The Programming Language \(\mathcal{L} \)

We will explore computability theory using an extremely simple programming language called \(\mathcal{L} \). Let us take a look at this language.

\(\mathcal{L} \) uses variables holding **numbers**. Throughout the course, ‘number’ will refer to a **nonnegative integer**. The variables named \(X_1, X_2, X_3, \ldots \) are the **input variables** of \(\mathcal{L} \), \(Y \) is the **output variable** of \(\mathcal{L} \), and \(Z_1, Z_2, Z_3, \ldots \) are the **local variables** of \(\mathcal{L} \).

We do not have to write the subscript 1, so instead of \(X_1 \) or \(Z_1 \) we can write \(X \) or \(Z \).

\(\mathcal{L} \) also includes **labels**. These labels are named \(A_1, B_1, C_1, D_1, E_1, A_2, B_2, C_2, D_2, E_2, \ldots \). Again, the subscript 1 can be omitted.

A program of \(\mathcal{L} \) consists of a list (a finite sequence) of instructions.

What do the instructions look like?

There are only three types of instructions in \(\mathcal{L} \):

- **increment**
- **decrement**
- **conditional branch**

In the following list of instructions, the letter \(V \) stands for any variable in the program, and \(L \) stands for a label:

\[
\begin{align*}
 V &\leftarrow V+1 \quad \text{increase by 1 the value of the variable } V \\
 V &\leftarrow V-1 \quad \text{If the value of } V \text{ is 0, leave it unchanged; otherwise decrease by 1 the value of the variable } V. \\
 \text{If } V=0 &\text{ GOTO } L \quad \text{If the value of } V \text{ is nonzero, perform the instruction with label } L \text{ next; otherwise proceed to the next instruction in the list.}
\end{align*}
\]

These are the only three instructions in our language \(\mathcal{L} \).

You will be surprised how powerful this extremely simple programming language is.

We just need two more conventions:

- The output variable \(Y \) and the local variables \(Z_i \) initially have the value 0.
- A program halts when it attempts to move to a nonexistent instruction (beyond the end of the list) or branch to a nonexistent label.

Note that we have an unlimited supply of variables and labels.

Moreover, there is no upper limit on the value that a variable can contain.

Therefore, the language \(\mathcal{L} \) is not a practical language, but it is well-suited for the theoretical evaluation of algorithms.
Sample Programs
Consider the following program:

[A] \(X \leftarrow X-1 \)
\(Y \leftarrow Y+1 \)
\(\text{IF } X \neq 0 \text{ GOTO A} \)

What function does this program compute?
\(f(x) = 1, \text{ if } x = 0 \)
\(= x, \text{ otherwise.} \)

What would we have to change if we wanted to compute the function \(f(x) = x \)?

Sample Programs
The following program computes \(f(x) = x \):

[A] \(\text{IF } X \neq 0 \text{ GOTO B} \)
\(Z \leftarrow Z+1 \)
\(\text{IF } Z \neq 0 \text{ GOTO E} \)

[B] \(X \leftarrow X-1 \)
\(Y \leftarrow Y+1 \)
\(\text{IF } X \neq 0 \text{ GOTO B} \)

Sample Programs
In the previous example, the lines
\(Z \leftarrow Z+1 \)
\(\text{IF } Z \neq 0 \text{ GOTO L} \)

were used to implement an instruction that we could call
\(\text{GOTO L} \)

First, we make sure that \(Z \) has a nonzero value, and then the conditional branch (actually, here it is an unconditional branch) is executed.

Sample Programs
From now on we will use the \textit{macro} GOTO L in our programs.

We know that we could always replace GOTO L with its \textit{macro expansion} to obtain a valid \(L \) program.

Now remember the program computing the function \(f(x) = x \).
Although it computes its output correctly, it deletes (sets to zero) the original input.
This is an undesirable behavior, so we should come up with an improved program.

Sample Programs
The previous program justifies the introduction of a \textit{macro}
\(V \leftarrow V' \)

The execution of this macro will replace the contents of variable \(V \) by those of variable \(V' \) without changing the contents of \(V' \).

However, there is one problem:
The previous program could rely on the initial condition \(Y = 0 \), which is not guaranteed for any variable \(V \).
Sample Programs
To solve this problem, we introduce the macro
V ← 0
Its macro expansion is:
[L] V ← V - 1
IF V ≠ 0 GOTO L
Of course, the label L has to be chosen to be different
from any other label in the program.
Now we can write down the macro expansion of
V ← V':

Sample Programs
V ← 0
[A] IF V' ≠ 0 GOTO B
GOTO C
[B] V' ← V' - 1
V ← V' + 1
Z ← Z + 1
GOTO A
[C] IF Z ≠ 0 GOTO D
GOTO E
[D] Z ← Z - 1
V' ← V' + 1
GOTO C

Another example: f(x1, x2) = x1 + x2

Y ← X1
Z ← X2
[B] IF Z ≠ 0 GOTO A
GOTO E
[A] Z ← Z - 1
Y ← Y + 1
GOTO B

The Syntax of \(\mathcal{L} \)
We will now develop a precise mathematical
description of the programming language \(\mathcal{L} \).
The symbols
X1, X2, X3, ...
are called input variables,
Z1, Z2, Z3, ...
are called local variables,
and Y is called the output variable of \(\mathcal{L} \).

The Syntax of \(\mathcal{L} \)
A statement is one of the following:
V ← V + 1
V ← V - 1
V ← V
IF V ≠ 0 GOTO L
Here, V may be any variable and L may be any label.
Note that the statement V ← V leaves all values unchanged, so it is a "dummy" command.
We will later see why it is useful to have V ← V in our set of statements.
The Syntax of L

An instruction is either
- a statement (unlabeled instruction) or
- $[L]$ followed by a statement (instruction labeled L)

A program is a list (i.e., a finite sequence) of instructions.
The length of this list is called the length of the program.
We also include the empty program — the program of length 0 — in the set of all programs.

While a program is being executed, its variables assume different numerical values.
This motivates the concept of the state of a program:
A state of a program φ is a list of equations of the form
$V = m$,
where V is a variable and m is a number, including exactly one equation for each variable that occurs in φ (and possibly equations for other variables).

Consider the following program φ:

[A] IF X = 0 GOTO B
Z ← Z + 1
IF Z = 0 GOTO E

[B] X ← X - 1
Y ← Y + 1
Z ← Z + 1
IF Z = 0 GOTO A

Is the list $X = 4, Y = 3, Z = 3$ a state of φ?
Yes.

How about $X_1 = 4, X_2 = 5, Y = 4, Z = 4$?
Yes.

And $X = 3, Z = 3$?
No.

Let σ be a state of φ and let V be a variable that occurs in σ.
The value of V at σ is then the unique number q such that the equation $V = q$ is one of the equations in σ.

For example, the value of X at the state $X = 4, Y = 3, Z = 3$ is 4.

Therefore, we define a snapshot or instantaneous description of a program φ of length n to be a pair (i, σ) where $1 \leq i \leq (n + 1)$, and σ is a state of φ.

The number i indicates the number of the instruction that is to be executed next.
$i = n + 1$ corresponds to a "stop" instruction.
A snapshot (i, σ) of a program φ of length n is called terminal if $i = n + 1$.
If $s = (i, \sigma)$ is a snapshot of φ and V is a variable of φ, then the value of V at s just means the value of V at σ.
The Syntax of \mathcal{L}

If (i, σ) is a nonterminal snapshot of P, we define the successor of (i, σ) to be the snapshot (j, τ) defined as follows:

Case 1:
The i-th instruction of P is $V \leftarrow V+1$ and σ contains the equation $V = m$.
Then $j = i + 1$ and τ is obtained from σ by replacing the equation $V = m$ with $V = m + 1$ (the value of V at τ is $m + 1$).

Case 2:
The i-th instruction of P is $V \leftarrow V - 1$ and σ contains the equation $V = m$.
Then $j = i + 1$ and τ is obtained from σ by replacing the equation $V = m$ with $V = m - 1$ if $m \neq 0$. If $m = 0$, then $\tau = \sigma$.

Case 3:
The i-th instruction of P is $V \leftarrow V$.
Then $j = i + 1$ and $\tau = \sigma$.

Case 4:
The i-th instruction of P is IF $V = 0$ GOTO L.
Then $\tau = \sigma$ and there are two subcases:

Case 4a:
σ contains the equation $V = 0$.
Then $j = i + 1$.

Case 4b:
σ contains the equation $V = m$ where $m \neq 0$.
Then, if there is an instruction of P labeled L, j is the least number such that the j-th instruction of P is labeled L. Otherwise, $j = n + 1$.

A computation of a program P is defined to be a sequence s_1, s_2, \ldots, s_k of snapshots of P such that s_{i+1} is the successor of s_i for $i = 1, 2, \ldots, k - 1$ and s_k is terminal.