Recursively Enumerable Sets

Definition: The set \(B \subseteq \mathbb{N} \) is called recursively enumerable if there is a partially computable function \(g(x) \) such that
\[
B = \{ x \in \mathbb{N} \mid g(x) \downarrow \}.
\]
The term recursively enumerable is abbreviated r.e.

A set is r.e. just when it is the domain of a partially computable function.

If \(\varphi \) is a program that computes the function \(g \) (see above), then \(B \) is simply the set of all inputs to \(\varphi \) for which \(\varphi \) eventually halts.

Recursively Enumerable Sets

Theorem 4.3: If \(B \) is a recursive set, then \(B \) is r.e.
Proof: Consider the following program \(\varphi \):
\[
[A] \quad \text{IF } \neg (X \in B) \text{ GOTO A}
\]
Since \(B \) is recursive, the predicate \(X \in B \) is computable and \(\varphi \) can be expanded to a program of \(\mathcal{L} \).

Let \(\varphi \) compute the function \(h(x) \). Then, clearly,
\[
B = \{ x \in \mathbb{N} \mid h(x) \downarrow \}.
\]

Recursively Enumerable Sets

Theorem 4.4: The set \(B \) is recursive if and only if \(B \) and \(\neg B \) are both r.e.
Proof: If \(B \) is recursive, then by Theorem 4.1 so is \(\neg B \), and hence by Theorem 4.3, they are both r.e.

Conversely, if \(B \) and \(\neg B \) are both r.e., we may write
\[
B = \{ x \in \mathbb{N} \mid g(x) \downarrow \},
\]
\[
\neg B = \{ x \in \mathbb{N} \mid h(x) \downarrow \},
\]
where \(g \) and \(h \) are both partially computable.

Recursively Enumerable Sets

If we think of \(\varphi \) as providing an algorithm for testing for membership in \(B \), we see that
- if a number belongs to \(B \), the algorithm will provide a positive answer,
- if a number does not belong to \(B \), the algorithm will never terminate.

Such algorithms are called semi-decision procedures.
They can be considered an “approximation” to solving the problem of testing membership in \(B \).

Recursively Enumerable Sets

Now let \(g \) be computed by program \(\varphi \) and \(h \) be computed by program \(\psi \), and let \(p = \#(\varphi) \) and \(q = \#(\psi) \).

Then the following program computes \(B \):
\[
[A] \quad \text{IF STP}(p)(X, p, T) \text{ GOTO C}
\]
\[
\text{IF STP}(q)(X, q, T) \text{ GOTO E}
\]
\[
T \leftarrow T+1
\]
\[
\text{GOTO A}
\]
\[
[C] \quad Y \leftarrow 1
\]

Recursively Enumerable Sets

Definition: We write:
\[W_n = \{ x \in \mathbb{N} \mid \Phi(x, n) \downarrow \} \]

Theorem 4.6 (Enumeration Theorem):
A set \(B \) is r.e. if and only if there is an \(n \) for which
\[B = W_n. \]
This is an immediate consequence of the definition of \(\Phi(x, n) \).
The theorem gets its name from the fact that the sequence \(W_0, W_1, W_2, \ldots \) is an enumeration of all r.e. sets.

Recursively Enumerable Sets

We further define:
\[K = \{ n \in \mathbb{N} \mid n \in W_n \} \]
Then
\[n \in W_n \iff \Phi(n, n) \downarrow \iff \text{HALT}(n, n). \]
\(K \) is the set of all numbers \(n \) such that program number \(n \) eventually halts on input \(n \).

Theorem 4.7:
\(K \) is r.e. but not recursive.

Proof:
Since \(K = \{ n \in \mathbb{N} \mid \Phi(n, n) \downarrow \} \), and by the universality theorem (Theorem 3.1), \(\Phi(n, n) \) is partially computable, \(K \) is obviously r.e.
If \(K \) were recursive, then \(\neg K \) would be r.e.
If that were the case, then by the enumeration theorem there would have to be some number \(i \) so that \(\neg K = W_i \).
But then:
\[i \in K \]
\[\iff i \in W_i \]
\[\iff i \in \neg K. \]
Contradiction!

Recursively Enumerable Sets

Theorem 4.8:
Let \(B \) be an r.e. set. Then there is a primitive recursive predicate \(R(x, t) \) such that \(B = \{ x \in \mathbb{N} \mid (\exists t) R(x, t) \} \).
Proof:
Let \(B = W_n \). Then
\[B = \{ x \in \mathbb{N} \mid (\exists t) \text{STP}^{(1)}(x, n, t) \}, \]
and \(\text{STP}^{(1)} \) is primitive recursive by Theorem 3.2.

Recursively Enumerable Sets

Theorem 4.9:
Let \(S \) be a nonempty r.e. set. Then there is a primitive recursive function \(f(u) \) such that \(S = \{ f(n) \mid n \in \mathbb{N} \} \)
\[= \{ f(0), f(1), f(2), \ldots \}. \] In other words, \(S \) is the range of \(f \).

Theorem 4.10:
Let \(f(x) \) be a partially computable function, and let
\[S = \{ f(x) \mid f(x) \downarrow \} \] (so \(S \) is the range of \(f \)).
Then \(S \) is r.e.
If we combine Theorems 4.9 and 4.10, we get:

Recursively Enumerable Sets

Theorem 4.11:
Consider a set \(S \neq \emptyset \). The following statements are all equivalent:
1. \(S \) is r.e.;
2. \(S \) is the range of a primitive recursive function;
3. \(S \) is the range of a recursive function;
4. \(S \) is the range of a partial recursive function.
This theorem motivates the term \textit{recursively enumerable}.
A nonempty r.e. set is enumerated by a recursive function.
The Parameter Theorem

The parameter theorem is also called iteration theorem and s-m-n theorem.

It is important to the theory of computation as it relates the functions $\Phi^{(n)}(x_1, \ldots, x_n, y)$ for different values of n.

Theorem 5.1 (Parameter Theorem):
For each n, $m > 0$ there is a primitive recursive function $S_m^n(u_1, \ldots, u_n, y)$ such that

$$\Phi^{(m + n)}(x_1, \ldots, x_m, u_1, \ldots, u_n, y) = \Phi^{(m)}(x_1, \ldots, x_m, S_m^n(u_1, \ldots, u_n, y)).$$

Suppose that the values for u_1, \ldots, u_n, and y are fixed. Then the left side of the equation is a partially computable function of the m arguments x_1, \ldots, x_m.

Let the number of the program that computes this function be q. Then we have:

$$\Phi^{(m + n)}(x_1, \ldots, x_m, u_1, \ldots, u_n, y) = \Phi^{(m)}(x_1, \ldots, x_m, q).$$

The parameter theorem tells us that there exists such a q that can be obtained from u_1, \ldots, u_n, and y by a primitive recursive function.

Let us take a look at the case $n = 1$:

$$\Phi^{(m + 1)}(x_1, \ldots, x_m, u, y) = \Phi^{(m)}(x_1, \ldots, x_m, S_m^1(u, y)).$$

Here, $S_m^1(u, y)$ is the number of a program that receives inputs x_1, \ldots, x_m and computes the same value as program number y does on inputs x_1, \ldots, x_m, and u.

We can easily obtain $S_m^1(u, y)$ by writing the instruction $X_{m+1} \leftarrow u$ and then appending the program with number y.

This works similarly for any given n, which can be proven by mathematical induction (see page 86 in the textbook).