
1 Rapid Structural Analysis Methods

Emergence of large structural databases which do not allow manual (visual) analysis and require
efficient 3-D search and classification methods. Structure is much better preserved than sequence
– proteins may have similar structures but dissimilar sequences. Structural motifs may predict
similar biological function Getting insight into protein folding. Recovering the limited (?) number
of protein folds. Comparing proteins of not necessarily the same family.

Implementing structural algorithms (folding, docking, alignment) requires geometric manipu-
lation of protein structures. A 3-D protein structure is represented as a set of x, y, z coordinates
(vectors). Structural manipulation of protein structures is done via geometric transformations
(translation, rotation) of some or all the coordinates. Transformations can be represented using
matrices applied on the coordinate vectors. Matrix transformations are performed through matrix
multiplication of a coordinate vector by a transformation matrix.

1.1 Spherical Coordinates

To understand how to represent a point in 3D, we can first extend the polar coordinate represen-
tation discussed earlier into spherical coordinates. In a cartesian coordinate system we represent a
3D point p by its x, y, z coordinates: p = (px, py, pz). In spherical coordinates we have three magni-

tudes: ρ, θ, φ. Similar to polar coordinates, ρ is the magnitude of the vector, or ρ =
√
p2x + p2y + p2z.

φ is the angle of the vector p = (px, py, pz) with the z axis. It is restricted to [0, π]. We denote by
r the projection of p on the xy plane, so that r = ρ sinφ. Notice that z = ρ cosφ. θ is the same as
in polar coordinates, the CCW rotation of r on the xy plane. See Figure 1. Therefore, substituting
in the polar coordinate formula, we have the following:

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

1.2 Internal coordinates

There are other ways to represent a protein structure, for example using internal coordinates.
Internal coordinates representation depicts the protein as a set of internal properties of the molecules
that do not depend on the absolute position and orientation of the molecule in space: bonds, angles
and dihedral angles. It is often a better way to represent a structure, especially when we want to
manipulate the structure and calculate its energy. An example of internal coordinate representation
can be seen below. Table 1 shows the internal coordinates of Methane (CH4). The four hydrogens
are symmetric around the carbon. Every three hydrogen atoms generate a tetrahedral structure
with the carbon. The internal coordinates are read as follows: The first row represents an arbitrarily
selected first atom, in this case C. The next four lines describe the four hydrogens that are covalently
bonded to the carbon. The format in the table is: Element, atom 1, bond-length, atom 2, bond-
angle, atom 3, dihedral-angle . The position of the current atom is then specified by giving the
length of the bond joining it to atom1, the angle formed by this bond and the bond joining atom1
and atom2, and the dihedral (torsion) angle formed by the plane containing atom1, atom2 and
atom3 with the plane containing the current atom, atom1 and atom2. Note that bond angles must

1

O

ρ

x

y

z

rθ

φ

Figure 1: A representation of spherical coordinates

Figure 2: A methane (CH4) molecule

be in the range 0 − 180◦. The last line in the table, then, describes atom 5, a Hydrogen atom
bonded to atom 1 (the Carbon), with a bond length of 1.089Å, has a 109.471◦ tetrahedral angle
formed by this bond and the C bond with the second hydrogen, and a −120◦ dihedral angle formed
with atoms 1, 2, 3. Notice that redundant information, like the dihedral angle between atoms 1, 3
and 4 is omitted from the table, since this angle is already imposed by the other constraints given
in the table.

We can switch back and forth between different representations, up to an arbitrary rigid transfor-
mation (absolute position and orientation in space). To move from internal to cartesian coordinates
we need the first three atoms, a, b, c.

The first atom, a, represents the origin of the coordinate systems. Set its three cartesian coor-
dinates to (0, 0, 0).
The second atom, b, is at a fixed distance from a, which is their bond distance. Fix the z axis
as the axis lying on the bond between the two atoms. b’s z value is the distance and its x and y

2

Table 1: An example of a Z-matrix representing the internal coordinates of methane (CH4)
Atom Bonded Dist Angle Value Dihe Value
C
H 1 1.089
H 1 1.089 2 109.471
H 1 1.089 2 109.471 3 120.0
H 1 1.089 2 109.471 3 -120.0

z

x

r

θ

r cos θ

r sin θ

a c

b

dist(a,b)=r

(a)

z

x

θ

C H

H

(b)

Figure 3: (a) Obtaining the cartesian coordinates based on distance and angle with the xz axis.
(b) When aligning the bond between C-H with the z axis, the coordinates of the other H can be
obtained using the formula above.

coordinates are set to zero (0, 0, 1.089).

The third atom, c, makes a bond with atom 1 and an angle with atoms 1 and 2. We can define
the x − z plane by atoms 1, 2, 3, since every three ordered, non-collinear points uniquely define a
plane. We can infer the x and z coordinates from these two constraints and set the y coordinate
to zero. Let us denote the three atoms a, b, c in the order they appear in the angle (see Figure 3.
Let rac be the distance between atoms a and c. The x, z coordinates can be inferred by converting
from polar to cartesian coordinates using the following formula:

z = rac ∗ cos(θ) = −rac cos(180− θ)
x = sin(θ) = rac sin(180− θ)

The point c in the figure is the projection of b on the z axis. The resulting triangle defines the
angle θ. (see Figure 3).

Hence, to obtain the cartesian coordinates of H3, we see that due to the symmetry of the
methane molecule, it has the same distance from C and the same angle with H1-C as the other
hydrogens, but according to the internal coordinate table, the H2-C-H3 forms a 120◦ dihedral angle
with the H1-C-H2 plane, which we defined as the x−z plane. Therefore, we can rotate the position

3

Table 2: The Cartesian coordinate representation of Methane (CH4). Right: Rotated to show
symmetry

Atom X Y Z X(rot) Y(rot) Z(rot)
C 0.000 0.000 0.000 0.000 0.000 0.000
H 0.000 0.000 1.089 0.629 0.629 0.629
H 1.027 0.000 -0.363 -0.629 -0.629 0.629
H -0.513 -0.889 -0.363 -0.629 0.629 -0.629
H -0.513 0.889 -0.363 0.629 -0.629 -0.629

of H2, {1.027, 0.000,−0.363}, by 60◦ around the z axis using the following formula:

x = −1.027 ∗ cos(60) = −0.513

y = −1.027 ∗ sin(60) = −0.889

So we get {−0.513,−0.889,−0.363}. Notice that since we are rotating around the z axis, the z
coordinate does not change.
Similarly, H2-C-H4 creates a −120◦ dihedral angle with the H1-C-H2 plane. Therefore, we can
rotate the position of H2, {1.027, 0.000,−0.363}, by −60◦ around the z axis to get:

x = −1.027 ∗ cos(−60) = −0.513

y = −1.027 ∗ sin(−60) = 0.889

with the coordinates being {−0.513, 0.889,−0.363}.
Table 2 shows the cartesian coordinates following the conversion formula above.
To further emphasize the symmetry of the molecule, we can reorient it as in Table 2 on the

right.

2 Rotation Matrices and Translation Vectors

Let us formalize the notion of rotation and translation through matrices and vectors. In order to
manipulate the dihedral angles of a molecule we have to be able to apply a transformation to some
or all of the atoms of the molecule. Here is the mathematical background needed to carry this out:

Definition 1 (dot product) The dot product of two vectors v = (v1 . . . vn) and k = (k1, . . . kn)
is defined as:

v · k =

n∑
i=1

vi ∗ ki

Notice that v · k is a scalar (number) and not a vector. It is the projection of v on k (and
vice versa) and is also |k| ∗ |v| cosα where |k| and |v| are the magnitudes of the vectors k and v

4

respectively, and α is the angle between k and v. A 2-D example of a dot product can be seen in
Figure 3, where the vector (a,c) is the projection of the vector (a,b) on the (unit) x axis.

Definition 2 (cross product) The cross product of two vectors k = (kx, ky, kz) and v = (vx, vy, vz)
is a vector defined as:

w = k × v = (ky ∗ vz − kz ∗ vy, kz ∗ vx − kx ∗ vz, kx ∗ vy − ky ∗ vx)

The result is a vector that is perpendicular to both k and v. Notice that v × k = −(k × v). Also
notice that for every two vectors k and v, |k × v| = |k||v| sinα where α is the angle between a and
b.

Definition 3 (Rotation Matrix) An N ×N matrix R is a rotation matrix in dimension N if it
is orthonormal (its columns are pairwise orthogonal and normalized) and det(R) = 1. Such matrix
has the property RT = R−1.

Definition 4 (Translation Vector) A vector t = {t1, t2, ..., tN} is a translation vector in dimen-
sion N .

Definition 5 (Rigid Transformation) A rigid transformation on a vector v is a combination of
a rotation and a translation. It has the form T = Rv + t. The transformation is called rigid since
it is applied to the entire vector and does not change the distances between pairs of points.

It is important to remember that T represents a rotation followed by a translation (not the other
way around).

The rotation and translation in N dimensions can be combined into a transformation matrix.
The problem is that translation is not a linear transformation, since it does not keep the origin
fixed. However, it is an affine transformation. An affine transformation is a transformation that
does not bend or twist its input. In other words – lines have to stay linear, parallel lines have to
stay parallel and planes have to stay planar. Therefore, a rotation matrix and a translation vector
can be combined into rigid affine transformation using homogeneous coordinates. This is done by
adding a ”dummy” zero vector to the rotation component and 1 to the translation component. In
other words, we add a dimension to the matrix, so now it is of the form:

T =

[
R t
0 1

]
By doing this we transform the system from the Euclidean space to the Projective space. The

new translation vector, {t1, t2, . . . , tN , 1} is the representation of t in the projective plane rather
than the Euclidean plane. One can think of the added component as a scaling factor which in
principle can be any non-zero number since homogeneous coordinates are scale invariant, so for
convenience we will use 1. A zero number would be a ”point at infinity”. To transform a vector
v = {v1, v2, . . . , vn} using homogenous coordinates we simply use v = {v1, v2, . . . , vn, 1} so that we
can apply the transformation in N + 1 dimensions. To transform a point back from the projective
plane into Euclidean coordinates we simply ignore the 1.

2.1 Transformations as Groups

Let us first define some basic mathematical terms.

5

Definition 6 (Group) A group is a set G with an operation that combines any two elements to
form a third element. Let us denote the operation ◦. The operation satisfies four conditions called
the group axioms:

1. Closure: ∀a, b ∈ G, a ◦ b ∈ G

2. Associativity: ∀a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c)

3. Identity: ∃e ∈ G s.t ∀a ∈ G, a ◦ e = e ◦ a = a

4. Inverse: ∀a ∈ G∃a−1 ∈ G s.t ∀a ∈ G, a ◦ a−1 = e

If these axioms are satisfied, then G is a group under ◦

Rotation matrices are groups under matrix multiplication. Notice that they satisfy the four
axioms:

1. Closure: The multiplication of every two rotation matrices is a rotation matrix.

2. Associativity: This is true for every matrix.

3. Identity: The identity matrix, which is a rotation by 0 degrees.

4. Inverse: For every rotation matrix, its inverse is the rotation matrix in the inverse direction.
Multiplying both gives the identity rotation.

In linear algebra, rotation can be performed in any N dimensional space, but physical objects
are limited, obviously, to two or three dimensions.

2.2 Transformations in Two Dimensions

A rotation in 2D is defined as follows:

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
θ is the counter-clockwise (CCW) rotation angle in the 2D plane, as shown in Figure 4. Given

a vector v = (x, y) multiplication by the above rotation matrix results in:[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
=

[
x cos(θ)− y sin(θ)
y cos(θ) + x sin(θ)

]
Hence, the rotation matrix takes (x, y) to a new location (x′, y′) = (x cos(θ)−y sin(θ), y cos(θ)+

x sin(θ)).
Combining two rotations in 2D (performing two rotations one after the other) is simply multi-

plying two rotation matrices, R(θ1) and R(θ2). Remember that, since rotation matrices are a group
under matrix multiplication, R(θ1) ∗R(θ2) is also a rotation matrix due to closure.

A simple way to combine two rotations is to use Euler’s formula, which establishes the relation-
ship between trigonometric functions and complex numbers. According to the formula, for any real
number θ,

eiθ = cos(θ) + i sin(θ)

6

θ

x, y

x′, y′

Figure 4: An example of a 2D rotation

where e is the base of the natural logarithm and i is the imaginary unit, and θ is given in radians.
The meaning is that, when the graph of complex exponential function, eix is projected to the
complex plane, the complex exponential function, eix is tracing the unit circle. It is a periodic
function with the period 2π. See Figure 4.

First let us think of the complex plane where every point is represented as (x + iy). We can
use this to represent 2D rotations using the polar form of the complex exponential function, eix

because it can represent a point in the complex plane with only single term instead of two terms,
(x+ iy). It is only logical, since a rotation in 2D essentially has only one degree of freedom! It also
makes the math easier when combining two or more rotations. First, let us calculate what happens
when we rotate a point x+ iy by an angle θ:

(x+ iy) ∗ eiθ = (x+ iy) ∗ (cos(θ) + i sin(θ))

= x((cos(θ) + i sin(θ)) + y(i cos(θ)− sin(θ))

= x cos(θ)− y sin(θ) + i(x sin(θ) + y cos(θ))

which is equivalent to the matrix form R(θ) displayed above:

R(θ) = eiθ

Therefore, we can use Euler’s formula to combine two rotations easily:

R(θ1) ∗R(θ2) = eiθ1 ∗ eiθ2 = ei(θ1+θ2) = R(θ1 + θ2)

In other words, combining two rotations θ1 and θ2 results in a rotation by θ1+θ2! Several things
are worth mentioning about rotation in two dimensions: First – it has only one degree of freedom
–one independent parameter needed to specify the transformation. This degree of freedom is the
rotation angle θ. This is all we need to know in order to perform a rotation. Second – rotation in

7

0◦

90◦

−90◦

180◦

θ

Figure 5: The SO(2) group

two dimensions is done around the z axis. In other words – the rotation axis is out of the plane!
There is only one stationary point at the center of the rotation. This is one fundamental difference
between rotations in two and three dimensions, as we will point out later.

2.3 Representing Rotations in 2D – SO(2)

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

a+ bi↔
[
a −b
b a

]
' S1

Rotations and Translations

Combining rigid body translations and rotations results in a rigid transformation SE(n) – special
Euclidean groups:

SE(n) =

[
R V
0 1

]
Where R is a rotation matrix and V is a translation vector.

3 Representing Rotations in 3D

A point in 3D is To understand how rotations in 3D look like, let us first define the orthogonal
group O(3) as the group of all 3X3 orthonormal matrices:

(1) O(3)→ AAT = 1

8

Matrices in O(3) may have a determinant of either 1 or -1. The special orthogonal group, SO(3),
is those matrices of O(3) whose determinant is 1:

(2) SO(3)→ det(A) = 1

This group represents rotations in 3D. The matrices whose determinant is -1 represent reflections.
Remember that just like in the 2D case (or every dimension), if R is a rotation matrix, then
RT = R−1. So RT represents the rotation in the inverse direction.

Just like SO(2), SO(3) is the special orthogonal group in 3D, which represents rigid body
rotation in 3D. Unfortunately, it is not a simple extension of 2D rotation. Matrices in SO(2) and
hence rotations in 2D have one degree of freedom. rotations in SO(3) can be represented by three
independent parameters. Remember that in 2D the rotation axis is outside the plane, whereas in
3D the axis is inside the space. Just imagine a door rotating around its axis! The axis is part of
the door, and it is the only part which does not move when the door opens and closes. Indeed,
one way to represent rotations in 3D, and perhaps the most convenient one to apply to protein
structural manipulation, is by an angle around an axis. Also unfortunately, SO(3), despite being
a 3D space, cannot be smoothly mapped into R3. As a matter of fact it has the topology of the
projective space, P3. More on that later.

Here are several ways to represent rotations in 3D:

• 3x3 matrix representing an arbitrary rotation

• Euler angles (phi,theta,psi or Yaw, pitch, roll angles)

• Axis-angle representation

• Quaternions

3.1 3X3 Matrix

The simplest, most straight-forward way to represent rotations in 3D is a 3X3 matrix where each
column vector represents a rotation around one of the principal axes:

R =

 x̃1 ỹ1 z̃1
x̃2 ỹ2 z̃2
x̃3 ỹ3 z̃3

 =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 ∈ SO(3)

Rotating a Point in 3D: To perform a 3D rotation of a point p =< px, py, pz >, you sim-
ply multiply the matrix and the point. The result is a counter-clockwise (CCW) rotated vector
according to the rules of matrix multiplication: R11 R12 R13

R21 R22 R23

R31 R32 R33

 px
py
pz

 =

 R11px +R12py +R13pz
R21px +R22py +R23pz
R31px +R32py +R33pz


One may imagine a rotation matrix as an alternative axis system, where rotating a vector is

actually transforming the vector into the alternative system (see Figure ??). Therefore, we can
thing of a rotation matrix as a combination of individual rotations around the three principal axes.
As a reminder, a rotation around a principal axis takes the form:

9

x y

z

x̃

ỹ

z̃

Figure 6: A 3D rotation matrix can be seen as an alternative axis system which is rotated with
respect to the global axis system.

1. CCW rotation around the x-axis by an angle γ:

Rx(γ) =

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ


2. CCW rotation around the y-axis by an angle β:

Ry(β) =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ


3. CCW rotation around the z-axis by an angle α:

Rz(α) =

 cosα − sinα 0
sinα cosα 0

0 0 1


Notice that when each one of the above angles is zero we simply get the identity matrix, which

does nothing!

Example: Let us rotate the vector v = {1, 2, 3} around the z axis by 60◦ and then around the y
axis by −60◦: cos 60 − sin 60 0

sin 60 cos 60 0
0 0 1

 1
2
3

 =

 1 ∗ 0.5− 2 ∗ 0.866 + 3 ∗ 0
1 ∗ 0.866 + 2 ∗ 0.5 + 3 ∗ 0

0 + 0 + 3 ∗ 1

 =

 −1.232
1.866

3


10

Then: cos 60 0 − sin 60
0 1 0

sin 60 0 cos 60

 −1.232
1.866

3

 =

 −1.232 ∗ 0.5 + 1.866 ∗ 0− 3 ∗ 0.866
−1.232 ∗ 0 + 1.866 ∗ 1 + 3 ∗ 0

−1.232 ∗ 0.866 + 1.866 ∗ 0 + 3 ∗ 0.5

 =

 −3.214
1.866
0.433


Roll Pitch Yaw and Euler Angles

The above rotation matrices around the x, y and z axes are often referred to as roll, pitch and yaw,
respectively. These terms are borrowed from aviation technology.

x

y

z

yaw

pitch

roll

β

α

γ

Figure 7: Roll (x), Pitch (y) and Yaw (z) rotation angles

To combine rotations, one simply has to multiply their rotation matrices. Since SO3 is a group,
the resulting matrix is also a rotation matrix. However, remember that matrix multiplication is not
commutative (order matters!) To figure out what a combined rotation may look like, you should
look at order from right to left. For example – Rx(γ)Ry(β) rotates by beta around y and then
rotates the result around x by γ See Figure ?? to see how the order influences the end result.

Here is an example of combining rotations around the three axes:

(3) R(α, β, γ) =

 cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ
sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ cosα sin γ
− sinβ cosβ sin γ cosβ cos γ


Euler Angles

The representation of rotations in 3D by combining three individual rotations was presented by
Leonhard Euler. The three parameters representing rotations around the principal axes are often
referred to as α, β, γ or φ, θ, ψ. We can achieve any rotation by combining rotations. There are
several combinations known as proper Euler angles –

11

Rotation by -15 degrees around x

x y

z

x

y′

z′

θ = −15◦

Rotation by 45 degrees around y

x y

z

x′

y

z′

θ = 45◦

Rotation by 30 degrees around z

x y

z

x′

y′

z

θ = 30◦

Rotation Sequence – xzy

x y

z

x′

y′

z′

Rotation sequence – xyz

x y

z

x′

y′

z′

Rotation Sequence – yzx

x y

z

x′

y′

z′

Figure 8: Examples of different counter-clockwise rotations.

12

Figure 9: Euler Angles – Example: −60◦, 30◦, 45◦

R =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 1 0 0
0 cosβ sinβ
0 − sinβ cosβ

 cosα sinα 0
− sinα cosα 0

0 0 1


There are two major problems with yaw, pitch, roll and Euler angles:

1. There are cases where a continuum of values yield the same rotation matrix (no unique solution
in certain cases).

2. There are cases where non-zero angles yield the identity rotation matrix which is equivalent
to zero angles

For example – when β = 0, Euler angle representation becomes:

R =

cosα − sinα 0
sinα cosα 0

0 0 1

1 0 0
0 1 0
0 0 1

cos γ − sin γ 0
sin γ cos γ 0

0 0 1


=

cos(α+ γ) − sin(α+ γ) 0
sin(α+ γ) cos(α+ γ) 0

0 0 1


This situation is called a ”Gimbal lock” (see Figure ??).

13

Figure 10: Example of a gimbal. Left: No lock. Right: Lock

3.2 Axis-Angle Representations

Given a rotation axis represented as a unit vector k̂, rotating a vector v by an angle θ, a nice way
to model the rotation is through Rodrigues’ formula:

vrot = v cos θ + (k̂ × v) sin θ + k̂(k̂ · v)(1− cos θ)

Explanation: The plane of rotation is perpendicular to k̂. Using the dot and cross products,
the vector v can be decomposed into components parallel and perpendicular to the axis k as follows:

v = v‖ + v⊥

Where v‖ = (v · k̂)k̂ is the vector projection of v on the rotation axis k̂. This part is parallel to
the rotation axis and hence is not affected by the rotation. As mentioned above, the cross product
of two vectors creates a vector perpendicular to both vectors. Hence, the three vectors k̂, k̂ × v
and k̂ × (k̂ × v) are three mutually perpendicular unit vectors, so k̂ × v is perpendicular to the

plane defined by k̂ and v, and k̂× (k̂× v) is perpendicular to both k̂ and k̂× v. The perpendicular

component v⊥ is the projection of v on the plane perpendicular to k̂ and k × v, in the direction
facing away from k̂ × (k̂ × v) . Therefore v⊥ = v − v‖ = v − (k̂ · v)k̂ = −k̂ × (k̂ × v). Figure ??
shows an illustration of the above.

So, as seen in the figure, the only part that rotates is v⊥ = v − (k̂ · v)k̂, and it is a 2D rotation

by θ around the plane defined by k̂ × v and k̂ × (k̂ × v). Using the formula for 2D rotation, the
rotated component is:

v′⊥ = (k̂ × v) sin θ − (k̂ × (k̂ × v)) cos θ = (k̂ × v) sin θ + v cos θ − (k̂ · v)k̂ cos θ

Add to it the v‖ component that did not change and get:

v′ = (k̂ × v) sin θ + v cos θ + (k̂ · v)k̂(1− cos θ)

Obviously, you can convert the representation into a matrix, but it is ugly and cumbersome, so
let us leave it at that.

14

k̂

v

v′

θ

k̂(k̂ · v)

k̂ × vk̂ × (k̂ × v)

Figure 11: Dividing v into vparallel and v⊥ with respect to the rotation axis k̂. Only v⊥ is rotated

Rotating a Molecule Around a Dihedral Angle

Often, when we manipulate a protein structure we manipulate its backbone (sometimes side-chain)
dihedral angles by a magnitude of, say, θ. Then, when we think of rotating a backbone dihedral
angle, it is more convenient to think of rotating atoms by an angle θ around an axis defined by the
two middle atoms of the dihedral angles, as seen in Figure ??. If we denote the atoms defining the
dihedral angle as (i, i + 1, i + 2, i + 3), the rotation axis is defined as the bond between (i, i + 1).
When rotating around an axis, the axis itself does not change as well as what precedes the axis.
This means that the only atoms whose positions change are i+ 3 and above. These atoms should
be rotated by angle θ around the axis. There is one caveat though. The above rotation matrices

rotate the point as if its distance from the origin is d =
√
p2x + p2y + p2z. However, in most PDB files

the atoms are located in an arbitrary coordinate system. The axis defined by (i, i+ 1) also resides
in an arbitrary place in space. For the rotation to be correct, the axis should be centered at the
origin.

We should be cautious about the outcome and first translate the axis to the origin. Otherwise,
the atoms will be rotated around an axis that resides in an arbitrary location in space, at an
arbitrary distance from the origin. Therefore, a simple protocol for modifying a dihedral angle
defined by atoms (i, i+ 1, i+ 2, i+ 3) is as follows:

1. Translate the molecule so that atom i+ 1 is at the origin (just subtract its coordinates from
every atom).

2. Define the rotation axis as ||i+ 2− i+ 1|| (the unit vector on the bond between i+2 and i+1).

3. Apply a rotation by θ to every atom starting at i+3 around the axis.

15

✐

✐�✁ ✐�✂

✐�✄

❛�✁✂

✐

✐✄☎ ✐✄✆

✐✄✝

Figure 12: Modification of a dihedral angle is like rotating around the axis defined by the bond
between the two middle atoms.

3.3 Axis-Angle Representations Through Quaternions

Quaternions are an extension of complex numbers. As the name suggests, they have four compo-
nents: h = a+ bi+ cj + dk, where a, b, c, d are real numbers.

i,j,k are imaginary numbers such that:

• i2 = j2 = k2 = −1

• ij = k, jk = i, ki = j

• ij = −ji, jk = −kj, ki = −ik

In other words, i, j, and k represent three distinct roots of -1.

Just like a vector, the Magnitude of a quaternion is ||h|| =
√
a2 + b2 + c2 + d2 A unit quaternion

is a quaternion such that ||h|| = 1

We can normalize a quaternion by dividing it by its magnitude: h/||h||.
Quaternions are a very convenient way to represent a rotation around an axis by an angle. The

real component, a, represents the angle. The axis is represented by the three numbers making up
the imaginary component, v = [b, c, d]

h = cos
θ

2
+ (v1 sin

θ

2
)i+ (v2 sin

θ

2
)j + (v3 sin

θ

2
)k

h = cos
θ

2
+ v sin

θ

2

−h = − cos
θ

2
− v sin

θ

2

We assume that v is a unit vector!

16

v
θ

(a)

−v

2π − θ

(b)

Figure 13: A rotation around an axis. Notice that the left and right rotations are equivalent!

3.4 Operations on Quaternions – Multiplication

One of the most important operations with a quaternion is multiplication. Given two unit quater-
nions representing rotations, we can think of multiplying them as combining rotations.

Given two quaternions – h1 = a1 + ib1 + jc1 +kd1, h2 = a2 + ib2 + jc2 +kd2 Assume v = [b, c, d],
like a 3-D vector. h1 · h2 = (a1 ∗ a2 − v1 · v2, a1v2 + a2v1 + v1 × v2) v1 · v2 is the dot product of v1
and v2, v1 × v2 is the cross product. h1 · h2 = a3 + ib3 + jc3 + kd3 Where:

a3 = a1a2 − b1b2 − c1c2 − d1d2
b3 = a1b2 + a2b1 + c1d2 − c2d1
c3 = a1c2 + a2c1 + b2d1 − b1d2
d3 = a1d2 + a2d1 + b1c2 − b2c1

Rotations Using Quaternions: Given a unit quaternion h = a+bi+cj+dk, define its conjugate
quaternion h∗ = a− bi− cj − dk:

1. Transform point p(x, y, z) by sandwiching: h · p · h∗
2. Treat p as a quaternion with no real component (a=0).

3. The rotated point p′(x′, y′, z′) is obtained by the i,j,k components of the result

4. To multiply a vector and a quaternion, see matrix representation above.

5. Don’t forget to translate the vector to the origin and translate back.

Combining Two Rotations

• Lemma: (pq)∗ = q∗p∗.

• Sandwiching: Sh(v) = h · v · h∗

• (Sh1
◦ Sh2

)(v) = Sh1
(Sh2

(v)) = Sh1
(h2vh

∗
2) = h1(h2vh

∗
2)h1∗ = (h1h2)v(h∗2h

∗
1) = Sh1h2

(v)

Here are some useful examples:
Here are some examples:

17

Table 3: Quaternions representing some useful rotations. Data taken from http://www.ogre3d.org/ .

a b c d Description
1 0 0 0 Identity, no rotation
0 1 0 0 180◦ turn around X axis
0 0 1 0 180◦ turn around Y axis
0 0 0 1 180◦ turn around Z axis√

0.5
√

0.5 0 0 90◦ rotation around X axis√
0.5 0

√
0.5 0 90◦ rotation around Y axis√

0.5 0 0
√

0.5 90◦ rotation around Z axis√
0.5 -

√
0.5 0 0 -90◦ rotation around X axis√

0.5 0 -
√

0.5 0 -90◦ rotation around Y axis√
0.5 0 0 -

√
0.5 -90◦ rotation around Z axis

Example – Rotation by 90◦ around Y axis: v = [0, 1, 0] (the rotation axis, which is the Y
axis). θ = 90◦. h = cos θ2 + (v1 sin θ

2)i + (v2 sin θ
2)j + (v3 sin θ

2)k =
√

0.5 + 0 ∗ i +
√

0.5 ∗ j + 0 ∗ k
h =
√

0.5 +
√

0.5 ∗ j h∗ =
√

0.5 −
√

0.5 ∗ j Say p = [1, 2, 3] = 1 ∗ i + 2 ∗ j + 3 ∗ k Transforming p:
p′ = h · p · h∗ = (

√
0.5 +

√
0.5 ∗ j) · (i+ 2 ∗ j + 3 ∗ k) · (

√
0.5−

√
0.5 ∗ j)

Example – Rotation by 90◦ around Y axis

• Transforming p: p′ = h · p · h∗ = (
√

0.5 +
√

0.5 ∗ j) · (i+ 2 ∗ j + 3 ∗ k) · (
√

0.5−
√

0.5 ∗ j)

• h1 · h2 = (a1 ∗ a2 − v1 · v2, a1v2 + a2v1 + v1 × v2)

• p · h∗ = −[1, 2, 3] · [0,−
√

0.5, 0],
√

0.5 ∗ [1, 2, 3] + [1, 2, 3]× [0,−
√

0.5, 0]...

• h · p · h∗ = 0, 3, 2,−1

Summary – Quaternions Vs. Matrices

• A quaternion needs 4 doubles instead of 9

• Sandwiching takes 28 multiplications while matrices need 9

• Composing rotations takes 16 multiplications with quaternions and 27 for matrices

• When composing matrices, numerical inaccuracies lead to distortions. Vectors are no longer
orthonormal and angles are distorted.

• Quaternions do not distort angles and renormalization is just a division by the quaternion
magnitude : q = q/|q|

• In interpolation with matrices R(t) = (1− t)R0 + tR1, R(t) does not represent a rotation.

• With q(t) = (1− t)q0 + tq1, q(t)/|q(t)| is a valid rotation

18

Some Resources

• http://mathworld.wolfram.com/RotationMatrix.html

• http://mathworld.wolfram.com/EulerAngles.html

• http://mathworld.wolfram.com/Quaternion.html

4 Problems in Structural Bioinformatics

Here – what do we do with these representations

19

http://mathworld.wolfram.com/RotationMatrix.html
http://mathworld.wolfram.com/EulerAngles.html
http://mathworld.wolfram.com/Quaternion.html

