A General Backtracking Algorithm

Let us say that we can formulate a problem as a sequence of \(n \) successive decisions, in each of which we pick one choice out of a predefined set of options. For example, in the 4-queens problem we have to make four decisions, each of which consists in placing a queen in one of the four rows. We could formalize each decision as choosing one element from the set of rows \([1, 2, 3, 4]\). This set is the same for all four decisions. Therefore, we can describe the overall choices we have for this problem as:

\[
[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]
\]

(placing the first, second, third, and fourth queen)

February 16, 2016 Introduction to Artificial Intelligence
Lecture 7: Search in State Spaces III

Homework

(1) Write the function \(f\text{Queens} :: \text{Int} \to \text{[Int]} \to \text{Bool} \) in Frege. It is actually easiest if you allow it to check the status of any \(n \)-queens problem instead of only the 4-queens one.

(2) Write a function

\[
\text{backtrack} :: (\text{a} \to \text{[a]} \to \text{Bool}) \to \text{[a]} \to \text{[[a]]} \to \text{[a]}
\]

that takes a "sanity" function such as \(f\text{Queens} \), a start plan -- usually \([]\) – and a list of the choices at each level, in our case \([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]\) and outputs a solution, i.e., a successful plan (here: a list of four numbers).

I know that this is a tricky task, but it is very useful for not only practicing Frege but also really understanding backtracking.

If you have extra time and energy, you could also write a function that turns the list output into a console visualization of queens on a chessboard (e.g. an array of "Q"s vs. "."s).

Uninformed Search: Breadth-First
Uninformed Search: Breadth-First

Uninformed Search: Breadth-First

Uninformed Search: Breadth-First

Uninformed Search: Depth-First

Uninformed Search: Depth-First
Uninformed Search: Depth-First

Breadth-First vs. Depth-First

Uninformed breadth-first search:
- Requires the construction and storage of almost the complete search tree.
 → Space complexity for search depth n is $O(2^n)$.
- Is guaranteed to find the shortest path to a solution.

Uninformed depth-first search:
- Requires the storage of only the current path and the branches from this path that were already visited.
 → Space complexity for search depth n is $O(n)$.
- May search unnecessarily deep for a shallow goal.
Iterative Deepening

Iterative deepening is an interesting combination of breadth-first and depth-first strategies:

- Space complexity for search depth \(n \) is \(O(n) \).
- Is guaranteed to find the shortest path to a solution without searching unnecessarily deep.

How does it work?

The idea is to successively apply depth-first searches with increasing depth bounds (maximum search depth).

- Maximum search depth = 0 (only root is tested)
- Maximum search depth = 1
- Maximum search depth = 2
- Maximum search depth = 3
- Maximum search depth = 4
Iterative Deepening

But it seems that the time complexity of iterative deepening is much higher than that of breadth-first search!
Well, if we have a branching factor b and the shallowest goal at depth d, then the worst-case number of nodes to be expanded by breadth-first is:

$$N_{bf} = 1 + b + b^2 + \ldots + b^d = \frac{b^{d+1} - 1}{b - 1}$$

Iterative Deepening

In order to determine the number of nodes expanded by iterative deepening, we have to look at depth-first search.
What is the worst-case number of nodes expanded by depth-first search for a branching factor b and a maximum search level j?

$$N_{df} = 1 + b + b^2 + \ldots + b^j = \frac{b^{j+1} - 1}{b - 1}$$

Iterative Deepening

Therefore, the worst-case number of nodes expanded by iterative deepening from depth 0 to depth d is:

$$N_{id} = \sum_{j=0}^{d} \frac{b^{j+1} - 1}{b - 1}$$

$$= \frac{1}{b - 1} \left[\frac{b(b^d - 1)}{b - 1} - \sum_{j=0}^{d} 1 \right]$$

$$= \frac{1}{b - 1} \left[\frac{b^{d+1} - 1}{b - 1} - (d + 1) \right]$$

$$N_{id} = \frac{b^{d+2} - 2b - bd + d + 1}{(b - 1)^2}$$

Iterative Deepening

Let us now compare the numbers for breadth-first search and iterative deepening:

$$N_{bf} = 1 + b + b^2 + \ldots + b^d = \frac{b^{d+1} - 1}{b - 1}$$

$$N_{df} = \frac{b^{d+1} - 2b - bd + d + 1}{(b - 1)^2}$$

For large d, you see that N_{id}/N_{bf} approaches $b/(b - 1)$, which in turn approaches 1 for large b.
So for big trees (large b and d), iterative deepening does not expand many more nodes than does breadth-first search (about 11% for $b = 10$ and large d).