
Efficient Behavior Selection for Immunologically-inspired Agents
in the NetSphere Architecture

Chonho Lee and Junichi Suzuki

{chonho, jxs} @ cs.umb.edu
Department of Computer Science

University of Massachusetts, Boston
Boston, MA 02125-3393, USA

ABSTRACT

This paper describes and evaluates a biologically-inspired
adaptation mechanism that allows network application
components (agents) to autonomously adapt to dynamic
environment changes in the network (e.g. changes in network
traffic and resource availability). Based on the observation that
the immune system elegantly achieves autonomous adaptation,
the proposed mechanism, called the iNet artificial immune
system, is designed after a scheme in which the immune system
produces specific antibodies against an antigen invasion. iNet
models an agent behavior (e.g. migration and replication) as an
antibody, and an environment condition (e.g. network traffic
and resource availability) as an antigen. iNet allows each agent
to (1) autonomously monitor its surrounding environment
conditions (i.e. antigens) to evaluate whether it adapts to the
environment conditions, and if it does not, (2) adaptively
perform a behavior (i.e. antibody) suitable for the environment
conditions. This paper focuses on the first process, the
environment evaluation process, and describes its design and
implementation. The experimental results show that the
environment evaluation process works efficiently with a high
degree of accuracy.
Keywords: artificial immune system, biologically-inspired
adaptation

1. INTRODUCTION

As computing devices and networks are becoming more
powerful and ubiquitous, the networking landscape is evolving
into new paradigms, such as autonomic networks [1], pervasive
networks [2], grid networks [3] and space networks [4]. In these
networking paradigms, future network applications will be
orders of magnitude more complex and larger than current ones,
and they are expected to be more autonomous, scalable and
adaptive to dynamic network environments [5]. As inspiration
for a new network application design paradigm, the authors of
the paper observe that various biological systems have already
developed the mechanisms necessary to achieve the key
requirements of future network applications such as autonomy,
scalability and adaptability. For example, a bee colony scales to
support a huge number of bees, and autonomously adapts to a
wide variety of weather and food conditions. The authors of the
paper believe if network applications are modeled after certain
biological concepts and mechanisms, they may be able to meet
these requirements of future network applications.

The NetSphere architecture applies key concepts and
mechanisms in biological systems to design network
applications1. One of the key concepts in biological systems is

1 The NetSphere architecture is an extension to the Bio-Networking
Architecture [6, 7].

emergence. In biological systems, beneficial system properties
(e.g. adaptability) often emerge through the simple and
autonomous interactions among diverse biological entities. The
NetSphere architecture applies the concept of emergence by
implementing network applications as a group of distributed,
autonomous and diverse agents. This is analogous to a bee
colony (a network application) consisting of multiple bees
(agents). Each agent implements a functional service related to
the application and follows simple behaviors similar to
biological entities, such as reproduction, death, migration and
environment sensing.

Similar to entities in the biological world, agents in the
NetSphere architecture are designed to provide a sufficient
degree of diversity. Different agents may implement different
services. For instance, an agent may implement an airline
reservation service, while another agent may implement a hotel
reservation service. An agent may implement a web service and
contain web pages. Different agents may implement different
behavior policies. For instance, an agent may have a migration
policy of moving towards a user, while another agent may have
a migration policy of moving towards a network node where
resource availability is higher.

Similar to an entity in the biological world, each agent in the
NetSphere architecture may store and expend energy for living.
Each agent may gain energy in exchange for performing a
service, and they may pay energy to receive a service from other
agents and to use network and computing resources. The
abundance or scarcity of stored energy may affect various
behaviors of an agent. For example, an abundance of stored
energy is an indication of higher demand for the agent; thus the
agent may be designed to favor reproduction in response to
higher levels of stored energy. A scarcity of stored energy (an
indication of lack of demand or ineffective behaviors) may
eventually cause the agent’s death.

This paper addresses and evaluates autonomous adaptability
of network applications (i.e. agents) in the NetSphere
architecture. Autonomous adaptability is an ability of network
applications to intelligently adapt to dynamic changes in the
network without any administrative interventions from and to
other entities (e.g. other agents and users). Modeled after the
mechanism behind how the immune system produces specific
antibodies against an antigen invasion, the proposed adaptation
mechanism, called iNet, allows agents to autonomously
monitor their surrounding environment conditions (e.g. traffic
volume and resource availability) and adaptively perform their
biological behaviors (e.g. migration and replication) suitable for
the current environmental conditions. For instance, agents may
invoke migration behavior for moving towards network nodes
that accept a large number of user requests for their services.

This results in the adaptation of agent locations, and agents
concentrate around the users who request their services.

The structure of this paper is organized as follows. Section 2
overviews key design principles of agents in the NetSphere
architecture. Based on the design principles, Section 3 describes
the design of agents in the NetSphere architecture. Section 4
presents the design of the iNet artificial immune system and
how it can contribute to autonomous adaptability of agents.
Section 5 shows several experimental results to evaluate
efficiency and accuracy of the proposed environment evaluation
facility. Sections 6 and 7 conclude with comparison with
existing related work and some discussion on future work.

2. DESIGN PRINCIPLES IN THE NETSPHERE
ARCHITECTURE

In the NetSphere architecture, agents are designed based on
the three principles described below in order to interact and
collectively provide network applications that are autonomous,
adaptive, scalable and simple [6, 7].

(1) Decentralization: Agents in the NetSphere architecture
are decentralized. There are no central entities to control and
coordinate agents (i.e. no directory servers and no resource
managers). Decentralization allows network applications to be
scalable and simple by avoiding a single point of performance
bottleneck and failure and by avoiding any central coordination
in developing and deploying agents.

(2) Autonomy: Agents in the NetSphere architecture are
autonomous. Agents monitor their local network environments,
and based on the monitored environmental conditions, they
autonomously interact without any intervention from other
entities (e.g. other agents and human users).

(3) Adaptability: Agents in the NetSphere architecture are
adaptive to dynamically changing environmental conditions (e.g.
user demands, user locations, and resource availability). This is
achieved through designing agent behavior policies to consider
local environmental conditions [8]. For example, an agent may
invoke replication and death behaviors when its energy level
becomes over and below thresholds. This results in the adapt-
ation of agent availability. The population of agents can be
adaptable against changes in workload or the number of users.

3. AGENTS IN THE NETSPHERE ARCHITECTURE

Each agent in the NetSphere architecture is implemented as a
Java object and runs on a NetSphere platform. The NetSphere
platform is implemented in Java2, and each platform runs on a
Java virtual machine. The platform provides reusable software
components for developing, deploying and executing agents.
The components abstract low-level operating and networking
details (e.g. network I/O and concurrency control for executing
agents), and implement high-level runtime services that agents
use to perform their services and behaviors [6, 7]. The iNet
artificial immune system is implemented as a component in the
NetSphere platform [8].

Each agent consists of three parts: attributes, body and
behaviors (Figure 1). Attributes carry descriptive information
regarding the agent (e.g. agent ID and description of a service it
provides). The body implements a service that the agent

provides and contains materials relevant to the service (e.g.
application data and user profiles). For instance, an agent may
implement control software for a device in its body, while
another agent may implement a hotel reservation service in its
body. An agent that implements a web service may contain web
pages in its body. Behaviors implement non-service related
actions that are inherent to all agents.

Agent

…

Attributes

Body

Behaviors

ID
Reference

Service Name
Service Price

Service
Service Material

Communication
Energy Exchange

and Storage
Replication

Death
Pheromone Emission
Environment Sensing

Migration

A
da

pt
at

io
n

M
ec

ha
ni

sm

Agent

…

Attributes

Body

Behaviors

ID
Reference

Service Name
Service Price

ID
Reference

Service Name
Service Price

Service
Service Material

Service
Service Material

Communication
Energy Exchange

and Storage
Replication

Death
Pheromone Emission
Environment Sensing

Migration

A
da

pt
at

io
n

M
ec

ha
ni

sm

Figure 1. Design of an Agent in the NetSphere Architecture

Some example behaviors are explained below.

•

•

•

•

•

•

Migration: Agents may migrate from one platform to
another platform.

Communication. Agents may communicate with other
agents for the purposes of, for instance, requesting a service or
exchanging energy.

Energy exchange and storage: Agents may receive and
store energy in exchange for providing services to other agents.
Agents also expend energy. For instance, agents may pay
energy units for services that they receive from other agents. In
addition, when an agent uses resources on a platform (e.g. CPU
and memory), it may pay energy units to the platform.

Lifecycle regulation: Agents may regulate their lifecycles.
Agents may make a copy of themselves (replication), possibly
with mutation of the replica’s behavioral policy. Agents also
may die (death) as a result of lack of energy. If energy
expenditure of an agent is not balanced with the energy units it
receives from providing services to other agents, it will not be
able to pay for the resources it needs, i.e., it dies from lack of
energy. Agents with wasteful behavioral policies (e.g.
replicating or migrating too often) will have a higher chance of
dying from lack of energy.

Pheromone emission: Agents may emit and leave a
pheromone (or a trace) behind on a platform when they migrate
to another platform. This is to indicate their presence to other
agents. A pheromone contains the emitter’s ID and a reference
to the platform that the emitter migrated to. Pheromones are
emitted with certain strength and may decay over time.
Pheromones may have a variety of uses, including improving
the performance of discovery.

Environment sensing. Agents may sense their local
environment. For instance, an agent may sense the local
environment to learn which agents are in the environment and
what services they provide. An agent may also sense
pheromones (e.g. which agents left pheromones on local and
neighboring platforms) and resources (e.g. CPU processing
power and memory space available on local and neighboring
platforms).
 2 The current code base of the NetSphere platform contains

approximately 37,300 lines of Java code [7].

4. INET ARTIFICIAL IMMUNE SYSTEM

Each agent has its own artificial adaptation mechanism for
behavior selection (Figure 1). This adaptation mechanism
allows an agent to monitor its surrounding environmental
condition (e.g. network traffic, resource availability), identify
behaviors suitable for the monitored environmental condition,
and decide which behavior to perform so that the agent adapts
to the current environmental condition. The design of the
adaptation mechanism is based on how the natural immune
system produces specific antibodies against an antigen invasion.

4.1. Natural Immune System

The natural immune system is known as a distributed adaptive
system with defense mechanism to maintain the system against
dynamically changing environment (i.e. antigens’ invasion). It
consists of a tow-line defense, innate immune system and
adaptive immune system. Both systems depend upon the
activity of white blood cells, the leukocytes, where the innate
immunity is mediated mainly by macrophages, and the adaptive
immunity is mediated by lymphocytes. The immune response
involves a number of components such as macrophages,
lymphocytes and antibodies. Macrophages circulate throughout
the body ingesting and digesting antigens and fragment them
into small peptides, called self-MHC (Major Histocompatibility
Complex.) They have the ability to present the self-MHC to
lymphocytes. Lymphocytes are one of many types of white
blood cells, and two major populations of lymphocytes are T
lymphocytes (T-cells) and B lymphocytes (B-cells).

T-cells have receptors (TCR) on their surface, which can
recognize antigens by binding to self-MHC presented by
macrophage. T-cells are produced in thymus through two main
processes, positive selection and negative selection. With these
processes, the immune system obtains the ability to accomplish
the self/non-self discrimination, which is one of the remarkable
features in the immune system. It discriminates foreign
molecules (i.e. Non-self) from the body’s own cells and proteins
(i.e. Self).

Immature (Naïve) T-cells, which are stem cells, are originated
in a bone marrow and migrate to thymus (Figure 2-A) where
some of them are allowed to mature (i.e. become mature T-
cells) into immunocompetent cells capable of recognizing
“Self” (positive selection), and others are removed from
repertory due to a strong reaction of “Self” (negative selection).
These processes guarantees that T-cells leave the thymus and
recognize “Self”, e.g. self-MHC, at the same time that it is
ready to be stimulated by macrophage with non-self antigens
(Figure 2-B). Once “Non-self” is recognized, that is, T-cells
receive signals from macrophage; T-cells secrete chemical

signals to the participation of a variety of cells and molecules
such as B-cells to mount an appropriate response in order to
eliminate them (Figure 2-C). B-cells have receptors on their
surface, which can recognize chemical signals, and antibodies
which can attack the recognized antigens invading a human
body, e.g. viruses. Once the B-cells are activated by the
chemical signals secreted by the activated T-cells, they
proliferate with their own copies. This is called a clonal
selection. Then, proliferated B-cells start to produce a bunch of
the same type of antibodies specific to the recognized antigen
(Figure 2-D).

4.2. Artificial Immune System

An agent in iNet is designed based on the concept of the
natural immune system described in previous subsection. It
consists of two architectural components: environment
evaluation facility and behavior selection facility corresponding
to the innate immune response and adaptive immune response.
Figure 3 illustrates the overview of the adaptation mechanism.
How the concepts of the iNet artificial immune system map to
the natural immune system is shown in Table I.

In the previous version of iNet (which has only behavior
selection facility), each agent periodically obtains its surround-
ing environmental condition and always invokes a behavior.
This means that each agent periodically behaves even when it
adapts to the current environment condition well (i.e. even when
it does not have to behave). As a result, it might perform
unnecessary, unsuitable behaviors. However, the environment
evaluation facility, which this paper focuses on, allows each
agent to evaluate the current degree of adaptation (based on the

ma

N

im
re

se

a

ma

N

im
re

se

a

activation

antibody

B-cell

antigen

T-cell
receptor

T-cellsignal

Macrophage

Thymus

Stem cell
(immature T-cell)

Positive and
negative selection

antibody production

(A)

(B)

(C)

(D)

self-MHC

activationactivation

antibodyantibody

B-cell

antigen

T-cell
receptor

T-cellsignal

Macrophage

Thymus

Stem cell
(immature T-cell)

Positive and
negative selection

antibody production

(A)

(B)

(C)

(D)

self-MHC

Figure 2. Natural Immune System
attributes

Agent

body

behaviors

self environment
condition

Non-self environment
condition

behavior

Environment
Evaluation

Behavior
Selection

Artificial immune
network

Environment Condition
(antigens)

activation

attributes

Agent

body

behaviors

self environment
condition

Non-self environment
condition

behavior

Environment
Evaluation

Behavior
Selection

Artificial immune
network

Environment Condition
(antigens)

Environment Condition
(antigens)

activation

Figure 3: iNet artificial immune system

(adaptation mechanism)
feature vector classified with
class value of “self” (0)

user-defined
self environment condition self-MHC

negative
selection

positive
selection N/AN/AT-cell

turation
feature vector matchinginitialization

feature vector with no class value
(unclassified feature vector)

randomly generated
environment conditionstem cell

adaptive

innate

Implementations in iNetConcepts in iNetConcepts in
atural Immune System

Initialization and classification
of feature vectorsenvironment evaluation facility

mune
sponse behavior selection in the

artificial immune networkbehavior selection facility

classification of feature vectorsself/non-self classification of
environment conditionslf/non-self discrimination

collection of the current environment
condition through using

Environment Sensing Service
environment sensingmacrophage circulation

non-self antigen

self antigen

feature vectors in a feature tabledetectors for non-self
environment conditionT-cell

feature vector classified with
class value of “non-self” (1)

non-self environment condition
(lower degree of adaptation)

agent’s behavioragent’s behaviorantibody

feature vector classified with
class value of “self” (0)

self environment condition
(higher degree of adaptation)ntigen

feature vector classified with
class value of “self” (0)

user-defined
self environment condition self-MHC

negative
selection

positive
selection N/AN/AT-cell

turation
feature vector matchinginitialization

feature vector with no class value
(unclassified feature vector)

randomly generated
environment conditionstem cell

adaptive

innate

Implementations in iNetConcepts in iNetConcepts in
atural Immune System

Initialization and classification
of feature vectorsenvironment evaluation facility

mune
sponse behavior selection in the

artificial immune networkbehavior selection facility

classification of feature vectorsself/non-self classification of
environment conditionslf/non-self discrimination

collection of the current environment
condition through using

Environment Sensing Service
environment sensingmacrophage circulation

non-self antigen

self antigen

feature vectors in a feature tabledetectors for non-self
environment conditionT-cell

feature vector classified with
class value of “non-self” (1)

non-self environment condition
(lower degree of adaptation)

agent’s behavioragent’s behaviorantibody

feature vector classified with
class value of “self” (0)

self environment condition
(higher degree of adaptation)ntigen

Table 1. Mapping between iNet artificial immune system and

natural immune system

http://www.albany.net/~tjc/mhc-all.html
http://www.albany.net/~tjc/mhc-all.html

monitored current environment condition) and determine
whether to need invoking a certain behavior. Thus, each agent
avoids invoking unnecessary behaviors and utilizes computing
and networking resources efficiently. Randomly generated

environment condition
(X)

Candidates of Self
environment condition (Cs)

User defined Self
environment condition (S)

Candidates of Non-self
environment condition (Cn)Distance (X, S)

> T

=< T

T: threshold

Randomly generated
environment condition
(X)

Candidates of Self
environment condition (Cs)

User defined Self
environment condition (S)

Candidates of Non-self
environment condition (Cn)Distance (X, S)

> T

=< T

T: threshold

Figure 4: Feature Vector Matching

In iNet, an antigen is implemented as a feature vector
representing a current environment condition supplied by
environment sensing behavior. The feature vector might consist
of several particular features indicating a degree of adaptation
for networks, and one class value (e.g. X = (F, C) where feature
F = (a1, …, an) and class C = {0,1}). For example, the number
of agents on the same node, the number of messages transferred
per sec, energy level, and memory utilization might represent
the current system condition (e.g. Xcur = (10, 500, low, 5, 1)). A
“Non-self” class value, 1, implies a lower degree of adaptation
for the network; on the other hand, “Self” class value, 0, tells us
a higher degree of adaptation.

current
environment
condition Xcur

INPUT

Class Value

Xcur.class =?

OUTPUT

N

A

…

1X4

0X3

0X2

1X1

Class…a4a3a2a1

DECISION TREE

feature
feature value

Class Value

current
environment
condition Xcur

INPUT

Class Value

Xcur.class =?

OUTPUT

N

A

…

1X4

0X3

0X2

1X1

Class…a4a3a2a1
current
environment
condition Xcur

INPUT

Class Value

Xcur.class =?

OUTPUT

N

A

…

1X4

0X3

0X2

1X1

Class…a4a3a2a1

N

A

…

1X4

0X3

0X2

1X1

Class…a4a3a2a1

DECISION TREE

feature
feature value

Class Value

DECISION TREE

feature
feature value

Class Value

Figure 5: Input and Output of self/non-self classification

The environment evaluation facility has two basic steps,
initialization and self/non-self classification of environment
condition, which are based on the concept of T-cell maturation
and self/non-self discrimination. In the initialization step,
environment detectors to determine whether to invoke a certain
behavior against a current environment condition are created by
a generator (i.e. feature vector matching). The environment
detectors are designed as T-cells, a certain type of immune cells
that detect antigen invasions. The generator is designed as T-
cell maturation process to produce T-cells that only detect non-
self molecules and do not react to self molecules. In the
classification step, monitored antigens are classified into self
antigens and non-self antigens, through the mechanism of
immunological self/non-self discrimination. Non-self antigens
represent environment conditions that an agent needs to increase
the degree of adaptation (i.e. it needs to invoke behaviors). Self
antigens represent environment conditions that an agent adapts
well to (i.e. it does not need to invoke behaviors to).

(1) Initialization Step

The initialization step creates an initial dataset (i.e data
samples for classification algorithm), which is detectors for
non-self environment condition. They are a collection of
temporarily classified feature vectors, distributed by the feature
vector matching of randomly generated feature vectors(X) and
user-defined self feature vectors (S) given by users (Figure 4).

This procedure follows the process of T-cell maturation
described in Section 4.1. Randomly generated feature vectors
and user-defined self feature vectors are compared by a measure
of vector distance. There are many ways to calculate the vector
distance. One of them is the similarity of two vectors using
simple Euclidean distance method. We assume that vector
distance represents TCR affinity. Closer vectors (i.e. distance is
less than threshold) represent higher affinity between cells, and
further vectors (i.e. greater than threshold) represent low
affinity. As shown in Figure 4, randomly generated feature
vectors, X, distributed by the feature vector matching are
temporarily classified as candidates of self and non-self
environment condition (Cs and Cn). They are stored into an
initial dataset3 , called a feature table (described in the next

subsection), and they are used for training of classification
algorithm

(2) Self/Non-self Classification Step

In this step, a classification algorithm classifies a current
environment condition (Xcur), Input, into “Self” and “Non-self”,
which is the classification result, Output. This paper introduces
the decision tree algorithm (DT) as its classification algorithm.
The complexity of query time in DT is very fast, and the
classification process is interpretable and often easy.

In Figure 5, there is a table called a feature table of size N,
containing feature vectors (i.e. detectors, temporarily classified
self and non-self feature vectors), each of them has A distinct
features. These feature vectors in a feature table work as data
samples and form a tree used for their classification. (it will be
retrained to improve the quality of the algorithm). In DT, each
internal node represents a feature of environment conditions,
each branch indicates a value or a range of the feature, and each
leaf assigns the class value. That is, the role of DT is to label an
environment condition with the class value of leaf (i.e. “Self” or
“Non-self”) reached by searching in the tree.

Building DT, it is useful to calculate “information gain”,
describing how much clearly classes are distributed.
“Information” is defined by Entropy (ranges from 0 to 1)
representing a degree of randomness or pureness between two
classes, “Self” and “Non-self”. Higher Entropy implies the state
that classes are equally randomly occupied, and lower Entropy

-+ + + + - - -++++

Feature Table

Distributed

Preferred!!!
a feature “# of agents” will be picked

+

+

+

-

+

+

+

of service

-

-

-

+

+

<10

>10 & <100

> 100
Memory Util

-

+

+

+

-

+

+

-

-

+

+

+

low
mid

high

InfoGain = 0.247 InfoGain = 0.039

-+ + + + - - -++++ -+ + + + - - -++++

Feature Table

Distributed

Preferred!!!
a feature “# of agents” will be picked

+

+

+

-

+

+

+

of service

-

-

-

+

+

<10

>10 & <100

+

+

+

-

+

+

+

of service

+

+

+

-

+

+

+

of service

-

-

-

+

+

-

-

-

+

+

<10

>10 & <100

> 100
Memory Util

-

+

+

+

-

+

+

-

-

+

+

+

low
mid

high
Memory Util

-

+

+

+

-

+

+

-

-

+

+

+

Memory Util

-

+

+

+

-

+

+

-

-

+

+

+

low
mid

high

InfoGain = 0.247 InfoGain = 0.039

Figure 6: How to select a feature as a branch of tree

3 In the natural immune system, T-cells strongly responding to self-
MHC will die in thymus (i.e. self candidates Cs should be removed due
to self tolerance). However, for classification accuracy (described in
Section 5), we obtain self candidates in a feature table.

does the state is biased by a particular class. DT prefers the state
having lower Entropy because the goal is to determine the class
value of an environment condition (Figure 6). How to build the
decision tree is as follows. First, it selects a feature, whose
information gain is the highest (i.e. prefers lower Entropy state
from high Entropy state), as a splitting feature at the root of the
tree. Then, it continues to select remaining features recursively
until the data samples can’t be split any further.

The environment evaluation facility reports the classification
result (Xcur.class), which is Output (Figure 5), to the behavior
selection facility only when the classified environment
condition is “Non-self”. Otherwise the immune system does
nothing and waits for next environment condition. It is beyond
the scope of this paper to describe the details of the behavior
selection facility. For more details, see the following references
[4]. Finally, the key steps of both the natural immune response
and the iNet artificial immune response are summarized in
Figure 7 and Figure 8.

5. EXPERIMENTAL RESULTS

This section evaluates the efficiency and accuracy of iNet
through several experimental results.

5.1 Configurations for Experiment

An experiment test bed is built to deploy and run iNet. Both
iNet and agents are implemented in Java. All the measurements
are performed on a Java 2 standard edition virtual machine
(version 1.3.1 from Sun Microsystems) on a PC with a 2.5GHz
Celeron CPU and 1GB memory.

5.2 Efficiency of Self/Non-self Classification

This experiment measures the overhead of the proposed
classification algorithm (i.e. decision tree algorithm) in order to
understand its efficiency. The overhead of the classification
algorithm includes initialization time, Tinit, and classification
time, Tclassify. Tinit consists of t1, the time to create a feature table,
and t2, the time to build its decision tree. Tclassify is the time to
classify a given feature vector. So, the overhead of the environ-
ment evaluation facility is considered as TEE = Tinit + Tclassify.
This value is affected by three parameters: N, the size of a
feature table, A, the number of features in a feature vector (i.e.
the number of environment conditions), and S, the number of
user-defined self conditions provided in initialization step.
Figure 9 shows the time t1 and t2 for initializing the
classification algorithm having N samples (i.e. # of feature
vectors) for each parameter A and S. The experimental results

show that Tinit gradually increases in proportion to the
parameters. However, in this experiment, we assume that the
proposed classification algorithm will not be trained during
runtime execution. So the environment evaluation facility
consumes only an amount of time Tclassify shown in Table II
because Tinit(=t1+t2) is required only once in the initialization
step but during runtime execution.

Non-self
environment
condition

Environment Evaluation Behavior Selection

Initialization

Environment Sensing

Given condition has
been memorized?

Concentration
Calculation

Behavior Selection

NO

YES

Behavior selection in
the iNet artificial immune network

self
environment

condition

activation

Self/Non-self
Classification of

Environment
Condition

Non-self
environment
condition

Environment Evaluation Behavior Selection

Initialization

Environment Sensing

Given condition has
been memorized?

Concentration
Calculation

Behavior Selection

NO

YES

Behavior selection in
the iNet artificial immune network

self
environment

condition

activation

Self/Non-self
Classification of

Environment
Condition

Figure 8: Key Steps in iNet Artificial Immune Response

activation

Innate Immune Response Adaptive Immune Response

T-cell maturation
in Thymus

Positive Selection

Negative Selection

Self/Non-self
Discrimination

Macrophage Circulation

Immune memory
works?

Stimulations/Suppressions
among Antibodies

Antibody Production

NO

YES

Antibody production in
the natural immune network

non-
selfself

activation

Innate Immune Response Adaptive Immune ResponseInnate Immune Response Adaptive Immune Response

T-cell maturation
in Thymus

Positive Selection

Negative Selection

Self/Non-self
Discrimination

Macrophage Circulation

Immune memory
works?

Stimulations/Suppressions
among Antibodies

Antibody Production

NO

YES

Antibody production in
the natural immune network

non-
selfself

Figure 7: Key Steps in Natural Immune Response

The overhead of behavior selection facility, TBS, just takes the
time for selecting a behavior suitable for the current
environment condition [8]. In the behavior selection facility,
among several antibodies which respond to antigens, one
antibody is selected as an agent’s behavior. The number of
antibody, AB, is determined by the number of features A, the
number of distinct values of each feature, V, and the number of
behaviors that each agent supports, B, as AB = (A*V)*B. Figure
10 shows that how much time the behavior selection facility
spends to select a behavior.

Based on assumption that V=3 and B=3, only the parameter A
affects the amount of TBS. Compared with the value of TBS,
Tclassify is quite fast. For example, when A=5 (i.e. AB=75 with
V=3 and B=5), TBS=135.41msec will be skipped if the
classification algorithm spends Tclassify=3msec (Table II) and
says a current environment condition is “Self”. In fact, the
decision tree, constructed from N feature vectors each of which
has A features, might have the height of A at most. Since this

(1) (2)

0
1
2
3
4
5
6
7
8
9

10

10 20 30 40 50 60 70 80 90

of Feature Vectors in a Feature Table (dataset)

Ti
m

e
(m

se
c)

S = 5

S = 10

S = 15

0
2
4
6
8

10
12
14
16
18
20

25 50 75 100 125 150 175 200 225 250

of Feature Vectors in a Feature Table (dataset)

Ti
m

e
(m

se
c)

S = 5

S = 10

S = 15

(3) (4)

0

5

10

15

20

25

30

35

50 100 150 200 250 300 350 400 450 500

of Feature Vectors in a Feature Table (dataset)

Ti
m

e
(m

se
c)

S = 5

S = 10

S = 15

0

5

10

15

20

25

30

35

40

45

10 35 60 85 11
0

13
5

16
0

18
5

210 23
5

26
0

28
5

31
0

33
5

36
0

385

of Feature Vectors in a Feature Table (dataset)

Ti
m

e
(s

ec
)

A=4

A=5

A=6

Figure 9: Tinit: overhead of initializing a classification algorithm.

(1)-(3) shows t1: time to create a feature table of size N when A=4,
5 ,and 6, and (4) shows t2: time to build its decision tree of size N.

experiment assumes that A is 4, 5 or 6 (e.g. Section 4.2), the
classification needs only 4, 5 or 6 comparisons to search the leaf
indicating “Self” or “Non-self”. Therefore, Tclassify is
dramatically fast as compared with Tinit and also TBS.

5.3 Accuracy of Self/Non-self Classification

The accuracy of the self/non-self classification is measured by
comparing the classes of input feature vectors with those of
output feature vectors. The accuracy is also affected by two
parameters: N and A. In general, a classification algorithm
classifies a testing data (e.g. a current environment condition)
more accurately on more samples and features (i.e. the larger N
and A). How these parameters affect the accuracy of
classification is shown in Figure 11.

The proposed classification algorithm will not be retrained

during runtime execution although its accuracy might be
improved by retraining the decision tree. So it is important to
decide an appropriate size of the parameter N (i.e. the size of a
feature table) for both reducing overhead and improving
classification accuracy. There is a trade-off between the
efficiency and accuracy of the classification algorithm;
application developers need to determine the value of N, based
on the experimental results shown in Table III, depending on
the requirements of their application.

3.0

6

3.03.01.5Tclassify (msec)

543# of Features (A)

3.0

6

3.03.01.5Tclassify (msec)

543# of Features (A)

Table II: Tclassify: overhead of classifying a feature vector

when A=3, 4, 5, and 6

AB=75
TBS=135.41

0

25

50

75

100

125

150

175

200

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

of Antibodies

Ti
m

e
(m

se
c)

Figure 10: TBS: overhead of behavior selection facility, i.e. time

for selecting a behavior

5.4 Performance Impact of the Environment Evaluation
Facility on iNet

In order to understand how the environment evaluation
facility effectively contributes to iNet in terms of efficiency, the
overhead of behavior selection facility (TBS) is compared with
the overhead of executing both environment evaluation and
behavior selection facility (TEE+TBS) on the following three
different scenarios.
•

•

•

Self environment conditions only: The environment
evaluation facility faces only self environment conditions. This
simulates a static network environment where environment
condition does not dynamically change and an agent always
adapts to the environment well (i.e. the degree of adaptation is
always high).

Non-self environment conditions only: The environment
evaluation facility faces only non-self environment conditions.
This simulates a dynamic network environment where
environment conditions dynamically change and a situation
where an agent tries to adapt to environmental changes by
performing their behaviors, but changed too often, so the degree
of the agent adaptation is always low.

Random environment conditions: The environment
evaluation facility randomly faces self and non-self
environment conditions. This simulates a dynamic network
environment where environment conditions dynamically change
and an agent does not always adapt to the environment well.

Figure

Figure 12 shows the computation overhead of executing iNet
(i.e. both the environment evaluation and behavior selection
facility) to given environment conditions (i.e. antigens)
according to each scenario described above. The number of
given conditions (x-axis), each of which is provided at
particular time intervals, implies how long iNet is run.

If iNet does not have the environment evaluation facility, then
it always executes the behavior selection facility even for the
case the degree of adaptation is high (i.e. environment condition
does not dynamically change and an agent always adapts to the

AA

Table III. R
according t
classificatio
60

65

70

75

80

85

90

95

100

10 50 90
130 170 210 250 290 330 370 41

0
450 490 530 570 610 650

of Feature Vectors in a Feature Table (dataset)

A
cc

ur
ac

y
(%

)

A = 3
A = 4
A = 5
A = 6

 11: accuracy of classification on 100 testing data

when A=3, 4, 5, and 6
52.39218.5288.748-t2

52.42018.5428.751-total

41.06016.1017.1212.767t2

41.08116.1117.1242.769total

24.7629.8743.9132.210t2

24.7759.8773.9152.212total

t1

t1

t1

90%

85%

80%

ccuracy

0.02810.01410.0034-

Tinit (sec)

4501507025N: size of feature table

0.02090.00940.00310.0015

Tinit (sec)

200754020N: size of feature table

0.01270.00340.00160.0015

Tinit (sec)

10101010# of user-defined self

7292438127# of Possible
combination of features

650

6

22590N: size of feature table

543# of Features (A)

52.39218.5288.748-t2

52.42018.5428.751-total

41.06016.1017.1212.767t2

41.08116.1117.1242.769total

24.7629.8743.9132.210t2

24.7759.8773.9152.212total

t1

t1

t1

90%

85%

80%

ccuracy

0.02810.01410.0034-

Tinit (sec)

4501507025N: size of feature table

0.02090.00940.00310.0015

Tinit (sec)

200754020N: size of feature table

0.01270.00340.00160.0015

Tinit (sec)

10101010# of user-defined self

7292438127# of Possible
combination of features

650

6

22590N: size of feature table

543# of Features (A)

ecommended size of feature table (underlined)
o the overhead for initialization Tinit and accuracy of
n algorithm.

0

10

20

30

40

50

60

70

10 50 100 150 200 250 300 350 400 450 500
of Antigens

Ti
m

e
(s

ec
)

TBS
TEE+TBS (self only)
TEE+TBS (non-self only)
TEE+TBS (random)

Figure 12: Computation overhead of executing iNet according to
three different scenarios when A=5 (TEE: overhead of environment
evaluation facility, TBS: overhead of behavior selection facility)

--

environment well). In other words, iNet can avoids unnecessary
processes and does not have to execute the behavior selection
facility whenever the environment evaluation facility evaluates
a current environment condition as “Self”.

m to achieve autonomous adaptability
o

th

nt evaluation and behavior selection in a
consistent man

ation facility
w

ill be investigated, such as statistical and clustering
algorithms.

6. RELATED WORK
Artificial immune systems have been proposed and used in

various application domains such as intrusion detection [9],
pattern recognition [10], data mining [11] and fault detection
[12]. This paper proposes an artificial immune system for
designing autonomous and adaptive network applications. To
the best of our knowledge, this work is the first attempt to apply
an artificial immune syste

f network applications.

This work extends our previous work, which only focused on
the behavior selection facility in iNet [8]. This work proposes
the environment evaluation facility in iNet, which introduces
new immunological mechanism (T-cell maturation and self/non-
self discrimination), and combines the new facility with the
behavior selection facility (Figures 3 and 8). Experimental
results show that the environment evaluation facility improves

e efficiency of the immunological process in iNet (Section 5).

Existing mobile agent platforms allow agents to perform
behaviors such as replication and migration [13, 14, 15] as the
NetSphere platform does. However, they do not provide a
general-purpose adaptation engine for agents to autonomously
adapt to dynamic changes in the network. Therefore, human
developers need to implement and configure behavior policies
for each agent from scratch. It tends to be complicated, time
consuming and error-prone. On the contrary, iNet is a general-
purpose adaptation engine for agents to perform environment
sensing, environme

ner.

7. CONCLUDING REMARKS

This paper investigates an artificial immune system, called
iNet, to achieve adaptive behavioral selection for agents
(network applications) in the NetSphere architecture. iNet
allows agents to monitor their surrounding environment
conditions and perform their behaviors adaptively to the
monitored conditions. This paper describes and evaluates the
environment evaluation facility in iNet, which allows agents to
determine when to, and when not to, perform their behaviors.
Experimental results that the environment evalu

orks efficiently with a high degree of accuracy.

Extended experiments are planned to investigate more
performance implications of iNet, such as resource utilization to
execute the iNet immunological process. In addition to the
current experimental environment, iNet and agents will be
deployed on larger-scale experimental environments (e.g.
PlanetLab 4). It will provide more realistic performance
implications on the autonomous adaptability with iNet. For the
self/non-self classification process in iNet, other classification
algorithms w

4 http://www.planet-lab.org

REFERENCES

[1] A. G. Ganek and T. A. Corbi, “The Drawing of the
Autonomic Computing Era,” In IBM Systems Journal, vol.
42, no. 1, 2003.

[2] M. Weiser, “The Computer for the 21st Century,” Scientific
American, September, 1991.

[3] I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,”
International Journal of Supercomputer Applications,
15(3), 2001.

[4] E. Criscuolo, K. Hogie and R. Parise, “Transport Protocols
and Applications for Internet Use in Space,” In Proc. of the
IEEE Aerospace Conference, 2001.

[5] Large Scale Networking Coordinating Group of the
Interagency Working Group for Information Technology
Research and Development (IWG/IT R&D), Report of
Workshop on New Visions for Large-scale Networks:
Research and Applications, March 2001.

[6] T. Suda, T. Itao and M. Matsuo, “The Bio-Networking
Architecture: The Biologically Inspired Approach to the
Design of Scalable, Adaptive, and Survivable/Available
Network Applications,” In K. Park (ed.) The Internet as a
Large-Scale Complex System, Princeton University Press,
April 2005. to appear.

[7] J. Suzuki and T. Suda, “A Middleware Platform for a
Biologically-inspired Network Architecture Supporting
Autonomous and Adaptive Applications,” In IEEE Journal
on Selected Areas in Communications (JSAC), vol 23, no.2.
February 2005.

[8] J. Suzuki, “Biologically-inspired Adaptation of Autonomic
Network Applications,” In International Journal of
Parallel, Emerging and Distributed Computing, 2005, to
appear.

[9] D. Dasgupta and S.Forrest, “An Anomaly Detection
Algorithm Inspired by the Immune System.” In Artificial
Immune Systems and Their Applications, Springer, Nov,
1998.

[10] Z. Tang, K. Tashima, Q.P. Cao, “Pattern Recognition
System Using a Clonal Selection-based Immune Network,”
In System and Computers in Japan, vol 34, no 12,
November 2003 p56-63

[11] T. Knight, J. Timmis: “AINE: An Immunological
Approach to Data Mining,” In Proc. of ICDM 2001.

[12] D.W. Bradley and A.M. Tyrrell., “Immunotronics:
Hardware Fault Tolerance Inspired by the Immune
System.”, In Proc. of the 3rd International Conference on
Evolvable System, Springer lncs, 2000.

[13] D. Lange and M. Oshima, “Programming and Deploying
Java Mobile Agents with Aglets,” Addison Wesley, 1998.

[14] N. J. E. Wijngaards, B. J. Overeinder, M. van Steen and F.
M. T. Brazier, “Supporting Internet-Scale Multi-Agent
Systems,” In Data and Knowledge Engineering, (41)2-3,
2002.

[15] A. Fuggetta, G. P. Picco and G. Vigna, “Understanding
Code Mobility,” In IEEE Trans. on Software Engineering,
24(5), 1998.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tang:Zheng.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tashima:Koichi.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cao:Qi_Ping.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Knight:Thomas.html
http://www.informatik.uni-trier.de/~ley/db/conf/icdm/icdm2001.html

