
CS612 - Algorithms in Bioinformatics

Protein Structure Detection Methods

December 7, 2020



Secondary Structure Prediction

Assignment of secondary structure is a typical annotation
problem that can be addressed with various machine learning
techniques

HMMs can be used to annotate an amino-acid sequence with
secondary structure information – HMMs are an example of
generative models

There are other methods that rely on neural networks, SVMs,
and other machine learning techniques

The current state of the art achieves accuracy rates of
70%-80%

All approaches capture key amino-acid level signals present in
alpha-helices and beta-strands

Since coils, loops, turns do not have such well-defined signals,
they are usually predicted as “other” and are more difficult to
pin down

Nurit Haspel CS612 - Algorithms in Bioinformatics



Artificial Neural Networks

Artificial Neural Networks (ANN) are computational models
inspired by the biological neural networks that constitute
animal brains.

They are used for classification problems and pattern
recognition.

The network is represented as a weighted directed graph. The
graph has a layered structure:

An input layer, one or more ”hidden layers” and an output
layer.

Input

Hidden

Output

Nurit Haspel CS612 - Algorithms in Bioinformatics



Artificial Neural Networks

Every node represents a neuron and every edge represents a
connection (synapse) between neurons.

Different layers may perform different functions on their
inputs.

Signals travel from the input layer, to the last output layer,
possibly after traversing the layers multiple times.

The input layer receives input from the outside in the form of
a vector. The output layer transmits output to the outside.

The hidden layers are not connected directly to the outside,
only to other layers.

Each input is multiplied by its edge weight, representing the
strength of the interconnection between neurons inside the
network.

Nurit Haspel CS612 - Algorithms in Bioinformatics



The Simplest Artificial Neural Network

Let us first look at what is perhaps the simplest ANN, a
perceptron.

A perceptron takes binary inputs, x1 . . . xn and produces a
single binary output.

The inputs are weighted by real numbers: w1 . . .wn, scaling
the importance of each input to the output.

Overall, the input is a weighted sum
n∑
1
wixi .

x1

x2

x3

x4

Output

Nurit Haspel CS612 - Algorithms in Bioinformatics



A perceptron

The output is either 0 or 1, depending on whether
n∑
1
wixi is

below or above a given threshold. respectively:

Output =

0, if
n∑
1
wixi < threshold

1, otherwise

This is called a step function. You can think about it as a
very simple decision making device, weighing up evidence
from the input neurons.

Nurit Haspel CS612 - Algorithms in Bioinformatics



An or perceptron

Here is a simple example, a
perceptron with two input
neurons that calculates logical
OR:

x1 x2 Output

0 0 0
0 1 1
1 0 1
1 1 1

The activation function is:

Output =

0, if
n∑
1
wixi < 2

1, otherwise

x1

x2

2

2

Output

Nurit Haspel CS612 - Algorithms in Bioinformatics



A Perceptron

The input neurons are binary in this case and the weights are
2.

It is easy to see that the output is 2 if and only if both inputs
are 0, and 1 otherwise.

The step function from above is often replaced by a sigmoidal
function with a smoother threshold: Output = 1

1+e−x .

0

1

Sigmoidal function

We can use this simple perceptron model to build increasingly
complex networks.

Each of the perceptrons in a given layer makes a decision
based on the input from the previous layer.

This way, a many-layer network of perceptrons can engage in
sophisticated decision making.

Nurit Haspel CS612 - Algorithms in Bioinformatics



Types of Neural Networks

Definition (feed forward network)

A feed forward network is a network where the output is only
propagated in one direction: From the input to the output.

This is the simplest neural network model.

There are no feedback connections in which outputs of the
model are fed back into itself.

Nurit Haspel CS612 - Algorithms in Bioinformatics



Types of Neural Networks

Definition (backpropagation network)

A backpropagation network is a network where an output can be
fed back through the network in order to minimize the output error.

Arbitrary weights are initially assigned and the output values
are compared with the correct answer (target output) to
compute the value of some predefined error-function.

The error is then fed back through the network. Using this
information, the algorithm adjusts the weights of each
connection in order to reduce the value of the error function
by some small amount.

The process continues for a pre-defined number of rounds or
until the output converges to a good enough value.

Nurit Haspel CS612 - Algorithms in Bioinformatics



ANN for Secondary Structure Prediction

A representative example
goes back to 1989.

The input was a set of 62
proteins. 48 were used as
the training set, and the
remaining 14 were the test
set.

The network consisted of
one input layer, a single
hidden layer and an output
layer.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

N-Ter
...
ASP
LYS
GLU
THR
ALA
ALA
—
ALA
LYS
PHE
SER
SER
THR
SER
ALA
ALA
ASN
TYR
ALA
ALA
CYS
ASN
GLN
MET
—
LYS
SER
ARG
LEU
THR
LYS
ASN
...

C-Ter

Helix

Sheet

Amino acids Input layer Hidden layer Output layer

Nurit Haspel CS612 - Algorithms in Bioinformatics



ANN for Secondary Structure Prediction

The input layer was a sliding window of size 17 on the amino
acid sequence.

The prediction is made for the central residue in the window.

Each amino acid at each window position is encoded by a
group of 21 inputs, one for each possible amino acid type and
one is a null input when the window overlaps with the N- or
C- terminus.

In each group of 21 inputs, the input corresponding to the
amino acid type at that window position is set to 1 and all
other inputs are set to 0.

Thus, the input layer consists of 17 groups of 21 inputs each,
and for any given 17 amino acid window, 17 network inputs
are set to 1 and the rest are set to 0.

Nurit Haspel CS612 - Algorithms in Bioinformatics



ANN for Secondary Structure Prediction

The hidden layer consists of two units. The output layer also
consists of two units.

Secondary structure is encoded in these output units as
follows: (1, 0) = helix, (0, 1) = sheet, and (0, 0) = coil.

Actual computed output values are in the range 0.0 − 1.0 and
are converted to predictions with the use of a threshold t.

Helix is assigned to any group of four or more contiguous
residues having helix output values greater than sheet outputs
and greater than t.

β-Strand is assigned to any group of two or more contiguous
residues, having sheet output values greater than helix
outputs and greater than t.

Residues not assigned to helices or sheets are assigned to coil.

Nurit Haspel CS612 - Algorithms in Bioinformatics



Basics of Network

The input layer is of size 21 (NOT 17), since every amino acid
is a vector of size 21.

Therefore, every training cycle feeds a 21 × 17 matrix to the
network.

There are two sets of weights - input to hidden (of size
21 × 2) and hidden to output (of size 2 × 2)

The weights can be organized in a matrix, where each row is
the weights associated with a single neuron.

This matrix will be multiplied by a vector that contains the
input neurons.

Optionally, you can add bias.

Nurit Haspel CS612 - Algorithms in Bioinformatics



Feed-Forward

The weights can be organized in a matrix, where each row is
the weights associated for a single neuron.

This matrix will be multiplied by a vector that contains the
input neurons.

This is the input to the next layer.

The activation function maps the result into [0, 1] through
multiplication by an activation function.

Sigmoid is a popular choice.

The process repeats from one layer to the next.

Nurit Haspel CS612 - Algorithms in Bioinformatics



Backpropagation

This stage feeds the output of the Feed-forward back to the
network and tries to reduce the error.

First, measure the difference between the output and label
(known output).

Don’t forget that the output of one layer is the input to the
next.

We work our way backwards – calculate the output error rate
(derivative of error with respect to output), subtract the error
from the weights.

Repeat for all the layers – the error from layer n+1 is fed to
layer n.

Some more background here:
https://towardsdatascience.com/math-neural-network-from-
scratch-in-python-d6da9f29ce65

This is minimization with gradient descent.

Nurit Haspel CS612 - Algorithms in Bioinformatics

https://towardsdatascience.com/math-neural-network-from-scratch-in-python-d6da9f29ce65
https://towardsdatascience.com/math-neural-network-from-scratch-in-python-d6da9f29ce65


Generating the Data

There are many ways to slice the data into windows of 17.
This implementation slices off the entire sequence at once:
A hankel matrix is a square matrix in which each ascending
skew-diagonal from left to right is constant, e.g.
a b c d e
b c d e f
c d e f g
d e f g h
e f g h i


Details:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hankel.html

In this implementation the matrix is built for every 17
consecutive amino acids (notice that the last 16 rows are
sliced off since they are superfluous).
Each window is one-hot encoded and trained.
Notice that only one output, for the central amino acid, is
given for backpropagation.

Nurit Haspel CS612 - Algorithms in Bioinformatics

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hankel.html

