Graph Terminology

Theorem: An undirected graph has an even number of vertices of odd degree.

Idea: There are three possibilities for adding an edge to connect two vertices in the graph:

Before:
- Both vertices have even degree
- Both vertices have odd degree
- One vertex has odd degree, the other even

After:
- Both vertices have odd degree
- Both vertices have even degree
- One vertex has even degree, the other odd

So if there is an even number of vertices of odd degree in the graph, it will still be even after adding an edge.

Therefore, since an undirected graph with no edges has an even number of vertices with odd degree (zero), the same must be true for any undirected graph.

Please also study the proof on
- 4th Edition: page 446
- 5th Edition: page 547
- 6th edition: page 599
- 7th edition: page 653

Definition: When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v, and v is said to be adjacent from u.

The vertex u is called the initial vertex of (u, v), and v is called the terminal vertex of (u, v).

The initial vertex and terminal vertex of a loop are the same.

Example: What are the in-degrees and out-degrees of the vertices a, b, c, d in this graph:

- deg(a) = 1
- deg*(a) = 2
- deg(d) = 2
- deg*(d) = 1
- deg(b) = 4
- deg*(b) = 2
- deg(c) = 0
- deg*(c) = 2
Graph Terminology

Theorem: Let $G = (V, E)$ be a graph with directed edges. Then:

$$\sum_{v \in V} \text{deg}^-(v) = \sum_{v \in V} \text{deg}^+(v) = |E|$$

This is easy to see, because every new edge increases both the sum of in-degrees and the sum of out-degrees by one.

Special Graphs

Definition: The complete graph on n vertices, denoted by K_n, is the simple graph that contains exactly one edge between each pair of distinct vertices.

Special Graphs

Definition: We obtain the wheel W_n when we add an additional vertex to the cycle C_n, for $n \geq 3$, and connect this new vertex to each of the n vertices in C_n by adding new edges.

Special Graphs

Definition: We obtain the cycle C_n, $n \geq 3$, consists of n vertices $v_1, v_2, ..., v_n$ and edges $(v_1, v_2), (v_2, v_3), ..., (v_{n-1}, v_n), (v_n, v_1)$.

Special Graphs

Definition: The n-cube, denoted by Q_n, is the graph that has vertices representing the 2^n bit strings of length n. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position.

Special Graphs

Definition: A simple graph is called bipartite if its vertex set V can be partitioned into two disjoint nonempty sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 with a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2).

For example, consider a graph that represents each person in a mixed-doubles tennis tournament (i.e., teams consist of one female and one male player). Players of the same team are connected by edges.

This graph is **bipartite**, because each edge connects a vertex in the **subset of males** with a vertex in the **subset of females**.
Special Graphs

Example I: Is C_3 bipartite?

No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set.

Example II: Is C_6 bipartite?

Yes, because we can display C_6 like this:

Operations on Graphs

Definition: A subgraph of a graph $G = (V, E)$ is a graph $H = (W, F)$ where $W \subseteq V$ and $F \subseteq E$.

Note: Of course, H is a valid graph, so we cannot remove any endpoints of remaining edges when creating H.

Example:

K_5 subgraph of K_5

Representing Graphs

Definition: Let $G = (V, E)$ be a simple graph with $|V| = n$. Suppose that the vertices of G are listed in arbitrary order as v_1, v_2, \ldots, v_n.

The adjacency matrix A (or A_G) of G, with respect to this listing of the vertices, is the $n \times n$ zero-one matrix with 1 as its (i, j)th entry when v_i and v_j are adjacent, and 0 otherwise.

In other words, for an adjacency matrix $A = [a_{ij}]$,

$\begin{align*}
 a_{ij} &= 1 & \text{if } (v_i, v_j) \text{ is an edge of } G, \\
 a_{ij} &= 0 & \text{otherwise}.
\end{align*}$
Representing Graphs

Example: What is the adjacency matrix A_G for the following graph G based on the order of vertices a, b, c, d?

Solution:

$$A_G = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Note: Adjacency matrices of undirected graphs are always symmetric.

For the representation of graphs with multiple edges, we can no longer use zero-one matrices. Instead, we use matrices of natural numbers. The (i, j)th entry of such a matrix equals the number of edges that are associated with (v_i, v_j).

Example: What is the adjacency matrix A_G for the following graph G based on the order of vertices a, b, c, d?

Solution:

$$A_G = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 3 \\ 2 & 1 & 3 & 0 \end{bmatrix}$$

Note: For undirected graphs, adjacency matrices are symmetric.