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ABSTRACT 

This paper describes and evaluates a biologically-inspired 
adaptation mechanism that allows network application 
components (agents) to autonomously adapt to dynamic 
environment changes in the network (e.g. changes in network 
traffic and resource availability). Based on the observation that 
the immune system elegantly achieves autonomous adaptation, 
the proposed mechanism, called the iNet artificial immune 
system, is designed after a scheme in which the immune system 
produces specific antibodies against an antigen invasion. iNet 
models an agent behavior (e.g. migration and replication) as an 
antibody, and an environment condition (e.g. network traffic 
and resource availability) as an antigen. iNet allows each agent 
to (1) autonomously monitor its surrounding environment 
conditions (i.e. antigens) to evaluate whether it adapts to the 
environment conditions, and if it does not, (2) adaptively 
perform a behavior (i.e. antibody) suitable for the environment 
conditions. This paper focuses on the first process, the 
environment evaluation process, and describes its design and 
implementation. The experimental results show that the 
environment evaluation process works efficiently with a high 
degree of accuracy. 
Keywords: artificial immune system, biologically-inspired 
adaptation 

1. INTRODUCTION 

As computing devices and networks are becoming more 
powerful and ubiquitous, the networking landscape is evolving 
into new paradigms, such as autonomic networks [1], pervasive 
networks [2], grid networks [3] and space networks [4]. In these 
networking paradigms, future network applications will be 
orders of magnitude more complex and larger than current ones, 
and they are expected to be more autonomous, scalable and 
adaptive to dynamic network environments [5]. As inspiration 
for a new network application design paradigm, the authors of 
the paper observe that various biological systems have already 
developed the mechanisms necessary to achieve the key 
requirements of future network applications such as autonomy, 
scalability and adaptability. For example, a bee colony scales to 
support a huge number of bees, and autonomously adapts to a 
wide variety of weather and food conditions. The authors of the 
paper believe if network applications are modeled after certain 
biological concepts and mechanisms, they may be able to meet 
these requirements of future network applications. 

The NetSphere architecture applies key concepts and 
mechanisms in biological systems to design network 
applications1. One of the key concepts in biological systems is 

                                                 
1  The NetSphere architecture is an extension to the Bio-Networking 
Architecture [6, 7]. 

emergence. In biological systems, beneficial system properties 
(e.g. adaptability) often emerge through the simple and 
autonomous interactions among diverse biological entities. The 
NetSphere architecture applies the concept of emergence by 
implementing network applications as a group of distributed, 
autonomous and diverse agents. This is analogous to a bee 
colony (a network application) consisting of multiple bees 
(agents). Each agent implements a functional service related to 
the application and follows simple behaviors similar to 
biological entities, such as reproduction, death, migration and 
environment sensing. 

Similar to entities in the biological world, agents in the 
NetSphere architecture are designed to provide a sufficient 
degree of diversity. Different agents may implement different 
services. For instance, an agent may implement an airline 
reservation service, while another agent may implement a hotel 
reservation service. An agent may implement a web service and 
contain web pages. Different agents may implement different 
behavior policies. For instance, an agent may have a migration 
policy of moving towards a user, while another agent may have 
a migration policy of moving towards a network node where 
resource availability is higher. 

Similar to an entity in the biological world, each agent in the 
NetSphere architecture may store and expend energy for living. 
Each agent may gain energy in exchange for performing a 
service, and they may pay energy to receive a service from other 
agents and to use network and computing resources. The 
abundance or scarcity of stored energy may affect various 
behaviors of an agent. For example, an abundance of stored 
energy is an indication of higher demand for the agent; thus the 
agent may be designed to favor reproduction in response to 
higher levels of stored energy. A scarcity of stored energy (an 
indication of lack of demand or ineffective behaviors) may 
eventually cause the agent’s death. 

This paper addresses and evaluates autonomous adaptability 
of network applications (i.e. agents) in the NetSphere 
architecture. Autonomous adaptability is an ability of network 
applications to intelligently adapt to dynamic changes in the 
network without any administrative interventions from and to 
other entities (e.g. other agents and users). Modeled after the 
mechanism behind how the immune system produces specific 
antibodies against an antigen invasion, the proposed adaptation 
mechanism, called iNet,  allows agents to autonomously 
monitor their surrounding environment conditions (e.g. traffic 
volume and resource availability) and adaptively perform their 
biological behaviors (e.g. migration and replication) suitable for 
the current environmental conditions. For instance, agents may 
invoke migration behavior for moving towards network nodes 
that accept a large number of user requests for their services. 



This results in the adaptation of agent locations, and agents 
concentrate around the users who request their services. 

The structure of this paper is organized as follows. Section 2 
overviews key design principles of agents in the NetSphere 
architecture. Based on the design principles, Section 3 describes 
the design of agents in the NetSphere architecture. Section 4 
presents the design of the iNet artificial immune system and 
how it can contribute to autonomous adaptability of agents. 
Section 5 shows several experimental results to evaluate 
efficiency and accuracy of the proposed environment evaluation 
facility. Sections 6 and 7 conclude with comparison with 
existing related work and some discussion on future work. 

2. DESIGN PRINCIPLES IN THE NETSPHERE 
ARCHITECTURE 

In the NetSphere architecture, agents are designed based on 
the three principles described below in order to interact and 
collectively provide network applications that are autonomous, 
adaptive, scalable and simple [6, 7].  

(1) Decentralization: Agents in the NetSphere architecture 
are decentralized. There are no central entities to control and 
coordinate agents (i.e. no directory servers and no resource 
managers). Decentralization allows network applications to be 
scalable and simple by avoiding a single point of performance 
bottleneck and failure and by avoiding any central coordination 
in developing and deploying agents. 

(2) Autonomy: Agents in the NetSphere architecture are 
autonomous. Agents monitor their local network environments, 
and based on the monitored environmental conditions, they 
autonomously interact without any intervention from other 
entities (e.g. other agents and human users). 

(3) Adaptability: Agents in the NetSphere architecture are 
adaptive to dynamically changing environmental conditions (e.g. 
user demands, user locations, and resource availability). This is 
achieved through designing agent behavior policies to consider 
local environmental conditions [8]. For example, an agent may 
invoke replication and death behaviors when its energy level 
becomes over and below thresholds. This results in the adapt-
ation of agent availability. The population of agents can be 
adaptable against changes in workload or the number of users. 

3. AGENTS IN THE NETSPHERE ARCHITECTURE 

Each agent in the NetSphere architecture is implemented as a 
Java object and runs on a NetSphere platform. The NetSphere 
platform is implemented in Java2, and each platform runs on a 
Java virtual machine. The platform provides reusable software 
components for developing, deploying and executing agents. 
The components abstract low-level operating and networking 
details (e.g. network I/O and concurrency control for executing 
agents), and implement high-level runtime services that agents 
use to perform their services and behaviors [6, 7]. The iNet 
artificial immune system is implemented as a component in the 
NetSphere platform [8].  

Each agent consists of three parts: attributes, body and 
behaviors (Figure 1). Attributes carry descriptive information 
regarding the agent (e.g. agent ID and description of a service it 
provides). The body implements a service that the agent 

provides and contains materials relevant to the service (e.g. 
application data and user profiles). For instance, an agent may 
implement control software for a device in its body, while 
another agent may implement a hotel reservation service in its 
body. An agent that implements a web service may contain web 
pages in its body. Behaviors implement non-service related 
actions that are inherent to all agents. 
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Figure 1. Design of an Agent in the NetSphere Architecture 

Some example behaviors are explained below. 

                                                 

• 

• 

• 

• 

• 

• 

Migration: Agents may migrate from one platform to 
another platform. 

Communication. Agents may communicate with other 
agents for the purposes of, for instance, requesting a service or 
exchanging energy. 

Energy exchange and storage: Agents may receive and 
store energy in exchange for providing services to other agents. 
Agents also expend energy. For instance, agents may pay 
energy units for services that they receive from other agents. In 
addition, when an agent uses resources on a platform (e.g. CPU 
and memory), it may pay energy units to the platform. 

Lifecycle regulation: Agents may regulate their lifecycles. 
Agents may make a copy of themselves (replication), possibly 
with mutation of the replica’s behavioral policy. Agents also 
may die (death) as a result of lack of energy. If energy 
expenditure of an agent is not balanced with the energy units it 
receives from providing services to other agents, it will not be 
able to pay for the resources it needs, i.e., it dies from lack of 
energy. Agents with wasteful behavioral policies (e.g. 
replicating or migrating too often) will have a higher chance of 
dying from lack of energy.  

Pheromone emission: Agents may emit and leave a 
pheromone (or a trace) behind on a platform when they migrate 
to another platform. This is to indicate their presence to other 
agents. A pheromone contains the emitter’s ID and a reference 
to the platform that the emitter migrated to. Pheromones are 
emitted with certain strength and may decay over time.  
Pheromones may have a variety of uses, including improving 
the performance of discovery. 

Environment sensing. Agents may sense their local 
environment. For instance, an agent may sense the local 
environment to learn which agents are in the environment and 
what services they provide. An agent may also sense 
pheromones (e.g. which agents left pheromones on local and 
neighboring platforms) and resources (e.g. CPU processing 
power and memory space available on local and neighboring 
platforms). 
 2 The current code base of the NetSphere platform contains 

approximately 37,300 lines of Java code [7]. 



4. INET ARTIFICIAL IMMUNE SYSTEM 

Each agent has its own artificial adaptation mechanism for 
behavior selection (Figure 1). This adaptation mechanism 
allows an agent to monitor its surrounding environmental 
condition (e.g. network traffic, resource availability), identify 
behaviors suitable for the monitored environmental condition, 
and decide which behavior to perform so that the agent adapts 
to the current environmental condition. The design of the 
adaptation mechanism is based on how the natural immune 
system produces specific antibodies against an antigen invasion.  

4.1. Natural Immune System 

The natural immune system is known as a distributed adaptive 
system with defense mechanism to maintain the system against 
dynamically changing environment (i.e. antigens’ invasion). It 
consists of a tow-line defense, innate immune system and 
adaptive immune system. Both systems depend upon the 
activity of white blood cells, the leukocytes, where the innate 
immunity is mediated mainly by macrophages, and the adaptive 
immunity is mediated by lymphocytes. The immune response 
involves a number of components such as macrophages, 
lymphocytes and antibodies. Macrophages circulate throughout 
the body ingesting and digesting antigens and fragment them 
into small peptides, called self-MHC (Major Histocompatibility 
Complex.) They have the ability to present the self-MHC to 
lymphocytes. Lymphocytes are one of many types of white 
blood cells, and two major populations of lymphocytes are T 
lymphocytes (T-cells) and B lymphocytes (B-cells). 

T-cells have receptors (TCR) on their surface, which can 
recognize antigens by binding to self-MHC presented by 
macrophage. T-cells are produced in thymus through two main 
processes, positive selection and negative selection. With these 
processes, the immune system obtains the ability to accomplish 
the self/non-self discrimination, which is one of the remarkable 
features in the immune system. It discriminates foreign 
molecules (i.e. Non-self) from the body’s own cells and proteins 
(i.e. Self). 

Immature (Naïve) T-cells, which are stem cells, are originated 
in a bone marrow and migrate to thymus (Figure 2-A) where 
some of them are allowed to mature (i.e. become mature T-
cells) into immunocompetent cells capable of recognizing 
“Self” (positive selection), and others are removed from 
repertory due to a strong reaction of “Self” (negative selection). 
These processes guarantees that T-cells leave the thymus and 
recognize “Self”, e.g. self-MHC, at the same time that it is 
ready to be stimulated by macrophage with non-self antigens 
(Figure 2-B). Once “Non-self” is recognized, that is, T-cells 
receive signals from macrophage; T-cells secrete chemical 

signals to the participation of a variety of cells and molecules 
such as B-cells to mount an appropriate response in order to 
eliminate them (Figure 2-C). B-cells have receptors on their 
surface, which can recognize chemical signals, and antibodies 
which can attack the recognized antigens invading a human 
body, e.g. viruses. Once the B-cells are activated by the 
chemical signals secreted by the activated T-cells, they 
proliferate with their own copies. This is called a clonal 
selection. Then, proliferated B-cells start to produce a bunch of 
the same type of antibodies specific to the recognized antigen 
(Figure 2-D). 

4.2. Artificial Immune System 

An agent in iNet is designed based on the concept of the 
natural immune system described in previous subsection. It 
consists of two architectural components: environment 
evaluation facility and behavior selection facility corresponding 
to the innate immune response and adaptive immune response. 
Figure 3 illustrates the overview of the adaptation mechanism. 
How the concepts of the iNet artificial immune system map to 
the natural immune system is shown in Table I. 

In the previous version of iNet (which has only behavior 
selection facility), each agent periodically obtains its surround-
ing environmental condition and always invokes a behavior. 
This means that each agent periodically behaves even when it 
adapts to the current environment condition well (i.e. even when 
it does not have to behave). As a result, it might perform 
unnecessary, unsuitable behaviors. However, the environment 
evaluation facility, which this paper focuses on, allows each 
agent to evaluate the current degree of adaptation (based on the 
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Figure 2. Natural Immune System 
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Figure 3: iNet artificial immune system 

(adaptation mechanism)
feature vector classified with
class value of “self” (0)

user-defined
self environment condition self-MHC

negative
selection

positive
selection N/AN/AT-cell

turation
feature vector matchinginitialization

feature vector with no class value
(unclassified feature vector)

randomly generated
environment conditionstem cell

adaptive

innate

Implementations in iNetConcepts in iNetConcepts in 
atural Immune System

Initialization and classification
of feature vectorsenvironment evaluation facility

mune 
sponse behavior selection in the

artificial immune networkbehavior selection facility

classification of feature vectorsself/non-self classification of 
environment conditionslf/non-self discrimination

collection of the current environment 
condition through using

Environment Sensing Service
environment sensingmacrophage circulation

non-self antigen

self antigen

feature vectors in a feature tabledetectors for non-self 
environment conditionT-cell

feature vector classified with
class value of “non-self” (1)

non-self environment condition
(lower degree of adaptation)

agent’s behavioragent’s behaviorantibody

feature vector classified with
class value of “self” (0)

self environment condition
(higher degree of adaptation)ntigen

feature vector classified with
class value of “self” (0)

user-defined
self environment condition self-MHC

negative
selection

positive
selection N/AN/AT-cell

turation
feature vector matchinginitialization

feature vector with no class value
(unclassified feature vector)

randomly generated
environment conditionstem cell

adaptive

innate

Implementations in iNetConcepts in iNetConcepts in 
atural Immune System

Initialization and classification
of feature vectorsenvironment evaluation facility

mune 
sponse behavior selection in the

artificial immune networkbehavior selection facility

classification of feature vectorsself/non-self classification of 
environment conditionslf/non-self discrimination

collection of the current environment 
condition through using

Environment Sensing Service
environment sensingmacrophage circulation

non-self antigen

self antigen

feature vectors in a feature tabledetectors for non-self 
environment conditionT-cell

feature vector classified with
class value of “non-self” (1)

non-self environment condition
(lower degree of adaptation)

agent’s behavioragent’s behaviorantibody

feature vector classified with
class value of “self” (0)

self environment condition
(higher degree of adaptation)ntigen

 
Table 1. Mapping between iNet artificial immune system and 

natural immune system 
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monitored current environment condition) and determine 
whether to need invoking a certain behavior. Thus, each agent 
avoids invoking unnecessary behaviors and utilizes computing 
and networking resources efficiently. Randomly generated
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Figure 4: Feature Vector Matching

In iNet, an antigen is implemented as a feature vector 
representing a current environment condition supplied by 
environment sensing behavior. The feature vector might consist 
of several particular features indicating a degree of adaptation 
for networks, and one class value (e.g. X = (F, C) where feature 
F = (a1, …, an) and class C = {0,1} ). For example, the number 
of agents on the same node, the number of messages transferred 
per sec, energy level, and memory utilization might represent 
the current system condition (e.g. Xcur = (10, 500, low, 5, 1)). A 
“Non-self” class value, 1, implies a lower degree of adaptation 
for the network; on the other hand, “Self” class value, 0, tells us 
a higher degree of adaptation. 
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Figure 5: Input and Output of self/non-self classification 

The environment evaluation facility has two basic steps, 
initialization and self/non-self classification of environment 
condition, which are based on the concept of T-cell maturation 
and self/non-self discrimination. In the initialization step, 
environment detectors to determine whether to invoke a certain 
behavior against a current environment condition are created by 
a generator (i.e. feature vector matching). The environment 
detectors are designed as T-cells, a certain type of immune cells 
that detect antigen invasions. The generator is designed as T-
cell maturation process to produce T-cells that only detect non-
self molecules and do not react to self molecules. In the 
classification step, monitored antigens are classified into self 
antigens and non-self antigens, through the mechanism of 
immunological self/non-self discrimination. Non-self antigens 
represent environment conditions that an agent needs to increase 
the degree of adaptation (i.e. it needs to invoke behaviors). Self 
antigens represent environment conditions that an agent adapts 
well to (i.e. it does not need to invoke behaviors to). 

(1) Initialization Step 

The initialization step creates an initial dataset (i.e data 
samples for classification algorithm), which is detectors for 
non-self environment condition. They are a collection of 
temporarily classified feature vectors, distributed by the feature 
vector matching of randomly generated feature vectors(X) and 
user-defined self feature vectors (S) given by users (Figure 4). 

This procedure follows the process of T-cell maturation 
described in Section 4.1. Randomly generated feature vectors 
and user-defined self feature vectors are compared by a measure 
of vector distance. There are many ways to calculate the vector 
distance. One of them is the similarity of two vectors using 
simple Euclidean distance method. We assume that vector 
distance represents TCR affinity. Closer vectors (i.e. distance is 
less than threshold) represent higher affinity between cells, and 
further vectors (i.e. greater than threshold) represent low 
affinity. As shown in Figure 4, randomly generated feature 
vectors, X, distributed by the feature vector matching are 
temporarily classified as candidates of self and non-self 
environment condition (Cs and Cn). They are stored into an 
initial dataset3 , called a feature table (described in the next 

subsection), and they are used for training of classification 
algorithm 

(2) Self/Non-self Classification Step 

In this step, a classification algorithm classifies a current 
environment condition (Xcur), Input, into “Self” and “Non-self”, 
which is the classification result, Output. This paper introduces 
the decision tree algorithm (DT) as its classification algorithm. 
The complexity of query time in DT is very fast, and the 
classification process is interpretable and often easy. 

In Figure 5, there is a table called a feature table of size N, 
containing feature vectors (i.e. detectors, temporarily classified 
self and non-self feature vectors), each of them has A distinct 
features. These feature vectors in a feature table work as data 
samples and form a tree used for their classification. (it will be 
retrained to improve the quality of the algorithm). In DT, each 
internal node represents a feature of environment conditions, 
each branch indicates a value or a range of the feature, and each 
leaf assigns the class value. That is, the role of DT is to label an 
environment condition with the class value of leaf (i.e. “Self” or 
“Non-self”) reached by searching in the tree. 

Building DT, it is useful to calculate “information gain”, 
describing how much clearly classes are distributed. 
“Information” is defined by Entropy (ranges from 0 to 1) 
representing a degree of randomness or pureness between two 
classes, “Self” and “Non-self”. Higher Entropy implies the state 
that classes are equally randomly occupied, and lower Entropy 
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Figure 6: How to select a feature as a branch of tree 

                                                 
3 In the natural immune system, T-cells strongly responding to self-
MHC will die in thymus (i.e. self candidates Cs should be removed due 
to self tolerance). However, for classification accuracy (described in 
Section 5), we obtain self candidates in a feature table. 



does the state is biased by a particular class. DT prefers the state 
having lower Entropy because the goal is to determine the class 
value of an environment condition (Figure 6). How to build the 
decision tree is as follows. First, it selects a feature, whose 
information gain is the highest (i.e. prefers lower Entropy state 
from high Entropy state), as a splitting feature at the root of the 
tree. Then, it continues to select remaining features recursively 
until the data samples can’t be split any further. 

The environment evaluation facility reports the classification 
result (Xcur.class), which is Output (Figure 5), to the behavior 
selection facility only when the classified environment 
condition is “Non-self”. Otherwise the immune system does 
nothing and waits for next environment condition. It is beyond 
the scope of this paper to describe the details of the behavior 
selection facility. For more details, see the following references 
[4]. Finally, the key steps of both the natural immune response 
and the iNet artificial immune response are summarized in 
Figure 7 and Figure 8. 

5. EXPERIMENTAL RESULTS 

This section evaluates the efficiency and accuracy of iNet 
through several experimental results. 

5.1 Configurations for Experiment 

An experiment test bed is built to deploy and run iNet. Both 
iNet and agents are implemented in Java. All the measurements 
are performed on a Java 2 standard edition virtual machine 
(version 1.3.1 from Sun Microsystems) on a PC with a 2.5GHz 
Celeron CPU and 1GB memory. 

5.2  Efficiency of Self/Non-self Classification 

This experiment measures the overhead of the proposed 
classification algorithm (i.e. decision tree algorithm) in order to 
understand its efficiency. The overhead of the classification 
algorithm includes initialization time, Tinit, and classification 
time, Tclassify. Tinit consists of t1, the time to create a feature table, 
and t2, the time to build its decision tree. Tclassify is the time to 
classify a given feature vector. So, the overhead of the environ-
ment evaluation facility is considered as TEE = Tinit + Tclassify. 
This value is affected by three parameters: N, the size of a 
feature table, A, the number of features in a feature vector (i.e. 
the number of environment conditions), and S, the number of 
user-defined self conditions provided in initialization step. 
Figure 9 shows the time t1 and t2 for initializing the 
classification algorithm having N samples (i.e. # of feature 
vectors) for each parameter A and S. The experimental results 

show that Tinit gradually increases in proportion to the 
parameters. However, in this experiment, we assume that the 
proposed classification algorithm will not be trained during 
runtime execution. So the environment evaluation facility 
consumes only an amount of time Tclassify shown in Table II 
because Tinit(=t1+t2) is required only once in the initialization 
step but during runtime execution. 

Non-self 
environment 
condition

Environment Evaluation Behavior Selection

Initialization

Environment Sensing

Given condition has 
been memorized?

Concentration 
Calculation

Behavior Selection

NO

YES

Behavior selection in
the iNet artificial immune network 

self 
environment 

condition

activation

Self/Non-self 
Classification of 

Environment 
Condition

Non-self 
environment 
condition

Environment Evaluation Behavior Selection

Initialization

Environment Sensing

Given condition has 
been memorized?

Concentration 
Calculation

Behavior Selection

NO

YES

Behavior selection in
the iNet artificial immune network 

self 
environment 

condition

activation

Self/Non-self 
Classification of 

Environment 
Condition

 
Figure 8: Key Steps in iNet Artificial Immune Response 
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Figure 7: Key Steps in Natural Immune Response 

The overhead of behavior selection facility, TBS, just takes the 
time for selecting a behavior suitable for the current 
environment condition [8]. In the behavior selection facility, 
among several antibodies which respond to antigens, one 
antibody is selected as an agent’s behavior. The number of 
antibody, AB, is determined by the number of features A, the 
number of distinct values of each feature, V, and the number of 
behaviors that each agent supports, B, as AB = (A*V)*B. Figure 
10 shows that how much time the behavior selection facility 
spends to select a behavior. 

Based on assumption that V=3 and B=3, only the parameter A 
affects the amount of TBS. Compared with the value of TBS, 
Tclassify is quite fast. For example, when A=5 (i.e. AB=75 with 
V=3 and B=5), TBS=135.41msec will be skipped if the 
classification algorithm spends Tclassify=3msec (Table II) and 
says a current environment condition is “Self”. In fact, the 
decision tree, constructed from N feature vectors each of which 
has A features, might have the height of A at most. Since this 
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Figure 9: Tinit: overhead of initializing a classification algorithm. 

(1)-(3) shows t1: time to create a feature table of size N when A=4, 
5 ,and 6, and (4) shows t2: time to build its decision tree of size N. 



experiment assumes that A is 4, 5 or 6 (e.g. Section 4.2), the 
classification needs only 4, 5 or 6 comparisons to search the leaf 
indicating “Self” or “Non-self”. Therefore, Tclassify is 
dramatically fast as compared with Tinit and also TBS. 

5.3 Accuracy of Self/Non-self Classification 

The accuracy of the self/non-self classification is measured by 
comparing the classes of input feature vectors with those of 
output feature vectors. The accuracy is also affected by two 
parameters: N and A. In general, a classification algorithm 
classifies a testing data (e.g. a current environment condition) 
more accurately on more samples and features (i.e. the larger N 
and A). How these parameters affect the accuracy of 
classification is shown in Figure 11. 

The proposed classification algorithm will not be retrained 

during runtime execution although its accuracy might be 
improved by retraining the decision tree. So it is important to 
decide an appropriate size of the parameter N (i.e. the size of a 
feature table) for both reducing overhead and improving 
classification accuracy. There is a trade-off between the 
efficiency and accuracy of the classification algorithm; 
application developers need to determine the value of N, based 
on the experimental results shown in Table III, depending on 
the requirements of their application. 
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Table II: Tclassify: overhead of classifying a feature vector 
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Figure 10:  TBS: overhead of behavior selection facility, i.e. time 

for selecting a behavior 

5.4 Performance Impact of the Environment Evaluation 
Facility on iNet 

In order to understand how the environment evaluation 
facility effectively contributes to iNet in terms of efficiency, the 
overhead of behavior selection facility (TBS) is compared with 
the overhead of executing both environment evaluation and 
behavior selection facility (TEE+TBS) on the following three 
different scenarios. 
• 

• 

• 

Self environment conditions only: The environment 
evaluation facility faces only self environment conditions. This 
simulates a static network environment where environment 
condition does not dynamically change and an agent always 
adapts to the environment well (i.e. the degree of adaptation is 
always high).  

Non-self environment conditions only: The environment 
evaluation facility faces only non-self environment conditions. 
This simulates a dynamic network environment where 
environment conditions dynamically change and a situation 
where an agent tries to adapt to environmental changes by 
performing their behaviors, but changed too often, so the degree 
of the agent adaptation is always low. 

Random environment conditions: The environment 
evaluation facility randomly faces self and non-self 
environment conditions. This simulates a dynamic network 
environment where environment conditions dynamically change 
and an agent does not always adapt to the environment well. 

Figure

Figure 12 shows the computation overhead of executing iNet 
(i.e. both the environment evaluation and behavior selection 
facility) to given environment conditions (i.e. antigens) 
according to each scenario described above. The number of 
given conditions (x-axis), each of which is provided at 
particular time intervals, implies how long iNet is run. 

If iNet does not have the environment evaluation facility, then 
it always executes the behavior selection facility even for the 
case the degree of adaptation is high (i.e. environment condition 
does not dynamically change and an agent always adapts to the 
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Figure 12: Computation overhead of executing iNet according to 
three different scenarios when A=5 (TEE: overhead of environment 
evaluation facility, TBS: overhead of behavior selection facility) 

--



environment well). In other words, iNet can avoids unnecessary 
processes and does not have to execute the behavior selection 
facility whenever the environment evaluation facility evaluates 
a current environment condition as “Self”. 

m to achieve autonomous adaptability 
o

th

nt evaluation and behavior selection in a 
consistent man

ation facility 
w

ill be investigated, such as statistical and clustering 
algorithms. 

 

                                                

6. RELATED WORK 
Artificial immune systems have been proposed and used in 

various application domains such as intrusion detection [9], 
pattern recognition [10], data mining [11] and fault detection 
[12]. This paper proposes an artificial immune system for 
designing autonomous and adaptive network applications. To 
the best of our knowledge, this work is the first attempt to apply 
an artificial immune syste

f network applications. 

This work extends our previous work, which only focused on 
the behavior selection facility in iNet [8]. This work proposes 
the environment evaluation facility in iNet, which introduces 
new immunological mechanism (T-cell maturation and self/non-
self discrimination), and combines the new facility with the 
behavior selection facility (Figures 3 and 8). Experimental 
results show that the environment evaluation facility improves 

e efficiency of the immunological process in iNet (Section 5). 

Existing mobile agent platforms allow agents to perform 
behaviors such as replication and migration [13, 14, 15] as the 
NetSphere platform does. However, they do not provide a 
general-purpose adaptation engine for agents to autonomously 
adapt to dynamic changes in the network. Therefore, human 
developers need to implement and configure behavior policies 
for each agent from scratch. It tends to be complicated, time 
consuming and error-prone. On the contrary, iNet is a general-
purpose adaptation engine for agents to perform environment 
sensing, environme

ner. 

7. CONCLUDING REMARKS 

This paper investigates an artificial immune system, called 
iNet, to achieve adaptive behavioral selection for agents 
(network applications) in the NetSphere architecture. iNet 
allows agents to monitor their surrounding environment 
conditions and perform their behaviors adaptively to the 
monitored conditions. This paper describes and evaluates the 
environment evaluation facility in iNet, which allows agents to 
determine when to, and when not to, perform their behaviors. 
Experimental results that the environment evalu

orks efficiently with a high degree of accuracy. 

Extended experiments are planned to investigate more 
performance implications of iNet, such as resource utilization to 
execute the iNet immunological process. In addition to the 
current experimental environment, iNet and agents will be 
deployed on larger-scale experimental environments (e.g. 
PlanetLab 4 ). It will provide more realistic performance 
implications on the autonomous adaptability with iNet. For the 
self/non-self classification process in iNet, other classification 
algorithms w

 

 

 
4 http://www.planet-lab.org 
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