Question 1: Using a Two-Dimensional Tape

Imagine a modified Post-Turing language, called 2D Post-Turing Language, which works on a two-dimensional tape, which extends infinitely in all directions. To do computations effectively, this language has two additional instructions: UP and DOWN.

Write a 2D Post-Turing program using the alphabet \(A = \{F\} \), so the only symbols it works with are \(F \) and the usual blank \(B \). The only thing your program does is to fill the entire two-dimensional tape with the symbol \(F \).

Since the tape is infinite, the best method for filling each and every square of it with the symbol \(F \) is to proceed on a spiral path:

```
<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
```

Here, the tapehead starts in the center and then replaces all Bs with Fs on a spiral path. This way, it will eventually reach any square on the tape and write an \(F \) into it. Since the tape is infinite, the program never terminates.

You can use macros if you provide the code defining them.
Question 2: The Turing Machine Competition!

Build a Turing machine on the alphabet $A = \{a, b\}$ that computes a function $f(x)$ strictly. $f(x)$ sorts the symbols in the input string in the order a, b. For example,

- $f(bba) = abb$
- $f(bbab) = abbb$
- $f(aabababb) = aaaaabbbb$
- $f(0) = 0$

Hint: The bubble sort algorithm may be the easiest one to implement as a Turing machine.

Write down the Turing machine in quadruple notation and as a state transition diagram. Also give the sequence of configurations during the computation of $f(aba)$.

Whoever builds the Turing machine with the fewest internal states that correctly computes f will get some bonus points!