DSMs and DSCs without any semantics loss. 

The backend system of mTurnpike transforms a DSM and DSC into a more 
detailed model and program by applying a given transformation rule. mTurnpike 
allows developers to define arbitrary transformation rules, each of which specifies 
how to specialize a DSM and DSC to particular implementation and deployment 
technologies. For example, a transformation rule may specialize them to a database, 
while another rule may specialize them to a remoting system. mTurnpike combines 
the specialized DSM and DSC to generate the final (compilable) source code. 

This paper focuses on the frontend system of mTurnpike, and describes its design, 
implementation and performance implications. In order to demonstrate how to exploit 
mTurnpike in application development, this paper also shows a development process 
using an example DSL to specify service-oriented distributed systems. 

2. Contributions 

This section summarizes the contributions of this work. 

• UML 2.0 support for modeling domain-specific concepts. mTurnpike accepts 
DSLs as metamodels extending the UML 2.0 standard metamodel, and uses UML 
2.0 diagrams to model domain-specific concepts (as DSMs). This work is one of 
the first attempts to exploit UML 2.0 to define and use DSLs. 

• Higher abstraction for programming domain-specific concepts. mTurnpike offers 
a new approach to represent domain-specific concepts at the programming layer, 
through the notion of attribute-oriented programming. This approach provides a 
higher abstraction for developers to program domain-specific concepts, thereby 
improving their programming productivity. Attribute-oriented programming makes 
programs simpler and more readable than traditional programming paradigms. 

• Seamless mapping of domain-specific concepts between the modeling and 
programming layers. mTurnpike maps domain-specific concepts between the 
modeling and programming layers in a seamless and bi-directional manner. This 
mapping allows modelers1 and programmers to deal with the same set of domain-
specific concepts in different representations (i.e. UML models and attribute-
oriented programs), yet at the same level of abstraction. Thus, modelers do not 
have to involve programming details, and programmers do not have to possess 
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detailed domain knowledge and UML modeling expertise. This separation of 
concerns can reduce the complexity in application development, and increase the 
productivity of developers in modeling and programming domain-specific 
concepts. 

• Modeling layer support for attribute-oriented programs. Using the bi-directional 
mapping between UML models and attribute-oriented programs, mTurnpike 
visualizes attribute-oriented programs in UML. This work is the first attempt to 
bridge a gap between UML modeling and attribute-oriented programming. 

3. Background: Attribute-Oriented Programming 

Attribute-oriented programming is a program-level marking technique. Programmers 
can mark program elements (e.g. classes and methods) to indicate that they maintain 
application-specific or domain-specific semantics [5]. For example, a programmer 
may define a “logging” attribute and associate it with a method to indicate the method 
should implement a logging function, while another programmer may define a “web 
service” attribute and associate it with a class to indicate the class should be 
implemented as a web service. Attributes separate application’s core (business) logic 
from application-specific or domain-specific semantics (e.g. logging and web service 
functions). By hiding the implementation details of those semantics from program 
code, attributes increase the level of programming abstraction and reduce 
programming complexity, resulting in simpler and more readable programs. The 
program elements associated with attributes are transformed to more detailed 
programs by a supporting tool (e.g. pre-processor). For example, a pre-processor may 
insert a logging program into the methods associated with a “logging” attribute. 

The notion of attribute-oriented programming has been well accepted in several 
languages and tools, such as Java 2 standard edition (J2SE) 5.0, C# and XDoclet2. For 
example, J2SE 5.0 implements attributes as annotations, and the Enterprise Java 
Beans (EJB) 3.0 extensively uses annotations to make EJB programming simpler. 
Here is an example using an EJB 3.0 annotation. 

@entity class Customer{
String name;}

The @entity annotation is associated with the class Customer. This annotation 
indicates that Customer will be implemented as an entity bean. A pre-processor in 
EJB, called annotation processor, takes the above annotated code and applies a 
certain transformation rule to generate several interfaces and classes required to 
implement Customer as an entity bean (i.e. remote interface, home interface and 
implementation class). The EJB annotation processor follows the transformation rules 
predefined in the EJB 3.0 specification. 

In addition to predefined annotations, J2SE 5.0 allows developers to define their 
own (user-defined) annotations. There are two types of user-defined annotations: 
marker annotations and member annotations. Here is an example marker annotation. 

public @interface Logging{ }

In J2SE 5.0, a marker annotation is defined with the keyword @interface. 
public class Customer{

@Logging public void setName(...){...} }
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In this example, the Logging annotation is associated with setName(), indicating 
the method logs method invocations. Then, a developer specifies a transformation rule 
for the annotation, and creates a user-defined annotation processor that implements 
the transformation rule. The annotation processor may replace each annotated method 
with a method implementing a logging function. 

A member annotation, the second type of user-defined annotations, is an 
annotation that has member variables. It is also defined with @interface. 

public @interface Persistent{
String connection();
String tableName(); }

The Persistent annotation has the connection and tableName variables. 
@Persistent(

connection = “jdbc:http://localhost/”,
tableName = “customer” )

public class Customer{}

Here, the Persistent annotation is associated with the class Customer, 
indicating the instances of Customer will be stored in a database with a particular 
database connection and table name. A developer who defines this annotation 
implements a user-defined annotation processor that takes an annotated code and 
generates additional classes and/or methods implementing a database access function. 

4. Design and Implementation of mTurnpike 

mTurnpike consists of the frontend and backend systems (Fig. 1). The frontend 
system is implemented as DSC Generator, and the backend system is implemented as 
DSL Transformer. Every component in mTurnpike is implemented with Java. 

The frontend system transforms domain-specific concepts from the modeling layer 
to programming layer, and vise versa, by providing a seamless mapping between 
DSMs and DSCs. In mTurnpike, a DSL is defined as a metamodel that extends the 
UML 2.0 standard (superstructure) metamodel with UML’s extension mechanism3. 
The UML extension mechanism provides a set of model elements such as stereotype 
and tagged-value in order to add application-specific or domain-specific modeling 
semantics to the UML 2.0 standard metamodel [6]. In mTurnpike, each DSL defines a 
set of stereotypes and tagged-values to express domain-specific concepts. Stereotypes 
are specified as metaclasses extending UML’s standard metaclasses, and tagged-
values are specified as properties of stereotypes (i.e. extended metaclasses).  

Given a DSL, a DSM is represented as a set of UML 2.0 diagrams (class and 
composite structure diagrams). Each DSC consists of Java interfaces and classes 
decorated with the J2SE 5.0 annotations. The annotated code follows the J2SE 5.0 
syntax to define marker and member annotations. 

The backend system of mTurnpike transforms a DSM and DSC into a more 
detailed model and program that specialize in particular implementation and 
deployment technologies. Then, it combines the specialized DSM and DSC to 
generate the final (compilable) code (Fig. 1). 

In mTurnpike, the frontend and backend systems are separated by design. 
mTurnpike clearly separates the task to model and program domain-specific models 
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(as DSMs and DSCs) from the task to transform them into the final compilable code. 
This design strategy improves separation of concerns between modelers/programmers 
and platform engineers 4 . Modelers and programmers do not have to know how 
domain-specific concepts are implemented and deployed in detail. Platform engineers 
do not have to know the details of domain-specific concepts. As a result, mTurnpike 
can reduce the complexity in application development, and increase the productivity 
of developers in modeling and programming domain-specific concepts.  

This design strategy also allows DSMs/DSCs and transformation rules to evolve 
independently. Since DSMs and DSCs do not depend on transformation rules, 
mTurnpike can specialize a single set of DSM and DSC to different implementation 
and deployment technologies by using different transformation rules. When it comes 
time to change a running application, modelers/programmers make the changes in the 
application’s DSM and DSC and leave transformation rules alone. When retargeting 
an application to a different implementation and/or deployment technology, e.g. Java 
RMI to Java Messaging Service (JMS), platform engineers define (or select) a 
transformation rule for the new target technology and regenerate the final compilable 
source code.  As such, mTurnpike can make domain-specific concepts (i.e. DSMs and 
DSCs) more reusable and extend their longevity, thereby improving productivity and 
maintainability in application development. 

4.1. Mapping between DSMs and DSCs in the mTurnpike Fontend System 

mTurnpike implements the mapping rules shown in Table 1 to transform DSMs to 
DSCs, and vice versa. Fig. 2 shows an example DSM, the class Customer 
stereotyped as <<entitybean>> with a tagged-value. mTurnpike transforms the 
UML class (DSM) to the following Java class and member annotation (DSC). 
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Table 1. Mapping rules between DSMs and DSCs. 

UML Elements in DSM Java Elements in DSC 
Definition of a stereotype that has no 
tagged-values Definition of a marker annotation 

Definition of a stereotype that has tagged-
values Definition of a member annotation 

DSL 
or 

Profile 
 (M2) 

Definition of a tagged-value Definition of a member variable in a 
member annotation 

Package Package 
Class and interface Class and interface 
Method and data field Method and data field 
Modifier and visibility Modifier and visibility 
Primitive type Primitive type 
Stereotype that has no tagged-values Marker annotation 
Stereotype that has tagged-values Member annotation 

DSM 
(M1) 

Tagged-value Member annotation’s member variable 
 

(1) Java class Customer (DSC) 
@entitybean(

jndi-name = “ejb/Customer”)
public class Customer{
public String getName(){} }

(2) Member annotation entitybean (DSC) 
@interface entitybean{

String jndi-name(); }

4.2. Design and Implementation of the mTurnpike Frontend System 

The mTurnpike frontend system is implemented by DSC Generator (Fig. 1). It 
performs transformations between DSMs and DSCs based on the mapping rules 
described in Section 4.1. The following five steps involve in the transformation. 

(1) Loading a DSM to build a UML tree: DSC Generator imports a DSM as a 
representation of the XML Metadata Interchange (XMI) 2.0 [7]. Developers can 
generate XMI descriptions of their DSMs using any UML tools that support XMI 2.0. 
Here is an example XMI description showing the class Customer in Fig. 2. 

<UML:Class xmi.id=“id_class” owner=“id_project” name=“Customer”
appliedSteotype= “profile.xmi#//*[@xmi.id=&quot;id_profile&quot;]”>

<UML:Element.ownedElement>
<UML:Operation xmi.id=“id_operation”
name=“getName” owner=“id_class”>
<UML:Element.ownedElement>
<UML:Parameter xmi.id=“id_param” type=“id_string”
name=“Unnamed” direction=“result” owner=“id_operation”/>

</UML:Element.ownedElement>
</UML:Operation>
<UML:TaggedValue xmi.id=“id_taggedvalue”
name=“jndi-name” owner=“id_class”>
<UML:TaggedValue.dataValue>
ejb/Customer
</UML:TaggedValue.dataValue>

</UML:TaggedValue>
</UML:Element.ownedElement>
</UML:Class>
<UML:DataType xmi.id=“id_string” owner=“id_project” name=“String”/>

Fig. 2. UML Class Customer (DSM) 

<<entitybean>> 
Customer 

{j di ” jb/C ”}
+ getName() : String

Fig. 2. UML Class Customer (DSM)

<<entitybean>> 
Customer 

{jndi-name=”ejb/Customer”} 

+ getName() : String 
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The <UML:Class> tag defines a class, and its attribute appliedStereotype 
references, with XPath directives, a stereotype defined in another XMI file 
(profile.xmi). In this example, the stereotype <<entitybean>> is referenced 
with its identifier id_profile. The <UML:TaggedValue> tag defines a tagged-
value associated with the class Customer.  

When accepting a DSM, DSC Generator identifies a DSL that the input DSM 
follows. DSLs are also represented as XMI descriptions. In the above example, a DSL 
is defined in a file named profile.xmi. DSC Generator parses a DSM and its 
corresponding DSL, as XMI files, to build an in-memory tree structure, called UML 
tree. A UML tree is an instance of the UML standard metamodel. For building UML 
trees, DSC Generator follows the data structures provided by the Eclipse Modeling 
Framework (EMF)5 and Eclipse-UML26.  

Once a UML tree is constructed, DSC Generator validates the UML tree (i.e. an 
input DSM) against the standard UML metamodel. It examines if the DSM follows 
the syntax and semantics defined in the standard UML metamodel. DSC Generator 
also validates the UML tree (i.e. an input DSM) against a corresponding DSL. For 
example, it checks if the DSM uses appropriate stereotypes and tagged-values defined 
in the DSL. The validation of UML trees (DSMs) is performed by traversing the trees 
using a visitor class, named UML2Switch provided by Eclipse-UML2. 

(2) Building a JAST for a DSL: Once a UML tree is built and validated, DSC 
Generator constructs a Java Abstract Syntax Tree (JAST) corresponding to a DSL 
represented in the UML tree. DSC Generator traverses a UML tree, using 
UML2Switch in Eclipse-UML2, and constructs a JAST node corresponding to each 
node in the UML tree based on the mapping rules described in Section 4.1. 

Fig. 3 shows some key data structures to construct JASTs. Annotation 
represents an annotation. In order to represent a member annotation, Annotation 
has an association with AnnotationMembers, each of which represents its 
member variable. AnnotationMember keeps a value of member variable. 
AnnotationDefinition and AnnotationMemberDefinition represent 
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the definitions of an annotation and an annotation’s member variable. They are 
powertypes Annotation and AnnotationMember, respectively. 

(3) Building a JAST for a DSC: After constructing a JAST corresponding to a DSL 
represented in a UML tree, DSC Generator completes the JAST by transforming the 
rest of the UML tree into JAST nodes. Transformations are performed with the JAST 
data structures shown in Fig. 3, following the mapping rules described in Section 4.1. 
In Fig. 3, AnnotatableElement is the root interface for the Java program 
elements that can be decorated by J2SE 5.0 annotations. 

The following code fragment shows how DSC Generator transforms a stereotyped 
UML class (i.e. a class in DSM) to an annotated Java class (i.e. a class in DSC). The 
method convertClass() takes a UML class and instantiates the class Class in a 
JAST, which represents a Java class (see also Fig. 3). Then, the method transforms 
the stereotypes applied to the UML class to Java annotations by instantiating the class 
Annotation in resolveStereotypes() and convertStereotype(). 

import edu.umb.cs.dssg.mturnpike.java.ast.*;
Class convertClass( org.eclipse.uml2.Class c_ ) {
Class c = new Class(); // create a Java class as a JAST node
resolveStereotypes(c, c_);// create a Java annotation(s), if a UML class is stereotyped.
return c;

}
void resolveStereotypes( AnnotatableElement annotatableElement,
org.eclipse.uml2.Element element ) {
foreach( Stereotype s in element.getAppliedStereotypes() ){

Annotation annot = convertStereotype( element, s );
annotatableElement.addAnnotation( annot ); }

}
Annotation convertStereotype( org.eclipse.uml2.Element element,
org.eclipse.uml2.Stereotype stereotype ) {
Annotation annotation = new Annotation();
String name = stereotype.getName();
annotation.setName( name );
AnnotationDefinition annotDefinition = getAnnotDefinition( name );
annotation.setMeta( annotationDefinition );
foreach( Property p in stereotype.getAttributes() ){

AnnotationMember annotMember = new AnnotationMember();
... // set the name, type and definition of the created annotation member.
annotation.addMember(annotationMember); }

return annotation;
}

(4) Building a DSC (annotation definitions): Once a JAST is constructed, DSC 
Generator generates annotation definitions in a DSC. Each JAST node has the 
toString() method, which generates Java source code corresponding to the JAST 
node. DSC Generator traverses a JAST and calls the method on instances of 
AnnotationDefinition and AnnotationMemberDefinition (Fig. 3). 

(5) Building a DSC: Once generating annotation definitions, DSC Generator 
generates the rest of annotated code in a DSC. DSC Generator traverses a JAST and 
calls the toString() method on each node in the JAST. 

After DSC Generator generates a DSC (i.e. annotated code), programmers write 
method code in the generated DSC in order to implement dynamic behaviors for 
domain-specific concepts7. Please note that the methods in the generated DSC are 
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empty because DSMs specify only the static structure of domain-specific concepts 
(using UML class diagrams and composite structure diagrams). 

In addition to transformations from DSMs to DSCs, mTurnpike can perform 
reverse transformations from DSCs to DSMs. In a reverse transformation, mTrunpike 
parses a DSC (i.e. annotated Java code) with a J2SE 1.5 lexical analyzer (J2SE 1.5 
parser) 8, and builds a JAST following the data structure shown in Fig. 3. The JAST is 
transformed to a UML tree and an XMI file using Eclipse-UML2  

4.3. Design and Implementation of the mTurnpike Backend System 

The mTurnpike backend system consists of three components: DSM Transformer, 
Skeleton Code Generator and DSC Transformer (Fig. 1).  

DSM Transformer: DSM Transformer accepts a DSM as a UML tree built by DSC 
Generator, and transforms it to a more detailed model (Fig. 1). Given a transformation 
rule that a platform engineer defines, DSM Transformer transforms (or unfolds) DSM 
model elements associated with stereotypes and tagged-values into plain UML model 
elements that do not have any stereotypes and tagged-values. In this transformation, a 
DSM is specialized to particular implementation and deployment technologies. For 
example, if a transformation specializes an input DSM to Java RMI, the classes in the 
DSM are converted to the classes implementing the java.rmi.Remote interface. 

DSM Transformer is implemented with the Model Transformation Framework 
(MTF) 9 , which is implemented on EMF and Eclipse-UML2. MTF provides a 
language to define transformation rules between EMF-based models. mTurnpike 
follows the syntax of MTF’s transformation rule language to specialize DSMs. Each 
transformation rule consists of conditions and instructions. DSM Transformer 
traverses a DSM (i.e. a UML tree built by DSC Generator), identifies the DSM model 
elements that meet transformation conditions, and applies transformation instructions 
to them. This process generates another UML tree that represents a model specializing 
in particular implementation and deployment technologies. The following is an 
example transformation rule.  
relate class2class(
uml:Class src when equals(match over src.stereotypes.name, “Service”),
uml:Class tgt,
uml:Interface tgt2 when equals(tgt2.name, “Remote”)
) when equals(src.name, tgt.name){

implementation(tgt, tgt2)
}
relate implementation(uml:Class c1, uml:Interface c2){

realize(over c1.implementation, c2)
}
relate realize(uml:Implementation i, uml:Interface c){

check interfaces(g.contract, c)
}
relate interfaces(uml:Interface c1, uml:Interface c2)
when equals(c1.name, c2.name)

The keyword relate is used to define a transformation rule. This example defines 
four transformation rules. Each rule accepts model elements as parameters and 
instructs how to transform them. For example, the first rule (class2class) accepts 
the classes stereotyped with <<Service>>, and transform each of them to two 
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classes. One of the two classes has the same name as an input <<Service>> class, 
and it extends an interface whose name is Remote. 

Skeleton Code Generator: Skeleton Code Generator takes a UML tree created by 
DSM Transformer, and generates skeleton code in Java (Fig. 1). It traverses an input 
UML tree, builds a JAST corresponding to the UML tree using the JAST package 
shown in Fig. 3, and generates Java code from the JAST. Since the mTurnpike 
frontend system only supports structural UML diagrams (class and composite 
structure diagrams), the methods in the generated code are empty. 

DSC Transformer: DSC Transformer accepts a DSC generated by DSC Generator, 
method code written on the generated DSC by programmers, and skeleton code 
generated by Skeleton Code Generator. Then, DSC Transformer combines them to 
generate the final compilable code (in Java). DSC Transformer extracts method code 
embedded in an input DSC, and copies the method code to an input skeleton code. 
DSC Transformer analyses a transformation rule, which is used by DSM Transformer, 
in order to determine where each method code is copied in an input skeleton code. 

5. An Example DSL 

This section describes an example DSL to develop service-oriented distributed 
systems, and overviews a development process using the DSL with mTurnpike. 

5.1. SOA DSL 

Service Oriented Architecture (SOA) is a distributed systems architecture that 
connects and operates network services in a platform independent manner. SOA 
models a distributed system as a collection of services. It abstracts distributed systems 
using two concepts, service interface and connections between services, and hides the 
details of implementation and deployment technologies, such as programming 
languages used to implement services and remoting infrastructures used to operate 
services. In SOA, each service maintains its own interface that makes its functionality 
accessible to other services via network. Each connection between services is an 
abstraction to specify how to interact (or exchange messages) between services.  

The proposed SOA DSL focuses on connectivity between services, and allows 
developers to visually design the connections between services as UML diagrams. It 
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is defined as a UML profile extending the standard UML metamodel. Fig. 4 shows 
the core part of the proposed SOA DSL.  
Service and Message are stereotypes used to specify network services and 

messages exchanged between services. They are defined as a metaclass extending the 
Class metaclass in the standard UML metamodel.  
Connector is used to represent connections between services. It is a stereotype 

extending the Class metaclass in the InternalStructures package (Fig 4). 
This metaclass defines a model element used in the UML composite structure 
diagram. It allows developers to define nested model structures, such as a class 
composed of several internal (nested) classes. Connector maintains two different 
semantics: connection semantics and invocation semantics (Fig. 5). 
ConnectionSemantics is used to specify how to establish a connection between 
services. It defines four different semantics (Fig. 5). The Reliability option 
guarantees that messages are delivered to destinations. The Encryption option 
instructs that messages are encrypted on a connection. The Stream option enables 
streaming messages. The Queuing option deploys a message queue between 
services to enable a store-and-forward messaging policy. InvocationSemantics 
is used to specify how to invoke a service through a connection. Supported invocation 
semantics include synchronous, asynchronous and oneway invocations. 

A Connector can contain Filters to customize its behavior (Fig. 4). The proposed 
SOA DSL currently defines four different filters (Fig. 6). MessageConverter converts 
the schema of messages exchanged on a connection. MessageAggregator 
synchronizes multiple invocations and aggregates their messages. Multicast 
simultaneously sends out a message to multiple filters or services. Interceptor is a 
hook to intercept invocations and examine messages.  

5.2. Development Process Using mTurnpike and SOA DSL 

Using a SOA DSL described in Section 5.1, this section overviews an application 
development process with mTurnpike. 

(1) Defining a DSM. Modelers define a DSM in the UML 2.0 class diagrams or 
composite structure diagrams. Fig. 7 shows an example DSM using the SOA DSL 
described in Section 5.1. Customer orders a product to Supplier by sends out an 
OrderMessage. If a Supervisor approves the order by issuing an 
Authorization, Aggregator aggregates the OrderMessage and 
Authorization, and sends an aggregated message to Supplier. Connection 

Fig. 5. Connector stereotypes
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is responsible for connecting services and delivering messages between them. It 
establishes a synchronous and secure connection between services.  

(2) Generating a DSC from a DSM. DSC Generator takes a DSM and generates a 
DCS (Fig. 1). The following is a DSC (annotated code) for Supplier. 
@Service
public class Supplier{ public onMessage( OrderMessage message){} }

(3) Writing Method Code. Programmers write method code in the generated DSC 
in Java (Fig. 1). For example, they write onMessage()in the Supplier class. 

(4) Defining Transformation Rules. Platform engineers define a transformation 
rule to specialize a DSM in particular implementation and deployment technologies 
(Fig. 1). For example, if a DSM specifies a synchronous connection, a transformation 
rule may transform a UML class stereotyped with <<service>> into several UML 
interfaces and classes that are required to implement the <<service>> class as a 
Java RMI object (Fig. 8). If a DSM specifies an asynchronous connection, a 
transformation rule may specialize the <<service>> class to a JMS object (Fig. 8). 
The transformation rule also may specialize a <<Message>> class (e.g. 
OrderMessage) to implement the interface javax.jms.Message. 

(5) Generate Final Code. DSL Transformer takes a DSM and a DSC as inputs, and 
generates the final (compilable) code (Fig. 1). It applies a transformation rule 
described in the step (4) to an input DSM to specialize the DSM. Then, it generates 
skeleton code in Java from the specialized DSM. Finally, DSL Transformer extracts 
method code from a DSC, and copies the method code to the generated skeleton code. 

Fig. 8. Service implementations with JavaRMI and JMS
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6. Preliminary Performance Evaluation 

This section empirically evaluates the efficiency and memory footprint of the 
mTurnpike frontend system. Measurements are obtained with nine configurations 
(Table 2). For example, in the A1 configuration, mTurnpike loads a DSM that 
contains 10 classes, each of which has five data fields, one stereotype and five tagged-
values (120 model elements in total). Measurements uses a Sun J2SE 5.0.2 VM 
running on a Windows 2000 PC with an Athlon 1.7 Ghz CPU and 512MB memory.  

In order to evaluate the efficiency of the mTurnpike frontend system, Fig. 9 shows 
the time for mTurnpike to execute each of the five functional steps to transform a 
DSM to a DSC (see Section 4.2). The numbers placed in the figure depicts how long 
it takes for mTurnpike to execute functional steps 1, 3 and 5. Fig. 9 shows mTurnpike 
is efficient enough in the configurations A1 to B2 (its overhead is up to 5 seconds). 
The transformation overhead is acceptable in small-scale to mid-scale application 
development. mTurnpike does not interrupt developers’ modeling and programming 
work severely.  Fig. 9 also shows that it takes 8 up to 33 seconds for mTurnpike to 
execute its frontend process in the C1 to C3 configurations. Several optimization 
efforts are currently underway, and they are expected to reduce the latency. 

In order to examine the memory footprint of the mTurnpike frontend system, Fig. 
10 shows how much memory space mTurnpike consumes to transform a DSM to a 
DSC. mTurnpike consumes no more than 15MB memory to handle models produced 
in small-scale up to large-scale projects (in the configurations A1 to C2).  Since the 
memory utilization of mTurnpike is fairly small, it is not necessary for developers to 
upgrade their development environments (e.g. memory modules in their PCs). 
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7. Related Work 

mTurnpike reuses the J2SE 5.0 syntax to write annotated code (i.e. marker and 
member annotations). However, mTurnpike and J2SE 5.0 follow different approaches 
to define transformation rules between annotated code and compilable code. In J2SE 
5.0, transformation rules are defined in a procedural manner (i.e. as programs). It 
allows developers to define arbitrary transformation rules in user-defined annotation 
processors (see Section 2). A user-defined annotation processor examines annotated 
code using the Java reflection API, and generates compilable code based on a 
corresponding transformation rule. Although this transformation mechanism is 
generic and extensible, it tends to be complicated and error-prone to write user-
defined annotation processors. Also, transformation rules are difficult to maintain in 
annotation processors, since updating a transformation rule requires modifying and 
recompiling the corresponding annotation processor. 

In contrast, mTurnpike allows developers to define transformation rules in a 
declarative manner. Declarative transformation rules are more readable and easier to 
maintain than procedural ones. It is not required to recompile mTurnpike when 
updating transformation rules. Also, transformation rules are defined at the modeling 
layer, not the programming layer. This raises the level of abstraction for handling 
transformation rules, resulting in higher productivity of users in managing them.  

mTurnpike has some functional commonality with existing model-driven 
development (MDD) tools such as OptimalJ10, Rose XDE11, Together12, UMLX [8] 
and KMF [9] They usually have two functional components: Model Transformer and 
Code Generator (Fig. 11). Similar to DSM Transformer in mTurnpike, Model 
Transformer accepts UML models that modelers describe with UML profiles, and 
converts them to more detailed models in accordance with transformation rules. 
Similar to Skeleton Code Generator in mTurnpike, Code Generator takes the UML 
models created by Model Transformer, and generates source code. 

A major difference between existing MDD tools and mTurnpike is the level of 
abstraction where programmers work. In existing MDD tools, programmers and 
modelers work at different abstraction levels (Fig. 11). Although modelers work on 
UML modeling at a higher abstraction level, programmers need to handle source 
code, at a lower abstraction level, which is generated by Code Generator (Fig. 11). 
The generated source code is often hard to read and understand. It tends to be 
complicated, time consuming and error-prone to modify and extend the source code. 

                                                           
10

 http://www.compuware.com/products/optimalj/ 
11

 http://www.ibm.com/software/awdtools/developer/rosexde/ 
12

 http://www.borland.com/together/architect/ 

Fig. 10. Memory footprint of mTurnpike to transform a DSM to a DSC. 
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Unlike existing MDD tools, mTurnpike allows both programmers and modelers to 
work at a higher abstraction level (Fig. 1). Programmers implement behavioral 
functionalities (i.e. method code) in DSCs, before DSL Transformer transforms DSCs 
to more detailed programs that specialize in particular implementation and 
deployment technologies. This means that programmers can focus on coding 
application’s core logic (or business logic) without handling the details in 
implementation and deployment technologies. Also, DSCs (i.e. annotated code) are 
much more readable and easier to maintain than the source code generated by Code 
Generators in existing MDD tools (see Sections 2 and 3.1). Therefore, mTurnpike 
provides a higher productivity of programmers in implementing their applications. 

8. Conclusion 

This paper describes and empirically evaluates a new model-driven development 
framework called mTurnpike. In addition to an overview of architectural design, this 
paper focuses on the frontend system of mTurnpike and describes its design, 
implementation and performance implications. In order to demonstrate how to exploit 
mTurnpike in application development, this paper also shows a development process 
using an example DSL to specify service-oriented distributed systems.  
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