A Feature Modeling Support for Non-Functional Constraints
in Service Oriented Architecture

Hiroshi Wada and Junichi Suzuki
Department of Computer Science

University of Massachusetts, Boston

Boston, MA 02125-3393
{shu, jxs} @cs.umb.edu

Abstract

It is important in Service Oriented Architecture (SOA)
to separate functional and non-functional requirements for
services because different applications use services in dif-
ferent non-functional contexts. In order to maximize the
reusability of services, a set of constraints (e.g., dependency
and mutual exclusion constraints) among non-functional re-
quirements tend to be complicated to maintain. Currently,
those non-functional constraints are informally specified in
natural languages, and developers need to ensure that their
applications satisfy the constraints in manual and ad-hoc
manners. This paper proposes a model-driven development
framework, through the notion of feature modeling, to ex-
plicitly and graphically specify non-functional constraints
in SOA. The proposed framework allows developers to val-
idate non-functional constraints in their applications in an
automatic and consistent way. This paper also describes
how the proposed framework is implemented and effectively
used for service-oriented application development.

1. Introduction

It is important in Service Oriented Architecture (SOA)
to define the non-functional requirements (NFRs; e.g., se-
curity and fault tolerance) of services separately from their
functional requirements because different applications use
services in different non-functional contexts. For example,
an application may send signed and encrypted messages to
a service when the messages travel to the service through
third-party intermediaries, in order to prevent the interme-
diaries from maliciously sniffing or altering the messages.
Another application may send plain messages to the ser-
vice when the service is hosted in-house. The separation
of functional and non-functional requirements improves the
reusability of services in different non-functional contexts.

In order to maximize the reusability of services, a set
of constraints (e.g., dependency and mutual exclusion con-
straints) among NFRs tend to be complicated and hard to

Katsuya Oba
OGIS International, Inc.

San Mateo, CA 94404
oba@ogis-international.com

maintain because their granularity becomes finer and their
number grows. Currently, those non-functional constraints
are informally specified in natural languages, and develop-
ers need to ensure that their applications satisfy the con-
straints in manual and ad-hoc manners [1-5]. It is tedious
and error-prone to consistently validate and enforce non-
functional constraints in large-scale applications because a
large number of NFRs and their combinations can exist.

This paper proposes a new model-driven development
(MDD) framework, through the notion of feature model-
ing [6], to explicitly and graphically model a series of
non-functional constraints in SOA (Figure 1). The frame-
work consists of (1) a feature model that defines non-
functional constraints in SOA, (2) a Unified Modeling Lan-
guage (UML) profile to specify NFRs in SOA, called UP-
SNFRs [1], and (3) an MDD tool, called Ark, which gen-
erates application code (program code and deployment de-
scriptors) according to a configuration (or instance) of the
proposed feature model and a UML model defined with
UP-SNFRs. Feature modeling is a simple yet powerful
method to explicitly model the constraints among applica-
tion’s features (e.g., functionalities and configuration poli-
cies) [6]. By modeling an NFR as a feature, the proposed
framework allows developers to consistently validate non-
functional constraints in service-oriented applications. Ark
automatically enforces non-functional constraints in appli-
cations by transforming a feature configuration to applica-
tion code with UP-SNFRs (Figure 1).

As shown in Figure 1, all modeling artifacts in this work
are maintained with the metameta model of the Eclipse
Modeling Framework (EMF; http://www.eclipse.org/emf/).
UP-SNFRs is defined as an extension to the UML meta-
model, and the proposed feature model is defined with the
feature metamodel in fmp (http://gp.uwaterloo.ca/fmp/) [7].

2. An Overview of UP-SNFRs

This section gives an overview of UP-SNFRs, which is
the authors’ prior work [1]. UP-SNFRs is designed around

The proposed MDD framework

App.
. Feature
[COde] fu Configurations
model UML Models Feature Model
iH| w/ UP-SNFRs

Feature

meta-model | eSS
a UML Metamodel || Metamodel (fmp)
meta-meta-
mode | Ecore (EMF)

Figure 1: An Architectural Overview of the Proposed
MDD Framework

two major concepts: services and connections between ser-
vices. Each service encapsulates the function of a certain
element in a system (e.g., subsystem). Each connection de-
fines how services are connected with each other and how
messages are exchanged through the connection.

Figure 2 shows an example model defined with UP-
SNFRs. It illustrates an order and inventory manage-
ment application in which a buyer places purchase orders
and inventory inquiries. In this example, three services
(Buyer, OrderMgr and InventoryMgr) exchange mes-
sages. Each service is represented by a class stereotyped
with <service>> or <accessControlledService>>.
<accessControlledService>> represents a special
type of service that enforces an access control policy. (It
is a stereotype extending the stereotype <service>>.)
The tagged-value securityTokens is mandatory for this
stereotype to specify security tokens (or certificates). The
security tokens are used to authenticate entities (e.g., ser-
vices) that access a service.

| (message) | | (message)
Order Invoice
request reply

{messageExchange)| «
OrderExchange

{service) {connector)
Buyer MgmtConn

securityTokens = {
X509v3, Kerberosv5ST}

1 1
source sink

source

.| timeout = 00:10:00.00
synchrony = Async
deliveryAssurance

= ExactlyOnce
message) | | encryptionAlgorithm

= xmlenc#aes256-cb

reply

| {message) || [§
InvInguiry InvStatus

Figure 2: An Example Model with UP-SNFRs

The services in Figure 2 exchange four types of mes-
sages (Order, Invoice, InvInquiry and InvStatus),
each of which is stereotyped with <message>>. Each pair
of a request and reply messages is represented by a class
stereotyped with <messageExchange>>. For example, a
pair of Order (request) and Invoice (reply) messages is

represented by OrderExchange.

< connector>> represents a connection that transmits
messages between services. In this example, messages are
delivered through the connector MgmtConn. Every mes-
sage exchange is bound with a connector in order to spec-
ify which connector is used to deliver messages. A con-
nector has a provided interface (represented as a ball icon)
and a required interface (represented as a socket icon). Ser-
vices use the provided and required interfaces to send and
receive messages, respectively. In Figure 2, Buyer sends an
InvInquiry message to InventoryMgr.

Each connector can have multiple tagged-values to spec-
ify a set of message transmission and processing seman-
tics. Figure 3 shows the definition of the < connector>>
stereotype in UP-SNFRs. It is defined as the Connector
metaclass that extends the UML metamodel [1]. Each field
in Connector corresponds to a tagged-value. In Figure 2,
the connector Mgmt Conn specifies the timeout of message
transmissions (10 minutes), synchrony of message trans-
missions (asynchronous), assurance level of message deliv-
ery (exactly once), and encryption algorithm for messages
(Advanced Encryption Standard).

Retransmission type {enumeration)
num : int = 0 1 [RetransmissionType
timeout : Time WithAck

WithNack

/]\ retransmission

(stereotype) synchrony | {enumeration)
Connector 1 Synchrony
timeout : Time Sync
inOrder : boolean Async
priority : int Oneway
encryptionAlgorithm[0..1]: String | deliveryAssurance
messagelntegrity : boolean (enumeration)
1 0.1 [peliveryAssurance
AtMostOnce
0.1 | queueParameters AtLeastOnce
ExactlyOnce
QueueParameters -
— discardpolicy | {enumeration)
size : int SelectingPoilcy
persistent : boolean 0.1 | iFO
flushTime [0..*] : Time LIFO
flushInterval [0..1] : Time orderingPolicy PriorityBased
flushWhenFull: boolean 0.1 | DeadlineFirst

Figure 3: Definition of Connector

3. A Feature Model for Non-Functional Con-
straints in SOA

A series of constraints exist among the NFRs de-
fined in UP-SNFRs. For example, when the synchrony
of message transmissions is configured as asynchronous
(synchrony=Async; see Figure 3), a timeout period
should be specified with the timeout tagged-value. A
message retransmission policy requires specifying the max-
imum number of retransmissions and its type: Ack-base
or Nack-base (Figure 3). If it is configured as Ack-

based, a timeout period need to be specified for retrans-
missions. When a connector is specified as a messaging
queue and configured to discard messages when it overflows
(flushWhenFull=true; see Figure 3), discardPolicy
should specify the order of messages to discard. Cur-
rently, UP-SNFRs defines these constraints in English, not
as model elements [1]. Therefore, application developers
are supposed to make sure that their application designs sat-
isfy the constraints.

A feature model describes a set of all possible valid con-
figurations as hierarchies of features that describe different
kinds of constraints, e.g., some features are mandatory and
some are optional or alternative [6]. It gives a clear view
of features that a system can support and their constraints
even to non-programmers. It is useful for scoping the prod-
uct, i.e., deciding which features should be supported by the
product and which feature should not, and encourages the
requirements to be much clear in the early stage of the de-
velopment process (e.g., requirement phase). By reducing
the possibility of changes in requirements in the late stage
of the development process, feature model gives a positive
impact on application developments since the changes in
requirements in the late stage can cause a huge number of
modifications in existing (already implemented) application
designs and code. Moreover, application developers can
use feature configurations as input to an automated product
derivation process (e.g., automatic model/code generation)
to improve the productivity of the application development.

Figure 4 shows the proposed feature model describing
NFRs in a UML profile, and Figure 5 is an example
feature configuration (i.e., an instance of the proposed
feature model). The proposed feature model has fol-
lowing features, i.e., Message Priority, Synchrony,
Retransmission, Timeout, Delivery Assurance,
Message Encryption, Access Control, Message
Logging,
Message Validator, Message Routing, Multicast,

Integrity, In Order Transmission,

Manycast, Anycast and Queue.

Message Priorityand Timeout are optional features
to specify the priority and the timeout period of messages.
White circle symbols represent optional features. Each
feature may have its type. For example, the type of the
Message Priority feature is Integer. When a typed
feature is selected in a feature configuration, its value (e.g.,
integer value) should be specified. In Figure 5, the value of
the Timeout feature is ten minutes.

Synchrony specifies the timeout period of messages.
Black circle symbols in a feture model represent mandatory
features. A feature can have multiple subfeatures. For ex-
ample, the Synchrony feature has three subfeatures: sync,
Async and Oneway. A fork symbol with a white sector rep-
resents an exclusive-or relationship among subfeatures. In
Figure 4, when the Synchrony feature is selected, one of

subfeatures (i.e., Sync, Async or Oneway) should be se-
lected at the same time.

Retransmission specifies a policy related to message
retransmissions. Message retransmission requires specify-
ing the number of retransmissions and its type: Ack-base or
Nack-base. If it is configured to be Ack-based, a timeout
period of retransmissions is also need to be specified.

Delivery Assurance specifies the assurance level of
message delivery. Three different semantics are defined. At
Least Once means that a connector retries delivering a
message until its destination receives the message. How-
ever, the message may be delivered to its destination more
than once. At Most Once means that a connector dis-
cards a message if the message has already been delivered
to its destination; however, there is no guarantee of mes-
sage delivery. A fork symbol with a black sector in a fea-
ture model represents an or relationship among subfeatures.
The Delivery Assurance feature has two subfeatures,
and one or two of them should be selected when Delivery
Assurance is selected. When cardinality (i.e., the number
of subfeatures to be selected) is omitted, the default cardi-
nality, one to the number of subfeatures, will be used [8].
(Figure 4 shows the default cardinality explicitly.)

Message Encryption and Access Control specify
a transport-level encryption algorithm and security tokens
(or certificates) to access services respectively.

Message Integrity specifies whether to ensure the
message integrity. Messages are checked whether changed
during their transmission when this feature is selected. In
Order Transmission specifies whether the order of mes-
sages that a service (message destination) receives is same
as the order of messages that the other service (message
source) sends out.

Logging specifies whether to log messages of which
priorities are greater than Priority during their transmis-
sion. Message Validation validates transmitted mes-
sages against the message schemata specified in Messages
subfeature. Message Routing specifies whether to use a
contents-based message routing mechanism. Although the
proposed feature model has no facility to specify routing
rules at design time, a supporting tool generates a skele-
ton source code (e.g. in Java) or rule description (e.g. in
XPath) that performs message routings by leveraging un-
derlying middleware technologies.

Multicast specifies to transmits a message to multiple
destinations (services) simultaneously (one-to-many mes-
sage exchange) to improve the efficiency of message trans-
missions.

Manycast is used to improve fault tolerance by forward-
ing a request message to a group of replicated destinations
(i.e., to the same type of services). GroupSize subfea-
ture specifies how many services are deployed as a group.
Service Standby specifies the operation of replicated

SOA Non-functional Aspects

ﬁ Message Priority : Integer

Synchrony

N O sync ---
O Async 7=

O Oneway ---~ and--

P 4
QO Retransmission <

Number : Integer
Timeout : Time <----

Message Integrity
In Order Transmission
Logging

‘ Priority : Integer
Message Validation

‘ Messages : Message [1..*]

Message Routing

Multicast

Anycast

Selection

V- O Random

) T -
g Timeout : Time
Delivery Assurance

[1"2]‘- O At Most Once

requires

O At Least Once ----~ (Number = INF) O Priority
Retransmission
Message Encryption €--------=
H .
Algorithm : String H : Number : Integer
H . .
H Timeout : Time

Access Contro| ==============-= Eljcourages
‘ Security Tokens : String [1..*]

O Round Robin

é Manycast d Queue
GroupSize : Integer Size : Integer
Service Standby Persistent

V‘ O Hot requires
O Warm Flush

QO cold
u z‘- O Flush Times : Time[*]
Backtracking <---- " O Flush Interval : Time
V O FcFB (.H Message Aggregation : Integer

Durable Subscription

[

O Voting

: Quorum : Integer
Timeout : Time

Discard Messages

N O Flush When Full
O Discard Policy
N O rrFo
O LIFo
QO Priority Based
O Deadline First

O Message Ordering

VO FIFO
O LIFO
QO Priority Based
O Deadline First

Figure 4: The Proposed Feature Model for Non-functional Constraints in SOA

services: hot standby, warm standby or cold standby. In
hot standby, all services in a group remain active to receive
request messages. A message is transmitted to all services
in a group. Only one reply message is returned to the source
of a request message, out of multiple replies from services.
Backtracking defines two policies to decide which re-
ply message to be returned. When FCFB (first-come-first-
backtracked) is selected, the first reply among replies from
destination services is returned. When Vot ing is selected,
a voting process is performed. A middleware counts the
number of reply messages and inspects their contents. If
the number of replies that have the same content reaches
quorum, the Manycast filter returns one of the replies. If the
number does not reach quorum within timeout, the reply
that generates the highest voting count is returned.

In warm standby, all services in a group remain active
to receive request messages. A message is transmitted to
all services in a group, but only one service returns a re-
ply. In this case, Backtracking is not used. In cold
standby, only one service in a group is active, and a mes-
sage is transmitted to the service. If the service does not
respond within timeout, another service in the group is acti-
vated and a message is retransmitted to the service. In cold
standby, Backtracking is not used.

Anycast is a variation of the hot standby policy in
Manycast. A request message is forwarded to only one des-
tination in a group of replicated services. This feature is
used to balance workload placed on services. Selection
defines how to choose a destination from multiple services;
randomly, on round robin or on destination’s priority basis
(the service with the highest priority in a group is selected).
If a service does not respond within Timeout, the request

message is retransmitted to another service. Number speci-
fies the maximum number of retransmissions.

Queue is used to deploy a message queue between
services (i.e., message source and destination) and spec-
ify the semantics of message queuing between them.
Size specifies the maximum number of queued messages.
Persistent specifies whether a queue stores messages in
a storage (e.g., a file or database) so that the queue can
recover them when it crashes unexpectedly. Flush Time
and Flush Interval under the Flush subfeature spec-
ify when and how often a queue flushes messages, respec-
tively. Message Aggregation specifies a number of mes-
sages to send at once in an aggregated form. Discard
Messages has two subfeatures: Flush When Full and
Discard Policy. Either one should be selected because
of a xor relationship among them. When Flush When
Full is selected, queued messages are flushed from a queue
to their destinations when the queue overflows. When
Discard Policy is selected, the overflowing queue dis-
cards a message according to one of subfeatures: the oldest
message (First-In-First-Out), the newest message (Last-In-
First-Out), the lowest priority message or the closest dead-
line message. These four policies are defined as subfeatures
of Discard Policy. Message Ordering specifies how
to order messages in a queue: FIFO, LIFO, highest-priority-
first or earliest-deadline-first.

In addition to hierarchies of features, additional relation-
ships can be specified between (sub)features. In Figure 4,
several requires relationships are specified. For exam-
ple, when Async and Retransmission features are se-
lected, Type subfeature in Retrasmission and Timeout
feature should be selected in the same feature configu-

ration. The At Least Once subfeature of Delivery
Assurance requires the feature Retransmission se-
lected and its Number subfeature configured to be infinite.

Also, encourages and discourages relationships are
newly introduced in this research project. encouragesisa
relationship which is similar but weaker than requires.
It has no mandatory power, but endorses to use the re-
ferred features at the same time. For example, in Fig-
ure 4, the Access Control feature encourages to se-
lect the Message Encryption feature at the same time.
Selecting Message Encryption with Access Control
makes systems much secure because transmitting security
tokens via unsecured connections makes systems vulner-
able, but in-house services may not require message en-
cryption but need access control for the purpose of au-
dit. discourages relationship works in direct contrast to
encourages relationship, and it discourages to use referred
features. encourages and discourages relationships fa-
cilitate the decision-making process in designing applica-
tions.

Figure 5 shows a sample feature configuration of the fea-
ture model in Figure 4. In this feature configuration, sev-
eral features (e.g., Async subfeature and Ret ransmission
feature) are selected. A supporting tool resolves the con-
straints between (sub)features. (e.g., the Sync and Oneway
subfeatures are automatically deselected when the Async
subfeature is selected.) Moreover, it reports missing proper-
ties (e.g., an alert is shown when the value of the Timeout is
not configured even though the feature is selected.) and ex-
istence of encouraged features (e.g., a message is shown to
encourage to select Message Encryption when Access
Control is selected.) to application developers.

Configuration #1
g Message Priority

Synchrony Timeout : 00:10:00

V i:;r::c Delivery Assurance
[J Oneway . 3_ [0 At Most Once

E4 Retransmission " [Atleast Once
Number: 2 Message Encryption
Timeout: 00:05:00 E Algorithm: ase256-cbc
Type Access Control
N B Ak O Algorithm
O Nack Queue

Figure 5: An Example Feature Configuration

4. Application Development with Ark

This section describes a MDD tool, called Ark. Ark ac-
cepts feature configurations and a UML model (a class or
composite structure diagram in UML 2.0) describing an ap-
plication design, and transforms them into a UML model

designed with a UML profile for NFRs in SOA (Figure
6). Furthermore, Ark transforms the generated UML model
into a skeleton of application code (e.g., source code and
deployment descriptor) running on certain middleware tech-
nologies.

2) Bz
Model y » Conf.
Do)
Generate input
Ark Model :;> % :;>

put ﬁ Application Model
npu with non-functional

aspects
Weaving
7 Conf.

Ark Code
Generator

' Transformation
» Rules

Generate @

- Source code
- Deployment
7 Descriptor

Application Code

Figure 6: Development Process with Ark

The proposed feature model is defined on fmp [7], which
is a feature modeling tool implemented on EMF. The tool
is extended to support encourages and discourages
relationships (Section 3). Figure 7 shows a feature con-
figuration in a feature modeling tool. In this example,
messages are shown in the bottom notifying the existence
of encourages relationship and a missing value in the
Timeout feature. Feature model and a UML profiles are
defined on EMF (Figure 1), and Ark uses APIs provided by
fmp and Eclipse UML2 (http://www.eclipse.org/uml2/) to
read and transform models.

=% Configuration 1 of SOA Hon-functional aspects
[MessagePriorty (INTEGER)
= ® Synchrony

B sync

[Async

[oneway
- [] Retransmission

B Timeout
=[] Delivery Assurance
=[] Message Encryption
=[] Access Control
& Algorithm ("X509v3' : STRING)

+-[] Queue

Modeling | Metamaodeling

Problems | Javadoc | Declaration | Console | Sea
Fiter matched 2 of 30 tems
v g Description

[] - encourage: select 'Message Encryption’

] missing value: 'Timeout'

Figure 7: A Screenshot of a Feature Modeling Tool

4.1. An Example Application

Figure 8 shows an example UML model which Ark ac-
cepts. It illustrates an order processing application in which

OrderMgr service is contained in the SalesMgmtSystem
package.

SalesMgmtSystem
Order Invoice

‘ request, reply sink

1| {service)
OrderMgr

Figure 8: An Example Input UML Model

| ((message)) || (message)

source

{service) |1« |{messageExchange)|
Buyer OrderExchange

Configuration #2

é Access Control
E Algorithm: X509v3, Kerberosv5ST

Figure 9: An Example Subset Feature Configuration

Ark accepts arbitrary number of feature configurations
as its input, even a feature configuration which is based on
a subset of the proposed feature model. In this example,
two feature configurations in Figure 5 and 9 are applied to
the application design shown in Figure 8. The feature con-
figuration in Figure 9 configures only a subset of the pro-
posed feature model. Ark allows application developers to
specify which feature configurations to be applied to which
model elements in an input application design in the form
of a weaving configuration (Figure 6). The following is an
example of a weaving configuration.

<weaving>
<featureconfiguration name="Configuration #1">
<model pattern=".x"/>
</featureconfiguration>
<featureconfiguration name="Configuration #2">
<model pattern="SalesMgmtSystem::.*"/>
<model pattern="ProductionMgmtSystem::.x"/>
</featureconfiguration>
</weaving>

As illustrated, a weaving configuration contains a set
of featureconfiguration tags. Each of them speci-
fies which feature configuration is applied to which model
elements using its name attribute and model tags respec-
tively. A model tag has the attribute pattern specifying
names of model elements in regular expression. Ark takes a
weaving configuration, and applies feature configurations
from the top to the bottom to an input UML model. In
this example, the configuration #1 feature configura-
tion is applied to every model elements in an input UML
model first (. » matches arbitrary model elements), and then
the configuration #2 feature configuration is applied to
model elements contained in the SalesMgmtSystem and
ProductionMgmtSystem packages. (Double colon ’
is a namespace separator in UML.)

By applying the feature configurations, Ark transforms
the input UML model in Figure 8 into a UML model with
a UML profile in Figure 10. The following pseudo code
shows a model transformation process.

transform(UMLElement e, WeavingConf weavingConf) {
if (e does not match to weavingConf)
return;

if (e is stereotyped with <<messageExchange>>)
if (there is no corresponding connector)
create a new connector;
endif

if (a feature configuration has ’'Message Priority’)
configure connector’s ’priority’ tagged-value

if (a feature configuration has ’Synchrony’)
configure connector’s ’synchrony’ tagged-value

else if (e is stereotyped with <<service>>)
if (a feature configuration has ’'AccessControl’)
replace <<service>> with <<accessControlledService>>
configure service’s ’securityTokens’ tagged-vale

In the transformation, a connector
(OrderExchangeConn) is generated and several tagged-
values are configured. In a UML profile, every message
exchange is bound with a connector which specifies
message transmission/processing semantics (see details in
Section 2). Most features in the proposed feature model are
mapped into connectors. The Access Control feature
is mapped into the <accessControlledService>
stereotype. As illustrated, orderMgr is stereotyped with
< service>> in the input model (Figure 8), and the stereo-
type is replaced with «accessControlledSservice>
in the output model and its tagged-value securityTokens
is configured (Figure 10).

SalesMgmtSystem

(message) | | {message) | securityTokens = {
Order Invoice X509v3, Kerberosv5ST}
source ‘ request ‘ reply sink H
{service) « |{messageExchange) (accessControlledService)
Buyer OrderExchange OrderMgr

L <connector))
OrderExchangeConn

synchrony = Async

timeout = 00:10:00

encryptionAlgorithm = xmlenc#aes256-cbc
retransmission::num = 2
retransmission::timeout = 00:05:00
retransmission:type = Ack

Figure 10: An Example Output UML Model

As demonstrated, the feature modeling technique gives a
clear view of features and their constraints, and it allows
application developers to design NFRs without knowing
the details of a UML profile. (e.g., which stereotypes and
tagged-values to be used to configure certain NFRs.) More-
over, by leveraging a weaving configuration, Ark separates
the application design and its NFRs well and improves the
reusability of feature configurations. For example, a fea-
ture configuration can be applied to all elements in an in-
put UML model as a default setting, or can be applied to
only specific elements (e.g., elements in a certain package)

by only changing a weaving configuration. It makes easy
to configure applications in typical situations (e.g., services
hosted in-house, or accessed via the Internet) by reusing ex-
isting feature configurations.

4.2. An Extended Example Application

Figure 11 shows an example UML model ex-
tending the model in Figure 8. In this exam-
ple, an inventory management system (in package
InventoryMgmtSystem) iS connected to an order pro-
cessing application. OrderMgr service exchanges
Purchasing message with InventoryMgr, and the
InventoryMgr exchanges Shipping message with
DistributionMgr.

{message) || (message) | |SalesMgmtSystem
Order Invoice
source ‘ request ‘ reply sink
{service) |1 « |{messageExchange)| « 1| {service)
Buyer OrderExchange OrderMgr
1 source
request *
{message) {MessageExchange)
Purchasi i
InventoryMgmtSystem | Urchasng Purchasin Ifxchange
(Message)
Shipping
sink request source 1 sink
{Service) 1 +| (MessageExchange) |* 1| {Service)
DistributionMgr ShippingExchange InventoryMgr

Figure 11: An Example Input UML Model

New feature configuration is defined as Figure 12. The
feature configuration intends to be applied to in-house ser-
vices which exchange plain messages in a synchronous
manner via unsecured (the Message Encryption feature
is no selected) but reliable (both At Most Once and At
Least Once features are selected) connections. The fol-
lowing is a weaving configuration.

<weaving>
<featureconfiguration name="Configuration #1">
<model pattern=".*"/>

</featureconfiguration>

<featureconfiguration name="Configuration #3">
<model pattern="SalesMgmtSystem::.x"/>
<model pattern="ProductionMgmtSystem::.*"/>

</featureconfiguration>

<featureconfiguration name="Configuration #2">
<model pattern=".«::0rderMgr"/>

</featureconfiguration>

</weaving>

The cConfiguration #1 feature configuration is
applied to all model elements as a default, and then
Configuration #3 is applied to model elements in the
package SalesMgmtSystem, which supposed to be hosted
in-house. Finally, Configuration #2 is applied to only
the OorderMgr service because it exchanges messages

with the service hosted in outside (Buyer) and required
to have an access control. Ark accepts the input UML
model (Figure 11), feature configurations (Figure 5, 9 and
12) and the weaving configuration, and generates a UML
model illustrated in Figure 13. (Model elements outside
the SalesMgmtSystem package are omitted. They are the
same as ones illustrated in Figure 10.) Since feature config-
uration Configuration #3 overrides Configuration
#1, tagged-values in ShippingExchangeConn and
PurchasingExchangeConn are different from ones in
OrderExchangeConn. (timeout and type tagged-values
are identical because corresponding features are not
configured in Configuration #3.)

Configuration #3

Synchrony

N ™ Sync
[Async
[Oneway

Delivery Assurance
W K4 At Most Once
121 B At Least Once

Timeout : 00:02:00

Message Encryption

Figure 12: A Feature Configuration for In-house Services

SalesMgmtSystem

securityTokens = {
synchrony = Sync X509v3, Kerberosv5ST}
timeout = 00:02:00 T
deliveryAssurance = ExactlyOnce .

retransmission::num = INF {accessControlledService)
retransmission: :timeout = 00:05:00 OrderMgr
source

retransmission::type = Ack
((connector))

PurchasingExchangeConn

' o

Ixxacy

request *

{message) {MessageExchange) |
Purchasing |

PurchasingExchange

InventoryMgmtSystem |
{Message)
Shipping]
sink request source | sink
{Service) 1 i+[(MessageExchange) [+ 1 {Service)
DistributionMgr ShippingExchange InventoryMgr
@O) {connector) <§0J
ShippingExchangeConn

Figure 13: An Output UML

As demonstrated, a weaving configuration improves the
separation of concerns between application designs and
their NFRs, and enables the two different aspects to evolve
independently.

4.3. Ark Code Generator

Ark code generator accepts a UML model designed with
a UML profile and transforms the model into a skeleton of
application code (Figure 6). Currently, Ark code genera-
tor implements a transformation mapping between a UML
profile and Mule ESB' and GridFTP?. Ark takes a UML
model in the XML Metadata Interchange (XMI) format,
validates against the UML metamodel and a UML profile,
and transforms to Java programs and deployment descrip-
tors for Mule ESB. Ark Code Generator is implemented
based on openArchitectureWare3, a model transformation
engine.

Table 1 shows some of the Java classes and deployment
descriptors that Ark generates from a UML model with a
UML profile for SOA NFRs when Mule ESB is selected as
middleware to operate applications. Ark maps a UML class
stereotyped with <message>> to a Java class that has the
same class name and the same data fields. The Java class
implements the interface serializable. This is required
to implement messages exchanged with Mule ESB.

Table 1: Mapping Rule between a UML Profile and Mule
ESB

’ A UML profile

<service>>
sink (Service’s role)

\ Mule ESB

Java class with the same name

Service’s operations sending mes-
sages

source (Service’s role) | Service’s operations receiving mes-
sages
<message>> Java class implementing

Serialiable interface

synchrony Different types of Mule ESB’s oper-
ation used to send a message

timeout An operation’s parameter to specify
message’s timeout period

deliveryAssurance A pair of interceptors to manage

messages’ IDs and timestamps

A UML class stereotyped with <service>> is mapped
to a Java class that has the same class name and the
same data fields. Ark inserts several operations to the
Java class, depending on whether its association role is
source/sink against a message exchange. The opera-
tions are used to send and receive messages: _sendX ()
to send messages where X references the name of a
message exchange, and receivex() to receive mes-
sages. For example, generated code from Figure 13,
InventoryMgr class has _sendShippingExchange ()
and receivePurchasingExchange () to send

' A major open-source ESB implementation. http://mule.codehaus.org/
2 An extension to FTP for transmitting files of large size [9].
3http://www.openarchitectureware.org/

Shipping and receive Purchasing messages re-
spectively.

UML classes stereotyped with <messageExchange>>
and <connector>> are not mapped to particular Java
classes. The message transmission/processing seman-
tics specified in a UML model is implemented in Java
classes of message sender and destination. For exam-
ple, in Figure 13, an InventoryMgr sends a Shipping
message to a DistributionMgr synchronously. There-
fore, Ark generates program code to send the message
synchronously using Mule ESB’s API*, and embeds the
code in _sendShippingExchange () of InventoryMgr.
Ark also generates program code to handle time-
out using Mule ESB’s API, and embeds the code in
_sendShippingExchange () of InventoryMgr.

5. Related Work

Several modeling languages (e.g., UML profiles and
domain-specific languages) have been proposed to specify
NFRs in SOA, such as security, data integration, service dis-
covery and service orchestration [1-5]. However, they do
not focus on modeling a series of constraints among those
NFRs. This work is the first attempt to allow developers to
explicitly model the non-functional constraints in SOA and
automatically enforce the constraints in their applications.

The notion of feature modeling has been used to, for ex-
ample, configure the non-functional policies in embedded
operating systems (e.g., concurrency and interruption poli-
cies) [10], configure the functionalities of Eclipse plugins
(e.g., multi-windows) [11] and select services in PBX sys-
tems (e.g., call request and call forwarding services) [12].
This work is the first attempt to leverage feature modeling
for managing the non-functional constraints in SOA. More-
over, the proposed feature model supports new model ele-
ments that the exiting feature models do not have, such as
encourages and discourages relationships. This work
also investigates a new mechanism to weave feature con-
figurations to different parts of a UML model. No exiting
work has worked on this feature weaving mechanism.

Feature-based model templates are designed to trans-
form feature configurations to UML models [13]. Each
template is a UML class or activity diagram that defines a
presence condition for each model element (e.g., class, as-
sociation and action). A presence condition specifies when
a corresponding model element appears in a UML diagram.
For example, a class may have its presence condition Async
& Ack in a class diagram template. The template generates
the class in an output class diagram if the template accepts
an input feature configuration that selects both Async and
Ack features. This way, NFRs scatter both in feature con-
figurations and model templates. This makes it complicated

“Mule ESB provides three different APIs to send messages in syn-
chronous, asynchronous and oneway (non-blocking) manner.

to maintain NFRs; the changes in NFRs (e.g., addition, re-
moval or customization of NFRs) always require develop-
ers to change both a feature model and model templates. In
contrast, the proposed framework modularizes NFRs in fea-
ture configurations; NFRs never appear in input UML mod-
els. As discussed in Section 1, the clear separation of func-
tional and non-functional requirements is critical in SOA,
in which NFRs changes more often in application lifecycle
than functional requirements [14].

POSAML (Pattern Oriented Software Architecture Mod-
eling Language) is a domain specific language to visually
configure NFRs in realtime CORBA middleware (e.g., con-
currency and queuing) [15]. In POSAML, non-functional
constraints are specified in a textual manner with the Object
Constraint Language (OCL) [16]. Although OCL provides
higher expressiveness as a constraint specification language
than feature models, the proposed framework employs fea-
ture models by trading visual intuitiveness for expressive-
ness. In addition, a feature weaving mechanism is not avail-
able in POSAML. In POSAML, a single feature configu-
ration is globally applied to the entire input UML model.
In contrast, the proposed framework allows developers to
flexibly customize which feature configuration is applied to
which model elements in an input UML model.

6. Conclusion

This paper proposes a new MDD framework to explic-
itly and graphically model the constraints (e.g., dependency
and mutual exclusion constraints) between non-functional
aspects in SOA. Through the notion of feature modeling,
the proposed framework allows developers to consistently
validate non-functional constraints in service-oriented ap-
plications. An MDD tool, called Ark, automatically en-
forces non-functional constraints in applications by trans-
forming a feature configuration to application code with the
use of a UML profile for SOA. This frees developers from
manual consistency checks between their models and non-
functional constraints.

7. Acknowledgement

This work is supported in part by OGIS International,
Inc.

References

[1] H. Wada, J. Suzuki, and K. Oba. Modeling Non-Functional
Aspects in Service Oriented Architecture. /EEE Int’l Con-
ference on Services Computing, September 2006.

[2] R. Amir and A. Zeid. A UML Profile for Service Oriented
Architectures. ACM OOPSLA Poster session, 2004.

[3] G. Ortiz and J. Herniindez. Toward UML Profiles for Web
Services and their Extra-Functional Properties. IEEE Int’l
Conference on Web Services, September 2006.

(4]

(5]

(6]
(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

L. Wang and L. Lee. UML-based Modeling of Web Ser-
vices Security. IEEE European Conference on Web Services
Poster session, 2005.

Y. Nakamura, M. Tatsubori, T. Imamura, and K. Ono.
Model-Driven Security Based on a Web Services Security
Architecture. IEEE Int’l Conference on Services Comput-
ing, July 2005.

K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools and Applications. Addison-Wesley, 2000.
M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature
Modeling Plug-in for Eclipse. ACM OOPSLA Workshop on
Eclipse Technology eXchange, 2004.

K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
Cardinality-based Feature Models and their Specialization.
Software Process Improvement and Practice, 2005.

W. Allcock, J. Bresnahan, R. Kettimuthu, C. Dumitrescu
M. Link, I. Raicu, and I. Foster. The Globus Striped
GridFTP Framework and Server. Super Computing, Novem-
ber 2005.

D. Lohmann, F. Scheler, W. S Preikschat, and O. Spinczyk.
PURE Embedded Operating Systems - CiAO. IEEE Int’l
Workshop on Operating System Platforms for Embedded
Real-Time Applications, July 2006.

M. Antkiewicz and K. Czarnecki. Framework-Specific
Modeling Languages with Round-Trip Engineering.
ACM/IEEE Int’l Conference on Model Driven Engineering
Languages and Systems, October 2006.

K. Kang, S. Kim, J. Lee, and K. Lee. Feature-oriented engi-
neering of PBX software. Asia-Pacific Software Engineering
Conference, December 1999.

K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach based on Superimposed
Variants. Int’l Conference on Generative Programming and
Component Engineering, September 2005.

N. Bieberstein, S. Bose, M. Fiammante, K. Jones, and
R. Shah. Service-Oriented Architecture (SOA) Compass :
Business Value, Planning, and Enterprise Roadmap. 1BM
Press, October 2005.

Dimple Kaul, Arundhati Kogekar, Aniruddha Gokhale, Jeff
Gray, and Swapna Gokhale. POSAML: A Visual Modeling
Framework for Middleware Provisioning. Hawaiian Int’l
Conf. on System Sciences, January 2007.

J. Warmer and A. Kleppe. The Object Constraint Language:
Getting Your Models Ready for MDA. Addison-Wesley, sec-
ond edition, 2003.

