
Geometric Approaches for Protein
Structural Manipulation

1 Introduction

In Chapter ?? we discussed several ways to represent a protein structure in-silico using cartesian
coordinates and internal coordinates, using the values of bond lengths, planar angles and dihedral
angles. In order to simulate structural and dynamic processes such as protein folding, protein
conformational changes and protein binding, one can generate different three dimensional structures
of the same protein by varying the values of the dihedral angles, since in most cases the bond lengths
and planar angles change very little and can be considered fixed by many methods.

In this chapter we will discuss methods to manipulate the degrees of freedom of a protein to
sample processes such as folding and binding using geometric methods.

2 Robotics-Inspired Approach

Robotics-inspired approach to protein flexibility exploits the similarity between proteins and robots.
In particular, there have been algorithms designed in robotics to explore the motion of robot-like
objects in a physically constrained environment. The similarity can be exploited to sample protein
conformations with constraints that come from the protein’s energy in a complex, high-dimensional
space spanned by the possible conformations of the protein.

Robotics based algorithms model robotic objects as articulated manipulators, which means – a
set of links possibly connected by articulated joints with rotational and/or translational degrees of
freedom at the joints. Figure 1 (a) shows an illustration of a robotic arm fixed to a base, with three
links connected by flexible joints. This is a 2D example, so every flexible joint has one rotational
degree of freedom. Some robots are not fixed to a base and can move around the room (think
about a vacuum cleaning robot). In this case the robot also has translational degrees of freedom.
Similarly, we can think of a molecule as a set of links (atoms bonded to other atoms) connected by
flexible joints (in the case of a protein, the dihedral angles are rotatable bonds, see Figure 1 (b) ).

2.1 Motion Planning

Motion planning algorithms have been developed as part of robotics to try to plan to motion of a
robot-like object in a constrained environment. Imagine a robotic arm performing some work in an
industrial setting, for example. The robot should grab objects and move them from one place to
another using its translational and/or rotational degrees of freedom, all the while avoiding collisions
with known obstacles. Usually, the robot has a start configuration and a goal configuration which
denote the start and end of the robot’s task. The robotic path planning problem is, given a robot,
a physical work space, and starting and goal configurations for the robot, find a collision-free path
for the robot from the starting configuration to the goal, if one exists. Otherwise determine that
no such path exists.
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Figure 1: (a) A robotic arm with rotational degrees of freedom at the joints. (b) A protein molecule
with the backbone dihedral degrees of freedom.

2.1.1 The Workspace and the Configuration Space

To demonstrate the way motion planning algorithms compute the motion of a robot, let us look at
the simple example in Figure 2. Our robotic arm has two links and two joints, hence two rotational
degrees of freedom. It is attached to a base and resides on a 2-D plane with several physical obstacles
(geometric objects in different colors) and empty space that can be occupied by the robot. This
is our physical workspace. Figure 2 (a) shows the start configuration of the robot, and figure 2
(b) shows the goal configuration. Our task is to move the robotic arm from the start to the goal
configuration using the arm’s rotational degrees of freedom while avoiding the obstacles. Solving
the problem on the workspace is not simple, until we realize that if we know the specifications of the
robot – the exact point it is attached to the base and the lengths of the two links, all we have to know
in order to unambiguously specify its configuration are the values of the two angles, denoted q1 and
q2. Therefore, we can transform the workspace into an alternative space called the configuration
space or C-space. This is a mathematical space spanned by the degrees of freedom of the robot.
In this case, it’s a 2-dimensional space as well (by coincidence), but the dimensionality depends
on the number of the degrees of freedom of the robot, not the dimensionality of the workspace. A
three-link, three-joint robot embedded in the same space would have a 3-dimensional configuration
space. Since the C-space represents the configurations of the robot as a function of its degrees of
freedom, every configuration is a mathematical point in the C-space. The obstacles are transformed
into ”forbidden” areas, which are combination of degrees of freedom that make the robot collide
with an object. Figure 3 describe the C-space for the workspace in Figure 2. Remember that the x
and y axis represent rotational angles. The colored ”blobs” represent forbidden regions, which are
combinations of rotational angles which make the robot collide with an object (the colors match
the obstacles in Figure 2).

The two black dots in Figure 3 represent the start configuration (figure 2 (a), marked in ”1”)
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Figure 2: A workspace with a two-link, two-joint robotic arm. The colored shapes represent phys-
ical obstacles. The figure was created by: https://www.cs.unc.edu/~jeffi/c-space/robot.

xhtml.

and the goal configuration (figure 2 (b), marked in ”2”). The path planning problem is to find a
mapping c : [0, 1]→ Q where 0 means no collision and 1 means collision, and Q represents the set
of points in the configuration space. In other words, we have to find a collision-free path between
the two dots. As can be seen in the figure, such path exists (as a matter of fact, an infinite set of
paths). An example is marked in blue. Algorithms that try to solve the motion planning problem
can sample the collision free space (hence – free space) and find a path by creating a graph that
connect dots to their neighbors. From that point on any shortest path algorithm will work. More
on this below.

When dealing with molecules, the definitions are rather similar, even though the systems we
work with look so different. Just like with physical robots, the molecule is an object embedded
in a three dimensional physical space. The work space is defined by the atomic coordinates of
the molecule. The 3D arrangement of the molecule can be defined by its set of x, y, z atomic
coordinates. However, these coordinates are not independent. The locations of atoms is severely
constrained by physico-chemical interactions between the atoms, that determine the inter-atomic
distances and angles. The dimensionality of configuration space is determined by the real degrees
of freedom of the molecule. These are the rotatable bonds we are allowed to modify when changing
the configuration of the molecule. In most sampling based algorithms we assume that the covalent
bonds and planar angles are fixed, so we are left with the backbone (and sometimes side chain)
dihedral angles. Figure 4 shows a dialanine (ALA-ALA) peptide. A peptide with N amino acids
has 2N-2 backbone dihedral DOFs, therefore the dialanine peptide has two backbone DOF – one
φ and one ψ, marked in the Figure. Therefore, the configuration space is two-dimensional in
this case. But what are the obstacles? They are not other physical objects, but rather high-energy
configurations. So, instead of a binary collision function we have a continuous function that depends
on the inter-atomic interactions inside the molecule and with other molecules. The energy value of
a conformation is proportional to the probability to find this conformation in nature. A high-energy
configuration is unlikely to appear in nature and therefore should be avoided. The Figure shows the
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Figure 3: The configuration space for the workspace described in Figure 2. The figure was created
by: https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml.

energy landscape of the peptide as a function of the two dihedral angles. This is the C-space. To
sample the conformations of the peptide, we have to plan a path in the configuration space while
avoiding high-energy configurations. Notice that the C-space looks like a mountainous landscape,
where the mountains should be avoided. Since this is not a binary function, the user has to define
a cutoff above which the energy is considered high. The cutoff depends on the application and the
molecule in question. Several approaches will be discussed below.

To recap, here are some important terms:

• Work space: The work space is the geometric space in which a robot operates. It consists
of obstacles and empty space that may be occupied by the robot.

• Configuration: A full description of the robot’s state, including its position, orientation,
and the states of any internal degrees of freedom (such as revolute joint angles).

• Collision: A configuration is said to be in collision if any part of the robot overlaps with
either another part of the robot or with a work space obstacle.

• Free: A configuration is said to be free if it is not in collision.

• Configuration space (C-space): The space of all configurations of the robot, annotated
by whether the robot is in collision or free at each configuration.

• Free space: The space of all free configurations.

Address: Plan motions in the configuration space but compute in workspace (protein structure,
surface or cavity)!

3 kinematics

Kinematics is a branch of classical mechanics that describes the motion of points, bodies (objects),
and systems of bodies (groups of objects) without considering the forces that caused the motion.
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Figure 4: An example of the energy landscape of the ALA-ALA (dialanine) peptide. It has two
degrees of freedom, the backbone dihedral angles φ and ψ. High energy values are capped at 300
for clarity.
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Figure 5: An example of rotating a molecule around a dihedral angle, where the axis is defined by
the two middle atoms, i+ 1 and i+ 2.

A kinematics problem begins by describing the geometry of a system and the initial conditions of
any known values of position, velocity and/or acceleration of points in the system. Then, using
geometric methods, the position, velocity and acceleration of any unknown parts of the system can
be determined.

Chapter ?? describes how to represent a protein structure and manipulate its structure using
matrices or quaternions, as well as internal coordinate representation. When a rotation of θ degrees
around a bond is performed, the bond itself is the axis of rotation and hence does not move. As a
matter of fact, the only atoms that change their positions are the ones located after the rotation
axis. In other words, if the axis is defined by atoms i+1 and i+2, all the atoms until i+2 inclusive
remain stationary. See Figure 5.
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4 Forward Kinematics

Forward kinematics refers to the use of the kinematic equations of a robot to compute the position
of the end-effector (the device at the end of the robotic arm, or the arm’s endpoint) from specified
values for the joint parameters. In protein motion, the problem becomes computing the new
locations of the atoms given a set of dihedral rotations. In the case of protein structures, these
dihedral rotations are usually the backbone dihedral angles φ and ψ. Even though the rotation is
performed in the dihedral angle space, we have to find a way to modify the cartesian coordinates
of the rotating atoms (i+ 3 and up). If we apply a rotation by and angle θ around an axis starting
at atom ai on a vector v = (vx, vy, vz, 1) (in homogenous coordinate) the transformation can be
written as:

R(i, θ) = T (ai) ·R(axis, θ)T (−ai)

Since atomic coordinates are generally represented using an arbitrary axis system, the above
equation corresponds to translating the atom to its position if the rotation axis passes through the
origin, applying the rotation and translating the atom back to its position in the arbitrary axis
system. It is also possible to combine several rotations by sorting by position along the protein
chain (bond number) and composing the matrices. So for example, applying rotation by θ around
an axis starting at atom ai followed by a rotation by some φ around an axis starting at atom
aj , j > i can be defined as:

R(combined) = R(j, φ) ·R(i, θ)

Remember that the convention used for matrix-vector multiplication is to multiply column vectors
by matrices on the left, so the rightmost transformation is applied first.

Probabilistic Roadmap Motion Planning (PRM)

While not guaranteed to find a path, PRM is probabilistically complete. As the number of samples
increases, the probability of the planner finding a path if one exists approaches 1. For many real-
world path-planning problems, the method is very fast and reliable in practice.

Application of PRM to Protein-Ligand Docking

The A fixed coordinate system P is attached to the protein The ligand is a small flexible molecule
A moving coordinate system L is defined using three bonded atoms in the ligand A conformation
of the ligand is defined by the position and orientation of L relative to P and the torsional angles
of the ligand
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Figure 6: PRM configuration sampling: (a-b) Configurations are sampled by picking coordinates
at random and representing them in the configuration space. (c) Sampled configurations are tested
for collision (in the workspace!) (d) The collision-free configurations are retained as “milestones”
(e) Each milestone is linked by straight paths to its k-nearest neighbors (f) Each milestone is linked
by straight paths to its k-nearest neighbors (g) The collision-free links are retained to form the
PRM (h) Querying the map to find paths
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Roadmap Construction: Node Generation The nodes of the roadmap are generated by
sampling conformations of the ligand uniformly at random in the parameter space (around the
protein) The energy of each sampled conformation is E = Einteraction (electrostatic) + Einternal
(vdw) A sampled conformation is retained with probability:

p =


0 if E > Emax
Emax−E
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if Emin ≤ E ≤ Emax

1 if E < Emin
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Results in denser distribution of nodes in low-energy regions of conformational space

Edge Generation qq′qiqi+1

Each node is connected to its closest neighbors by straight edges Each edge is discretized so
that between qi and qi+1 no atom moves by more than some ε = 1Å.

x y

z

x y

z

Results in denser distribution of nodes in low-energy regions of conformational space

Querying the Roadmap: For a given goal node qg (e.g., binding conformation), the Dijkstras
single-source shortest-path algorithm computes the lowest-weight paths from qg to each node (in
either direction) in O(N logN) time, where N = number of nodes Various quantities can then be
easily computed in O(N) time, e.g., average weights of all paths entering qg and of all paths leaving
qg (binding and dissociation rates Kon and Koff )

Computing Binding Conformations Sample many (several 1000s) ligand’s conformations at
random around protein Then repeat several times:

• Select lowest-energy conformations that are close to protein surface

• Re-sample around them

• Retain k (approx. 10) lowest-energy conformations whose centers of mass are at least 5Å
apart
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Related: Finding Folding Pathways Using RPM The degrees of freedom are modeled as
the number of rotatable backbone dihedral angles (approx. 2N, number of amino acids) Nodes are
generated in a similar manner as the docking scheme above. Sampling cannot be done at random
due to high dimensionality – sampling is done from a set of distributions around the native state.
Edges connect neighboring nodes in a similar manner to the one described above. This method can
be used to discover folding pathways, intermediate structures and other folding events.

From Flexible Ligand to Flexible Receptor?

The target receptor is big. It may have many DOFs (in the thousands) Most methods that try to
model receptor flexibility try to somehow find and focus only on relevant motions. In order for this
process to become efficient, we must find a representation for protein flexibility that avoids the direct
search of a solution space comprised of thousands of degrees of freedom. There are several methods
available, and the accuracy of the results is usually directly proportional to the computational
complexity of the representation. There are several types of methods to model receptor flexibility:

Soft Receptor Soft receptors can be easily generated by relaxing the high VdW energy penalty
The rationale is that the receptor structure has some inherent flexibility which allows it to adapt
to slightly differently shaped ligands. If the change in the receptor conformation is small enough,
it is assumed that the receptor is capable of such a conformational change. It is also assumed that
the change in protein conformation does not incur a sufficiently high energetic penalty to offset the
improved interaction energy between the ligand and the receptor. It is also quite easy to implement
(relax the collision component).

Selecting Specific DOFs It is it possible to select only a few degrees of freedom to model
explicitly. These degrees of freedom usually correspond to rotations around single bonds These
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Figure 7: Acetylcholinesterase: Phe330 is flexible and acts as swinging gate

degrees of freedom are usually considered the natural degrees of freedom in molecules. Rotations
around bonds lead to deviations from ideal geometry that result in a small energy penalty when
compared to deviations from ideality in bond lengths and bond angles. Selection of which torsional
degrees of freedom to model is usually the most difficult part of this method because it requires
a considerable amount of a priori knowledge regarding the binding site. The torsions chosen are
usually rotations of side chains in the binding site of the receptor protein. It is also common to
further reduce the search space by using rotamer libraries.

Ensemble Docking One possible way to represent a flexible receptor for drug design applications
is the use of multiple static receptor structures The best description for a protein structure is that of
a conformational ensemble of slightly different protein structures coexisting in a low energy region
of the potential energy surface. The structures can be determined experimentally either from X-ray
crystallography or NMR, or generated via computational methods such as Monte Carlo or MD
simulations.

Receptor Flexibility – Collective DOF Finally, collective DOF allows the representation
of full protein flexibility without a dramatic increase in computational cost. One method is the
calculation of normal modes for the receptor. See Figure 8 for an example of the normal mode
analysis of HIV-protease. Alternatively, we can use dimensionality reduction methods. The most
commonly used method for the study of protein motions is principal component analysis (PCA).

5 Inverse Kinematics

Inverse kinematics (IK) is the problem of finding the right values for the underlying degrees of
freedom of a chain. In the case of a protein chain these degrees of freedom of the dihedral angles,
so that the chain satisfies certain spatial constraints. For example, in some applications, it is
necessary to find rotations that can steer certain atoms to desired locations in space. To achieve a
particular function, protein regions sometimes have to undergo concerted motion where atoms move
together in order to locate themselves near another protein or molecule. The motion of atoms is
spatially constrained because they have to assume specific target locations in space. However, since
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Figure 8: Collective DOF analysis of HIV-protease

atoms must move together in order not to break bonds by their motion, it is easier to model their
motion in dihedral angle space, where bond lengths and bond angles are fixed. The applications of
inverse kinematics to protein structure include mainly loop modeling and generating ensembles of
structures.

Modeling Loops Using Inverse Kinematics (IK)

Goal: Model the ensemble of conformations of a protein. It is known that proteins are not rigid
but fluctuate about an ensemble of structures under equilibrium conditions. Focus mostly on loop
regions, as they are the most flexible ones.

As mentioned in the introduction, Inverse kinematics is used to manipulate the degrees of
freedom of an articulated chain to satisfy some end-constraints. In this case - manipulate the
rotational degrees of freedom of a loop region to find possible loop conformations that attach to
the rest of the protein.

Cyclic Coordinate Descent (CCD)

We solve for and rotate one dihedral at a time. CCD tries to find an optimal angle by which to
rotate a single bond at a time, so as to steer the desired atoms towards its target position. When
finding dihedral angles to rotate so that the ends of the fragment connect properly with the rest
of the chain, it is important to steer not just one atom of the end of the fragment, but the three
backbone atoms of the end simultaneously. Finding values to the dihedral angles that steer the
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Figure 9: An ensemble of conformations modeled using IK

three backbone atoms of the end of the fragment simultaneously to their target positions guarantees
that the end of the fragment will assume both its target position and orientation in space. We will
explain how to find optimal values to simultaneously steer the three backbone atoms of the end of
the fragment to their target positions. Let us first define the current positions before rotation as
M0, after rotation M and the target positions F , as shown in Figure 10. The goal is to minimize the
Euclidean distance between the current and the target positions for all three atoms simultaneously.
Figure 11 illustrates the process on a protein chain. In order to find the optimal angle by which
to rotate a particular bond, let us define an objective function S that we wish to minimize. We
propose a value for S that sums the square of the deviations between the final position of the atoms
after the rotation M and the desired positions F . Looking at Figure 10 Since S is defined as the
sum of squared distances between current positions and target positions, steering these three atoms
to their target positions requires minimizing S. Therefore, the optimal dihedral rotation can be
found by minimizing S:

S = |~F1M1|2 + |~F2M2|2 + |~F3M3|2

Where

~F1M1 = ~O1M1 − ~O1F1

Explanation: The FM vectors can be defined relative to an origin O located along the axis
of rotation, which will simplify the math, since the rotation is in 2D when working on the plane
perpendicular to the axis of rotation. O can be computed by projecting the current position of the
atom, M , onto the rotation axis. It is convenient to decompose OM for each feature atom into
two components (along the r̂ and ŝ local axes). The squared norm of the vector M − F (denoted
FM) has precisely this value for each of the three atoms, so we can sum the three contributions to
S in order to allow its expression in terms of the angle being rotated (using cosine and sine). This
way, the distance between the atoms and their target positions will be only a function of the fixed
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(rotatable bond) atoms and the angle to rotate, which remains the only variable and the problem
can be solved. We can express the rotation with respect to the r̂ and ŝ plane as:

~O1M1 = r1 cos θr̂1 + r1 sin θŝ1

Where r1 is the vector between O and M01, which we want to rotate by θ. From the two
equations above it follows that:

~F1M1 = r1 cos θr̂1 + r1 sin θŝ1 − ~f1 ≡ ~d1

with similar equations for the two other atoms. Calculating the squared distances between the
moving atoms and the fixed target atoms, we obtain:

|~d1|2 = r2
1 + f2

1 − 2r1 cos θ(~f1 · r̂1)− 2r1 sin θ(~f1 · ŝ1)

|~d2|2 = r2
2 + f2

2 − 2r1 cos θ(~f2 · r̂2)− 2r1 sin θ(~f2 · ŝ2)

|~d3|2 = r2
3 + f2

3 − 2r1 cos θ(~f3 · r̂3)− 2r1 sin θ(~f3 · ŝ3)

Putting it all together, we can express S as the sum of the squared distances above. Differenti-
ating with respect to θ gives us:

dS

dθ
=
d|~d1|2
dθ

+
d|~d2|2
dθ

+
d|~d3|2
dθ

where

d|~di|2
dθ

= 2ri sin θ(~fi · r̂i)− 2ri cos θ(~fi · ŝi)

where i = 1, 2, 3. The r2
i + f2

i part of the expression are not a function of θ and therefore their
derivative is 0.

This is just a first order differential equation that we can equate to 0 to find α, the value of the
rotation angle that yields an extreme value for the equation above:

tanα =
(~f1 · ŝ1)r1 + (~f2 · ŝ2)r2 + (~f3 · ŝ3)r3

(~f1 · r̂1)r1 + (~f2 · r̂2)r2 + (~f3 · r̂3)r3

Inverting the tangent will produce two values for α that are 180◦ apart. One of them is a minimum
and one a maximum. The right one is that which produces a positive value of the second derivative
of S. In practice this is a bit cumbersome, but α is obtained in a different way. Notice that S is of
the form:

S = a− b cos θ − c sin θ
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Figure 10: An illustration of the CCD algorithm: Find optimal dihedral rotation for the current
bond so that all three desired atoms reach their target positions.

Multiplying the last two terms by √
b2 + c2/

√
b2 + c2

we get:

cosα =
b√

b2 + c2

sinα =
c√

b2 + c2

then S can be written as:

S = a−
√
b2 + c2 cos(θ − α)

S is minimum when θ = α. Now we have explicit values for sine and cosine. Notice that the
Time complexity is linear time on the number of DOFs to solve for all dihedrals of a chain.

Figure 12 shows an illustration of the process for Chymotrypsin inhibitor 2.

Equilibrium Fluctuations

Since there is redundancy (more degrees of freedom than constraints), there is a continuum of
possible solutions. In order to find physically feasible conformations. We can combine the confor-
mational sampling with energy minimization to obtain an ensemble of physical structures. This can
be exploited to generate fragment fluctuations. We can generate the Boltzmann ensemble average
based on the energy with the following formula:
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Figure 11: Demonstration of the CCD algorithm to close a loop.

Figure 12: Example: Chymotrypsin inhibitor 2

RMSDx =
∑
Confs

RMSD(C,Cnative)e
−β∆Ec

Q

∆Ec = Ec − Enative
Q =

∑
Confs

e−β∆Ec

Figure 13 shows two examples: α-Lactalbumin, 123 residues and Ubiquitin, 76 residues.

Additional Reading

• A.P. Singh, J.C. Latombe, and D.L. Brutlag. A Motion Planning Approach to Flexible Ligand
Binding. Proc. 7th ISMB, pp. 252-261, 1999

• Cyclic Coordinate Descent: Canutescu A. A., and Dunbrack R. L. Protein Science 12, 2003
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Figure 13: a) α-Lactalbumin (α-Lac) b) Ubiquitin
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