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Abstract

In this paper, we propose an affine parameter estimation algorithm from block motion vectors for extracting accurate motion information with

the assumption that the undergoing motion can be characterized by an affine model. The motion may be caused either by a moving camera or a

moving object. The proposed method first extracts motion vectors from a sequence of images by using size-variable block matching and then

processes them by adaptive robust estimation to estimate affine parameters. Typically, a robust estimation filters out outliers (velocity vectors that

do not fit into the model) by fitting velocity vectors to a predefined model. To filter out potential outliers, our adaptive robust estimation defines a

continuous weight function based on a Sigmoid function. During the estimation process, we tune the Sigmoid function gradually to its hard-limit

as the errors between the model and input data are decreased, so that we can effectively separate non-outliers from outliers with the help of the

finally tuned hard-limit form of the weight function. Experimental results show that the suggested approach is very effective in estimating affine

parameters reliably.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Along with the progress of image processing and multi-

media technologies, there has been much interest in the areas of

analyzing dynamic images and estimating motion information

over the last few years. In particular, estimating affine model

parameters from block motion vectors is a fundamental and

important research topic since we may presume that a camera

motion or moving target can be represented as a parametric

model [1]. Such an approach is often used in many applications

like image panorama composition, model-based video coding,

moving object tracking, and camera calibration [2–5]. We can

find various types of methods for this topic in related literature.

Among these, the robust estimation approach based on the

outlier rejection scheme provides very promising results [1].

In general, the robust estimation method is well known for a

good statistical estimator that is insensitive to small departures

from the idealized assumptions for which the estimation is
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optimized [6]. It requires a merit function that measures the

agreement between the input data (velocity vectors) and the

model with a particular choice of parameters. The merit

function is conventionally arranged so that small values

represent close agreement. The parameters of the model are

then adjusted to achieve the minimum in the merit function.

The adjustment process is thus a problem of minimizing the

residual error with respect to model parameters by filtering out

suspected outliers in input data.

A common approach to multi-dimensional minimization

problems is the Levenberg–Marquardt method [7]. This

method works well in practice and has become the standard

of nonlinear least-square data fitting. This is a continuous

optimization method that offers a powerful compromise

between the steepest gradient method and the inverse-Hessian

method. It uses the latter method when the process is far from

the minimum. It switches continuously to the former as the

minimum is approached. However, the Levenberg–Marquardt

method does not improve global convergence capabilities if it

is not controlled effectively [8]. In a practical environment, we

also noticed that the existing robust estimation method uses a

binary weight function called a threshold even in the initial

steps of the minimization process. In those steps, it is very

difficult to separate non-outliers (velocity vectors of concern)
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Fig. 1. Overall flow of our method.

Table 1

Sign of evaluation function

F(i,j;n) TH(i,j;n)

THO0 THZ0 TH!0

GD(i,j;n) GDO0 C C K

GDZ0 K K K

GD!0 K K K
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from outliers (velocity vectors out of concern) based on a

threshold since model parameters have not been fitted yet.

Thus, the parameters could be updated incorrectly. In addition,

the estimation method generates a new binary weight function

in every iteration, discarding the previous one. This can cause

oscillations of weights because the method discards the

correlation between the two weight functions.

To deal with these limitations, this paper proposes affine

model parameter estimation using adaptive robust estimation.

The proposed method first extracts motion vectors from a

sequence of images by using size-variable block matching and

then processes them by adaptive robust estimation to estimate

affine parameters. Typically, a robust estimation filters out

outliers by fitting velocity vectors to a predefined model. To

filter out potential outliers, our adaptive robust estimation

defines a continuous weight function based on a Sigmoid

function. During the estimation process, we tune the Sigmoid

function gradually to its hard-limit as the errors between
Fig. 2. Overall flow of size-variable block matching.
the model and input data are decreased, so that we can

effectively separate non-outliers from outliers with the help of

the finally tuned hard-limit form of the weight function. Fig. 1

shows the overall procedure of our method.

Our algorithm has two main modules: a block matching

module and an adaptive robust estimation module. The block-

matching module extracts motion vectors from consecutive

input images. We introduce a size-variable block-matching

algorithm, which dynamically determines the search area
Fig. 3. Relationship between nopt and DT.



Fig. 4. Relationship between nopt and GD.
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and the size of a block. We first exploit the constraint of small

velocity changes of a block in the course of time to determine

the origin of the search area. The range of the search area is

then adjusted according to the motion coherence of spatially

neighboring blocks. The process of determining the size of a

block begins matching with a small block. If the matching

degree is not good enough, we expand the size of a block a little

bit and then repeat the matching process until our matching

criterion is satisfied or the predetermined maximum size has

been reached. The adaptive robust estimation module filters out

the extracted block motion vectors with an estimation model.

We define the estimation model to be fitted based on the affine

model. The model is used to eliminate outliers when analyzing

statistical distribution of input data. Nonlinear least-square data

fitting is then performed with only non-outliers and the affine

parameters are adjusted based on the fitting in turn. Therefore,

it prevents the model parameters from falling into a false

saturation point.
Fig. 5. Pseudo-code for size-
The organization of this paper is as follows. Section 2

presents a technique to extract block motion vectors from a

sequence of images by using size-variable block matching.

Section 3 presents a technique to filter out block motion vectors

by using the adaptive robust estimation. In Section 4, we

present some experimental results to show that the suggested

approach can work as a promising solution, and give some

conclusions in Section 5.
2. Extraction of motion vectors

Block matching techniques have been extensively used for

motion vector estimation. In this technique, a present frame is

divided into rectangular or square blocks of pixels. The process

of block matching is to find a candidate block, within a search

area in the previous frame, which is most similar to the current

block in the present frame, according to a predetermined

criterion. Many block-matching techniques have been

developed and evaluated in the literature [9–11]. Many

block-matching techniques are concerned on how to define a

search area where a candidate block is looked for. Some

examples are the full search (FS) algorithm [9], the three-step

search (TSS) algorithm [10], and the four-step search (FSS)

algorithm [11].

The full search block matching exhaustively examines all

locations of the search window in the previous frame and

provides the good solution. The three-step search algorithm

uses a uniformly allocated checking point pattern and is the

most popular one for low bit-rate video application because of

its simplicity and effectiveness, but it is not very efficient to

catch small motions appearing in stationary and quasi-

stationary blocks. The four-step search algorithm utilizes a

center-biased search pattern with nine checking points on a 5!
variable block matching.



Fig. 6. sig (x; aZ0.5; cZ50).
Fig. 8. Tuning of the parameter ak.
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5 window, and a halfway-stop technique is employed with

searching steps of 2–4 for fast block motion estimation.

On the other hand, the proper selection of block size is

another important criterion that determines the quality of the

resulting motion vectors. Generally, larger blocks are suitable

for rough but robust estimation. While smaller blocks are

suitable for localizing the estimation, they are susceptive to

noise. We introduce a size-variable block-matching algorithm,

which dynamically determines the search area and the size of a

block. Fig. 2 shows the overall flow of our size-variable block-

matching algorithm. With a current size of a block, a matching

degree is computed for each candidate block in a search area.

The evaluation function (EF) determines the appropriateness of

the size of a block based on the matching degrees. If the

function has a positive value, it means that we need to enlarge

the size of a block. Otherwise, the current size of a block is

taken as a proper one and the best match is chosen to compute a

corresponding motion vector.

In order to define the search area, we presume that the

motion vector of a block is likely to be similar to the motion

vector of one of its neighboring blocks. We also presume that
Fig. 7. Tuning of the parameter ck.
the motion of a block does not change rapidly along a relatively

small time interval. We therefore use, as the origin of a search

area, the location in the previous frame, which points to the

current block by its motion vector. The range of the search area

is adjusted according to the motion coherence of spatially

neighboring blocks. We take advantage of the inter-block

motion correlation to adaptively determine the size of a search

area. We do not describe how to determine the search area any

further since it is not our main concern. There are more

details in [12].

Given a block of size n!n, the block motion estimation

looks for the best matching block within a search area. One can

consider various criteria as a measure of the match between

two blocks [14]. In this paper, we define the displaced block

similarity (DBS) as a matching degree between two blocks as

in (1). In (1), n denotes the size of a block, (i,j) denotes the

starting position of a current block in a present image, and (u,v)

denotes the corresponding disparity between two blocks. In and

InK1 denote the present frame and the previous frame,

respectively. Imax denotes the maximum of the intensity

value, 255. The displaced block similarity has values between

0 and 100.

DBSði; j; u; v; n; tÞ

Z 1K
1

n2

XnK1

yZ0

XnK1

xZ0

Itði Cx; j CyÞKItK1ði Cu Cx; j Cv CyÞ

Imax

����
����

 !

!100

(1)

Our size-variable block-matching algorithm employs an

evaluation function that examines matching degrees of

candidate blocks to determine the appropriateness of the size

of a block. This function is designed with the following

considerations. First, we consider the distinctiveness of the best

match. When the degree of the best match is considerably

higher than those of its neighbor candidates, we say that the

match is distinctive and the corresponding size of a block is

proper. However, if the degree of the best match is close to

those of its neighbor candidates, it may reflect that candidate



Fig. 9. Pseudo-code for robust estimation.
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blocks are within a somewhat large area of a homogeneous

region. We then suspect the inappropriateness of the size of a

block and try to expand it. The second consideration is when to

stop expanding the size. We take a simple criterion such that

expanding stops when the distinctiveness of the best match

does not improve any further even if we expand the size.

In order to formalize the above idea in the form of an

equation, we define the evaluation function F(i,j;n) as in (2). In

(2), (i*,j*; n) is the position where the best match occurs for the

block at (i,j) of the size of n. We denote as DT(i,j;n) the

distinctiveness of the best match, which is the minimal

difference between matching degrees of the best match and

its neighbor candidates. GD(i,j;n) denotes the gradient of the

distinctiveness with respect to size, which is computed by

subtracting the distinctiveness evaluated at size of nK1 from
Fig. 10. Pseudo-code for ada
the distinctiveness evaluated at size of n. max[e1CTH(i,j;n),

e2CGD(i,j;n)] means the greater one between e1CTH(i,j;n)

and e2CGD(i,j;n). TPK denotes a predetermined threshold

value, and e1, and e2 are infinitesimal positive and negative

values, respectively.

Fði; j; nÞ Z max
e1 CTHði; j; nÞ

e2 CGDði; j; nÞ

" #
!

e1 CTHði; j; nÞ

e2 CGDði; j; nÞ
(2)

THði; j; nÞ Z TPK KDTði; j; nÞ

GDði; j; nÞ Z DTði; j; nÞKDTði; j; nK1Þ

DTði; j; nÞ Z min
K1%l;m%1

½DBSði�; j�; nÞKDBSði C l; j Cm; nÞ�
ptive robust estimation.



Fig. 11. Test images with various camera operations.

Fig. 12. Estimated motion vectors (zooming).
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Fig. 13. Estimated motion vectors (rotation).

Fig. 14. Estimated motion vectors (various camera operations).
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The evaluation function F(i,j;n) is constructed in such a way

that it has a positive value only when the distinctiveness of the

best match is not greater than the threshold of Tpk and the

gradient of the distinctiveness is positive. Table 1 summarizes
Fig. 16. Filtered m
how the sign of the evaluation function is determined

depending on signs of TH and GD.

Fig. 3 shows the relationship between the optimal size

of a block, nopt, and the value of DT, and Fig. 4 shows the
otion vectors.



Fig. 17. Accumulated residual error.
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relationship between nopt and the value of GD. As shown

in Figs. 3 and 4, we can note that the optimal size of a

block is obtained when the distinctiveness of the best

match is highest. Furthermore, the gradient of the

distinctiveness reaches 0 at that point. Fig. 5 summarized

our size-variable block-matching algorithm in the form of

a pseudo-code. We start with a global search area that is

large enough, and we reduce the search area.

The FSBMA and the proposed block matching method can

work similar since our method is basically based on the

FSBMA method, but not exactly the same. Actually, our block

matching works similar to the coarse-to-fine full search block

matching approach, but it has the following difference. The

coarse-to-fine approach performs motion estimation at each

level successively, from the coarsest level to the finest level, so

the time complexity is very high. On the other hand, the

suggested block matching employs an evaluation function that

examines matching degrees of candidate blocks to determine

the appropriateness of the size of a block. With the help of the

proposed evaluation function, our method repeats the matching

process only while the matching degree is appropriate. That is,
the proposed method stops block matching when the

distinctiveness of the best match does not improve any further

even if we expand the size of the block. By using this strategy,

our method reduces the time complexity.
3. Estimation of affine parameters

We process extracted motion vectors by adaptive robust

estimation to filter out them and estimate affine parameters.

The robust estimation method is one of the most popular

techniques in statistical estimation since it provides an

optimal estimation by eliminating outliers of input data [6].

While there are many existing robust estimation techniques

that have been proposed in the literature, two main techniques

used in computer vision are M-estimators and least median of

squares (LMS) [15]. Among these, we used the M-estimators

since they are known to provide an optimal estimation of

affine motion parameters. The M-estimators are generaliz-

ations of maximum likelihood estimations (MLEs) and least

squares. The M-estimators have higher statistical efficiency

but tolerate much lower percentages of outliers unless

properly initialized. It also uses a binary weight function to

separate non-outliers and outliers even in the initial steps of

the minimization process. However, it is very hard to do that

since the affine parameters have not fitted yet in those steps,

so that it causes the estimation result to be unreliable. Our

adaptive robust estimation is intended to solve the above

problems.

The proposed adaptive robust estimation addresses the

problem of detecting outliers [5]. Outliers are mainly due to

local moving objects out of concern or the unsatisfactory

correspondence between some feature points of image

sequences. They can seriously degrade the estimation

accuracy if we do not discard them during the estimation

process. Therefore, they should be properly eliminated for a

good estimation of affine parameters. We assume that

the motion of concern is represented with an affine model

as in (3).

ŷðx; y; aÞ Z
uðx; yÞ

vðx; yÞ

" #
Z

a11 a12

a21 a22

� �
x

y

� �
C

a13

a23

� �
(3)

where a denotes affine parameters, and u(x,y) and v(x,y)

denote the horizontal and vertical components of a motion

vector of a block at (x,y). As a result of block matching, we

get a disparity vector at each block, {(xi,yi) and ðx0i; y
0
iÞ}, iZ

1,2,.,N, where N is the number of blocks. (xi,yi) and ðx0i; y
0
iÞ

denote the positions of a matching pair of blocks in two

successive images. We also assume that the zero-mean white

Gaussian noise is added to velocity vectors. Then, the least-

square estimator is optimal in the sense of maximum

likelihood. The c2 merit function based on our estimation

model is defined as in (4).



Table 2

Estimated affine model parameters

Motion vectors Estimated affine model parameters

Fig. 15(b) a11 a12 a13 a21 a22 a23

Actual Values Values C1.0500 G0.0000 G0.0000 G0.0000 C1.0500 G0.0000

Error G0.0000 G0.0000 G0.0000 G0.0000 G0.0000 G0.0000

Robustestimation Values C0.9088 C0.0848 C0.2120 G0.0000 C0.9992 K0.0050

Error K0.1412 C0.0848 C0.2120 G0.0000 K0.0508 K0.0050

Proposedestimation Values C1.0421 C0.0001 C0.0459 K0.0006 C1.0481 C0.0645

Error K0.0079 C0.0001 C0.0459 K0.0006 K0.0019 C0.0645

Fig. 15(d) a11 a12 a13 a21 a22 a23

Actualvalues Values C0.9993 C0.0348 G0.0000 K0.0348 C0.9993 G0.0000

Error G0.0000 G0.0000 G0.0000 G0.0000 G0.0000 G0.0000

Robustestimation Values C0.9061 C0.0054 K0.3704 K0.0218 C0.9955 K0.0072

Error K0.0932 K0.0294 K0.3704 C0.0130 K0.0038 K0.0072

Proposedestimation Values C0.9992 C0.0352 K0.0009 K0.0355 C0.9998 C0.0432

Error K0.0001 G0.0004 K0.0009 K0.0007 G0.0005 C0.0432

Fig. 15(f) a11 a12 a13 a21 a22 a23

Actualvalues Values C1.0492 C0.0365 K2.0000 K0.0365 C1.0492 C2.0000

Error G0.0000 G0.0000 G0.0000 G0.0000 G0.0000 G0.0000

Robustestimation Values C0.8586 G0.0007 K0.4352 C0.0435 C0.9982 C0.4983

Error K0.1906 K0.0358 C1.5648 C0.0800 K0.0510 K1.5017

Proposedestimation Values C1.0361 C0.0298 K1.4371 K0.0268 C1.0396 C1.4237

Error K0.0131 K0.0067 C0.5629 C0.0097 K0.0096 K0.5763
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c2ðaÞ Z
XN

iZ1

wi

y0i Kŷðxi; yi; aÞ

si

� �2

Z
XN

iZ1

wi

ðx0i Kx̂iðxi; yi; aÞÞ
2

s2
xi

C
ðy0i Kŷiðxi; yi; aÞÞ

2

s2
yi

� �

Z
XN

iZ1

wijjrijj (4)
where wi denotes a weight factor, (sxi,syi) denotes the

standard deviation of input data (velocity vectors), x̂iðxi; yi; aÞ

and ŷiðxi; yi; aÞ denote x and y components, respectively, of

the new image coordinates obtained by transforming (xi,yi)

according to the affine parameters a [5]. We want to obtain

parameters that could minimize the merit function of (4).

Since the problem is nonlinear, we solve it numerically by

using the Levenberg–Marquardt method [6].

Our adaptive robust estimation focuses on rejecting outliers

since the outliers may lead to undesirable results of estimation.

We assign a weight to each input datum. The weight represents

how likely the corresponding input is a non-outlier. The weight

is to be adjusted as the iteration proceeds, and eventually has a

binary value when the minimization process saturates. The

weight function is defined based on a Sigmoid function. The

Sigmoid function is set roughly when the iteration begins. As

the iteration proceeds and the errors between the model and

input data is minimized, the function is tuned towards its hard-

limit. The function is finally tuned to its hard-limit when the

affine parameters sufficiently converge. With the help of the

hard-limit, we can nicely separate non-outliers from outliers.

(5) represents our continuous weight function.
Wk Z ðwk
1;w

k
2;.;wk

j ;.;wk
NÞ (5)

wk
j Z a$wkK1

j Cbð1KSigkðx Z j; ak; ckÞÞ

Sigkðx; ak; ckÞ Z
1

1 CeKakðxKckÞ

where

0%a;b%1; a Cb Z 1

In (5), Wk denotes the weight vector that is assigned to input

data in the kth iteration, and wk
j denotes the weight of the jth

input datum. It is designed to have a value between 0 and 1. If

an input datum has a weight value close to 1, it has a high

possibility of being a non-outlier. On the other hand, if it has a

weight value close to 0, it has a high possibility of being an

outlier. The a and b are control factors that specify the

importance of related terms. In the Sigmoid function

Sigk(x;ak,ck), x denotes the input variable, ck denotes a bias,

and ak denotes the gradient of the position where x equals to c.

For example, Fig. 6 shows a Sigmoid function with aZ0.5 and

cZ50.

Although (5) has a similar form with the delta rule of neural

computing, it is not the delta rule. The second term of (5) is to

calculate the current weight by considering the form of the

accumulated residual error graph, not the term representing the

difference between the target output and the real output in

neural computing. In other words, a works as the velocity of

convergence in neural computing, but b does not operate as the

learning rate.

Our adaptive robust estimation is defined to take into

consideration the weights of previous iterations when it

computes the weight of the present iteration. It also tunes



Fig. 18. Motion vector filtering with the image of ‘table tennis’.
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the Sigmoid weight function to its hard-limit. For this

purpose, we tune the parameters ck and ak of the Sigmoid

weight function in a recursive manner. The parameters ck and

ak determine the center position of the Sigmoid function and

the slope of the function at that position, respectively. The

principle of tuning parameters is based on the following

observation. If we list the residual errors of input data in an

ascending order, the accumulated residual errors begin to

increase abruptly at some value as depicted in Fig. 7. Hence

we claim that the input data whose residual errors are greater

than the determined value are highly likely to be outliers. In

Fig. 7, the horizontal axis denotes the residual errors of input

data that are sorted by the corresponding residual errors, and

the vertical axis denotes the accumulated residual errors. We

therefore adjust the parameter ck of the Sigmoid function at

the kth iteration, so that it corresponds to the bending

position of the graph of the accumulated residual error. In

other words, we extract the x coordinate of the graph that

corresponds to the steepest gradient. In order to find the

bending position, we generate a straight line which connects

the starting point Ek(1) and the ending point Ek(N) of the

graph and then obtain the position that is most distant from

this line.

In order to formalize the above idea in the form of an

equation, we define the parameter ck as in (6). In (6), Ek(j)

denotes an accumulated residual error, and Dj denotes the

distance between the graph of an accumulated residual error

and the line connecting Ek(1) and Ek(N). The g and d are weight

factors that control the importance of the previous parameter

ckK1 and the current parameter ck.
ck Z g$ckK1 Cd$ arg
j

max
1%j%N

fDjg (6)

Dj Z

EkðNÞKEkð1Þ
NK1

jKEkðjÞC N$Ekð1ÞK1$EkðNÞ
NK1

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EkðNÞKEkð1Þ

NK1


 �2

C ðK1Þ2

r

EkðjÞ Z
Xj

lZ1

wkK1
l jjrk

l jj

As for the parameter ak, we compute the accumulated

residual error at the bending position and then get the ratio of

the computed value against the overall accumulated residual

error as in Fig. 8. In order to formalize the above idea in the

form of an equation, we compute the parameter ak as in (7),

where Ek(c) denotes the accumulated residual error at the

bending position c and Ek(N) denotes the overall residual

error. As can be noted in (7), the value of parameter ak

becomes large as the iteration is repeated and it eventually

induces the hard-limit. Also, the value of akK1 plays the role

of accelerating the updating process and stabilizing the

result.

ak Z akK1 !

EkK1ðcÞ
EkK1ðNÞ

EkðcÞ
EkðNÞ

(7)

Our outlier rejection algorithm is inserted in the iteration

loop of the Levenberg–Marquart method. Figs. 9 and 10

show the overall pseudo-codes of the robust estimation and
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our adaptive robust estimation, respectively. In the adaptive

robust estimation, when the affine parameters sufficiently

converge, the iteration stops and the weight function has the

form of its hard-limit. With the help of the hard-limited

weight function, we can finally eliminate outliers of input

data corresponding to motion vectors out of our concern. As

can be noticed in the pseudo-codes, the proposed robust

estimation has similar algorithm complexity to the robust

estimation.
4. Experimental results

This section presents some experimental results that

illustrate operational characteristics of the proposed method.

We evaluate the performance of the proposed size-variable

block matching algorithm and the adaptive robust estimation

of affine parameters in terms of the accuracy of resulting

motion vectors. Fig. 11 shows four frames selected in a

sequence of test images. They are captured in an indoor

environment. Fig. 11 (a) is a base frame. Fig. 11 (b) and (c)

are captured with such camera operations as the zooming by

1.05 magnification per frame and the rotation by two degrees

per frame in a clockwise direction, respectively. Fig. 11 (d)

is captured in a quite complex situation where it includes

camera operations as the rotation by two degrees per frame

in a clockwise direction, translation by two pixels per frame

in a southeast direction, and zooming by 1.05 magnification

per frame. In other words, camera operations included in

Fig. 11 (b)–(d) can be expressed as (8)–(10) using affine

parameters.
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To compare the performance of our size-variable block

matching approach with those of other approaches, we also

implemented the full search method, the three-step search

method, and the four-step search method [9–11]. Fig. 12

depicts motion vectors extracted from Fig. 11(a) and (b) by

using these methods. Ideally, the motion vectors should

diverge out in a form of radiation whose origin is the center

of the image. We can clearly see that our approach

outperforms others.
th the image of ‘Terminator’.
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Similar results for Fig. 11(c) and (d) are given in Figs. 13

and 14. Ideally, the motion vectors should rotate around the

center of the image in Fig. 13 and diverge out in a form of spiral

whose origin is a couple of pixels off to a southeast direction in

Fig. 14, respectively. As we may notice, all the methods may

obtain accurate results in the area where the intensity difference

is distinctive. However, in areas where edge features and line

features are overwhelming, our method shows superior results.

It is confirmed that the corresponding size of a block is

expanded in those areas.

Furthermore, as the input image includes more complex

camera operations, our method shows better results. To

evaluate the performance quantitatively, we define the error

measure as in (11), which reflects the cross-correlation

between an actual motion vector and an estimated motion

vector [16]. In (11), denotes Vc
i denotes an actual motion vector

and Vc
i denotes an estimated motion vector.
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Fig. 15 depicts the computed errors for Figs. 12–14. Our

approach shows the best results, while the four-step search

method gets the poorest results. The performance of the three-

step search method is nearly the same as for the four-step

search method.

As can be noticed in [13], TSS and FSS algorithms are very

simple and effective, but becomes inefficient for the estimation

of small motions. The full search method requires (2WC1)2

matching supposing that the maximum motion in vertical and

horizontal directions is GW. That is, it needs to check all

search points in its search window. The proposed size-variable

block matching is basically based on the full search method. If

the matching degree is not good enough, we expand the size of

a block a little bit and then repeat the matching process until

our matching criterion is satisfied. Therefore, the proposed

algorithm requires more computational overhead than the full

search method.

We do not discuss the algorithm complexity of the existing

block matching algorithms against the proposed algorithm in

detail, since the main goal of this paper is to estimate accurate

affine motion model parameters by using the proposed adaptive

robust estimation, not to focus on the development of the size-

variable block-matching algorithm. In other words, motion

vectors extracted from any block matching algorithms can be

the input of our adaptive robust estimation, and the estimation

results of our robust estimation are superior to the existing

robust estimation.

In order to filter out the extracted motion vectors and

estimate affine parameters, we process them by our

adaptive robust estimation. During the robust estimation

process, motion vectors corresponding to outliers are

eliminated. Fig. 16 shows outlier-filtered motion vectors

for Figs. 12(d)–14(d). In Fig. 16(a), (c), and (e) depicts

motion vectors filtered by robust estimation,
and Fig. 16(b), (d), and (f) shows motion vectors filtered

by our method. We can observe that our adaptive robust

estimation eliminates outliers successfully. When input

images include simple camera operations such as panning

or tilting, both methods may filter motion vectors

accurately. However, when complex camera operations

such as zooming, rotation, and multiple camera operations

are involved, we can clearly see that our approach

outperforms existing methods. Fig. 17 plots one example

of accumulated residual errors obtained finally in the

iteration. The horizontal axis represents indices of residual

errors sorted in ascending order, and the vertical axis

represents an accumulated residual error. As we can notice,

our adaptive robust estimation has an accumulated error

that is minimized effectively.

Table 2 shows estimated affine model parameters for the

filtered motion vectors in Fig. 16(b), (d) and (f). We can see

that the proposed adaptive robust estimation has smaller errors

than the robust estimation. Figs. 18 and 19 show experiments

that use input images including moving objects. Fig. 18 is the

image of ‘Table tennis’ and Fig. 19 is the image of

‘Terminator’, respectively. Input images of Fig. 18 contain

two moving objects. One is an arm holding a racket of table

tennis, and the other is a table tennis ball. Fig. 18(c) shows the

extracted motion vectors, containing noisy motion vectors at

the left bottom corner. As we can notice, both motion vectors

extracted from areas of two moving objects and noisy motion

vectors are eliminated properly, since they are treated as

outliers in our adaptive robust estimation process.

Input images of Fig. 19 include one person riding a

motorcycle. The extracted motion vectors from them have

many noisy motion vectors since adjacent blocks of the

background show similar color values though their internal

structures are different. Therefore, the matching metric may

choose as a candidate anyone of the blocks, resulting in

inaccurate block motion vectors. As in Fig. 19(d), our adaptive

robust estimation shows that it can filter out motion vectors

successfully under such a bad condition so that we can estimate

affine parameters accurately.

5. Conclusions and discussions

In this paper, we propose an affine parameter estimation

algorithm from block motion vectors for extracting accurate

motion information. We first extract motion vectors from a

sequence of images by using size-variable block matching and

then process them by adaptive robust estimation to estimate

affine parameters.

We introduce a size-variable block-matching algorithm

which dynamically determines the search area and the size of a

block. To determine the search area, we exploit the generally

accepted constraint on motion, ‘motions are smooth and slow-

varying’. We employ the evaluation function that examines

matching degrees of candidate blocks to determine the

appropriateness of the size of a block. The process of

determining the size of a block begins matching with a small

block. If the matching degree is not good enough, we expand



S.-W. Jang et al. / Image and Vision Computing 23 (2005) 1250–1263 1263
the size of a block a little bit and then repeat the matching

process until our matching criterion is satisfied.

We also introduce an adaptive robust estimation to filter out

the extracted motion vectors and estimate affine parameters

accurately. Our adaptive robust estimation focuses on the

outlier rejection method since it is very important to correctly

detect and eliminate outliers for robust estimation. It defines a

continuous weight function based on a Sigmoid function.

During the estimation process, we tune the Sigmoid function

gradually to its hard-limit as the errors between the model and

input data are decreased. Therefore, we can effectively separate

non-outliers and outliers corresponding to noisy motion vectors

with the help of the finally tuned hard-limit of the weight

function without a threshold. As can be noticed in pseudo-

codes, the proposed adaptive robust estimation requires similar

algorithm complexity to the existing robust estimation.

The experimental results are very promising in terms of

extracting and filtering out block motion vectors so that we can

estimate affine parameters accurately. The size-variable block

matching outperforms other algorithms in terms of accuracy of

the estimated motion vectors, though our algorithm requires

some computational overhead. The adaptive robust estimation

also shows better results than the robust estimation. We may

draw as a conclusion that our approach provides a good

framework for estimating affine parameters from motion

vectors that significantly improves existing approaches.

Acknowledgements

This work was supported by the Korea Science and

Engineering Foundation (KOSEF) through the advanced

Information Technology Research Center (AITrc).

References

[1] Jong-Il Park, Choong-Woong Lee, Robust estimation of camera

parameters from image sequence for video composition, Signal

Processing: Image Communication 9 (1) (1996) 43–53.
[2] Jong-Il Park, Nobuyuki Yagi, Kazumasa Enami, Kiyoharu Aizawa,

Estimating of camera parameters from image sequence for model-based

video coding, IEEE Transactions on Circuits and Systems for Video

Technology 4 (3) (1994) 288–296.

[3] Dae-Sik Jang, Gye-Young Kim, Hyung-Il Choi, Model-based tracking of

moving object, Pattern Recognition 30 (6) (1997) 999–1008.

[4] Eduardo Bayro-Corrochano, Bodo Rosenhahn, A geometric approach for

the analysis and computation of the intrinsic camera parameters, Pattern

Recognition 35 (1) (2002) 169–186.

[5] James Davis, Mosaics of scenes with moving objects, Proceedings of

Computer Vision and Pattern Recognition, Santa Barbara, CA (1998)

354–360.

[6] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P.

Flannery, Numerical Recipes in C: The Art of Scientific Computing,

second ed, Cambridge University Press (1992).

[7] Simon Moss, Edwin.R. Hancock, Registration incomplete radar

images using the EM algorithm, Image and Vision Computing 15

(8) (1997) 637–648.

[8] Stan Sclaroff, John Isidoro, Active Blobs, Proceedings of International

Conference on Computer Vision, Bombay, India (1998) 1146–1153.

[9] B. Liu, A. Zaccarin, New fast algorithms for the estimation of block

motion vectors, IEEE Transactions on Circuits and Systems for Video

Technology 3 (2) (1994) 438–441.

[10] R. Li, B. Zeng, M.L. Liou, A new three-step search algorithm for block

motion estimation, IEEE Transactions on Circuits and Systems for Video

Technology 4 (4) (1994) 438–441.

[11] Lai-Man Po, Wing-Chung Ma, A novel four-step algorithm for fast block

motion estimation, IEEE Transactions on Circuits and Systems for Video

Technology 6 (3) (1996) 313–317.

[12] Seok-Woo Jang, Kyu-Jung Kim, Hyung-Il Choi, Accurate estimation

of motion vectors using active block matching, Proceedings of

International Conference on Rough Sets and Current Trends in

Computing, Banff, Canada Lecture Notes in Artificial Intelligence,

2005 (2001) 527–531.

[13] Seok-Woo Jang, Hyung-Il Choi, A strategy of matching blocks at

multi-levels, International Journal of Intelligent Systems 17 (10)

(2002) 965–975.

[14] Ramesh Jain, Rangachar Kasturi, Brian G. Schunck, Machine Vision,

McGraw-Hill, New York (1995).

[15] Charles.V. Stewart, Robust parameter estimation in computer vision,

Siam Review 41 (3) (1999) 513–537.

[16] J.L. Barron, D.J. Fleet, S.S. Beauchemin, Performance of optical

flow techniques, International Journal of Computer Vision 12 (1944)

43–77.


	Adaptive robust estimation of affine parameters from block motion vectors
	Introduction
	Extraction of motion vectors
	Estimation of affine parameters
	Experimental results
	Conclusions and discussions
	Acknowledgements
	References


