Question 1:

(a) Let \(f(x) = 1 \) if \(x \) is even, \(f(x) = 2 \) if \(x \) is odd. Show that \(f(x) \) is primitive recursive.

(b) Show that \(f(x) \) is partially computable by writing a program in language \(L \) that computes \(f(x) \). Do not use any macros but only the proper \(L \) commands. By the way, this will allow you to test your program using the Haskell code.

Question 2:

Let \(g(x) = 2x \) if \(x \) is a perfect square, \(g(x) = 2x + 1 \) otherwise. Show that \(g(x) \) is primitive recursive.

Question 3:

Let \(h(x) \) be the number of primes that are less than \(x \). Show that \(h(x) \) is primitive recursive.

Question 4:

Let \(k(x) \) be the integer \(n \) such that \(n \leq \sqrt{2x} \leq n + 1 \). Show that \(k(x) \) is primitive recursive.