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Dimensionality Reduction – Motivation

The computations required to simulate protein motion in silico
are computationally expensive and involve non-trivial energy
calculations.

These simulations provide us with the (x , y , z) positions of all
the atoms in the molecule.

For a molecule with N atoms, this amounts to 3N numbers
per conformation.

For large molecules (such as proteins) the number of atoms is
large and thus the dimensionality of the obtained data is
extremely high.

That is, a conformation sample for a protein with N atoms
can be thought of as a 3N-dimensional point.
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Dimensionality Reduction – Motivation

However, many biological processes are known to be very
structured at the molecular level, since the atoms self-organize
to achieve their bio-chemical goal.

An example of such a process is protein folding.

To study such processes based on data gathered through
simulations, there is a need to ”summarize” the
high-dimensional conformational data.

Simply visualizing the time-series of a moving protein as
produced by simulation packages does not provide a lot of
insight into the process itself.

One way is to turn conformations into a low-dimensional
representation, such as a vector with very few components,
that somehow give the ”highlights” of the process.

This data analysis process is called dimensionality reduction.
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Dimensionality Reduction – Motivation

When molecular motion is sampled, there is a need to simplify
the high-dimensional (albeit redundant) representation of a
molecule given as a 3N-dimensional point.

It is believed that the actual degrees of freedom of the process
are much less, as explained before.

The resulting simplified representation are used to classify the
different conformations along one or more ”directions” or
”axes” that provide enough discrimination between them.
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Dimensionality Reduction – Motivation

Dimensionality Reduction techniques aim at analyzing a set of
points, given as input, and producing the corresponding
low-dimensional representation for each.

The goal is to discover the true dimensionality of a data set
that is only apparently high-dimensional.

There exist mathematical tools to perform automatic
dimensionality reduction, based on arbitrary input data in the
form of high-dimensional points (not just molecules).

Nurit Haspel CS612 - Algorithms in Bioinformatics



Dimensionality Reduction

Although different techniques achieve their goals in different
ways, and have both advantages and disadvantages, the most
general definition for dimensionality reduction could be stated
as follows:

INPUT: A set of M-dimensional points.
OUTPUT: A set of d-dimensional points, one for each of the
input points, where d << M.

Some dimensionality reduction methods can also produce
other useful information, such as a ”direction vector” that can
be used to interpolate atomic positions continuously along the
main motions (like in PCA, which will be discussed later).
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A Simple Example

As a simple example of dimensionality reduction, consider the
case of a bending string of beads.

The input data has 3x7 = 21 dimensions (if given as the
(x , y , z) coordinates of each bead) but the beads always move
collectively from the ”bent” to the ”straight” arrangement.

Under this simpified view, the process can be considered as
one-dimensional, and a meaningful axis for it would represent
the ”degree of straightness” of the system.

Using this axis, each string of beads can be substituted by one
single number, its ”coordinate” along the proposed axis.

Thus, the location of a shape along this axis can quickly
indicate in what stage of the bending process it is.
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A Simple Example
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Dimensionality Reduction in Molecules

When dimensionality reduction methods are applied to
molecular motion data, the goal is to find the main
”directions” or ”axes” collectively followed by the atoms, and
the placement of each input conformation along these axes.

The meaning of such axes can be intuitive or abstract,
depending on the technique used and how complex the system
is. We can reword the definition of dimensionality reduction
when working with molecular motion samples as:

INPUT: A set of molecular conformations sampled from some
physical process, given as the (x , y , z) coordinates for each
atom. These are 3N-dimensional points for a molecule with N
atoms.
OUTPUT: A set of d coordinates for each input conformation,
such that d << 3N. These d coordinates should help classify
the conformations throughout the main stages of the studied
process.
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Dimensionality Reduction in Molecules

Dimensionality reduction methods can be either linear or
non-linear.

Linear methods typically compute the low-dimensional
representation of each input point by a series of mathematical
operations involving linear combinations and/or linear matrix
operations.

Non-linear methods use either non-linear mathematics or
modify linear methods with algorithmic techniques that
encode the data’s ”curvature” (such as Isomap, explained
later).

Both categories of methods have advantages and
disadvantages, which will become clear through the rest of
this lecture.
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Principal Component Analysis (PCA)

Each point in this simple data set is given as a 3-dimensional
vector (x , y , z)

The discussion will later be turned to the molecular motion
domain, and the interpretation of such data.

In the example below, even though this data set is given as
3-dimensional points, it is obvious that the data points are
distributed mostly on a two-dimensional surface.

Our objective is then to find the inherent, 2-dimensional
parameterization of this data set.

For the simple example, the reader can agree that the last
direction of maximum variance, the 3rd in this case, accounts
for little or no data variability.

Therefore we discard the components that do not add a
significant contribution to the data variance.
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PCA Example
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PCA Overview

For data points of dimensionality M, the goal of PCA is to
compute M so-called Principal Components (PCs), which are
M-dimensional vectors that are aligned with the directions of
maximum variance (in the mathematical sense) of the data.
These PCs have the following properties:

The PCs are ordered by data variance. In other words, the first
PC is aligned with the direction of maximum variance, the
second PC in the next direction contributing to the most
variance, and so on.
The PCs form an orthonormal basis, that is, they are all
mutually perpendicular and have unit length. This gives PCs
the useful property of being uncorrelated.
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PCA Main Uses

Project the input data onto the PCs: The dot product of an
input data point with any PC returns the scalar value of the
projection of the point onto the PC.

Since the PCs have unit length, this projection serves as the
coordinate of the input point along the PC in question.

In principle, M-dimensional input data can be projected onto
its M PCs, but typically we using just the first d PCs as a
basis and computing the projections onto them to get the
best d-dimensional representation for each point.

This is the actual dimensionality reduction.
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PCA Main Uses

Interpolate or synthesize new points: The PCs themselves
point in the direction of maximum variance.

For this reason, PCi can be used as a direction vector along
which new points can be synthesized by choosing parameter
values ai and then producing artificial M-dimensional points
by doing the linear combination a1PC1 + a2PC2 + . . . .

Points synthesized in this way would lie approximately on the
low-dimensional hyperplane spanned by the original data set.

The projections of the original points correspond to particular
values for these new ”coordinates” ai .

Being able to interpolate other points not in the original data
set is a useful property that other dimensionality reduction
methods do not have.
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Summary of PCA Stages

1 Let the input data consist of n observations xi , each of
dimensionality M. Construct an n ×M matrix X of centered
observations by subtracting the data mean from each point,
so that Xij = xij− < x >j

2 Construct the covariance matrix C = XXT

3 Compute the top d eigenvalues and corresponding
eigenvectors of C , for example by performing an SVD of C .

4 The first d PCs of the data are given by the eigenvectors,
which can be placed in a d ×M matrix P. The residual
variance can be computed from the eigenvalues as explained
above.

5 To project the original (centered) points into the optimal
d-dimensional hyperplane, compute the dot product of each
point with the PCs to obtain the projections yi . This can be
written as Y = PTX .
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PCA Outline

The data has to be centered in every direction first.

If new points need to be synthesized using the PCs, the
centroid can be added to place the newly synthesized points
in the correct region of space.

To compute the principal components, let X be an n ×M
matrix that contains n M-dimensional data points in its
columns, centered at the origin

Goal: find P, an M ×M orthonormal transformation
containing the PCs, such that:

Y = PTX , where the columns of Y are the projections onto
the PCs.
PPT = I , that is, P is orthonormal.
YY T = D, the covariance matrix of the projected points Y , is
a diagonal matrix, so that the resulting projections are
uncorrelated.
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PCA Outline

The resulting covariance matrix YY T can be re-written as:

YY T = (PTX )(PTX )T = PT (XXT )P

We want YY T to be a diagonal matrix D so we can write:
YY T = PT (XXT )P = D

Multiplying by P to the left and PT to the right we get:
XXT = PDPT

Remember that since P is orthonormal, PPT = I

Applying SVD on XXT yields: XXT = VSW T

Where V and W are the left and right eigenvectors of XXT ,
and S is a diagonal matrix with the eigenvalues.

In this case the left and right eigenvalues coincide since XXT

is a symmetric matrix by construction, so we can write:
PDPT = VSV T .
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PCA Outline (cont.)

The above, plus the fact that P and V are orthonormal,
means that P = V and D = S (because both D and S are
diagonal)

So, the PCs are given by the eigenvectors of the centered
covariance matrix XXT .

Moreover, the diagonal matrix of eigenvalues, S , is equal to
the matrix D, which is the covariance of the projected points
Y .

Since it is a diagonal matrix, the diagonal contains the
variance of the projected data set along each dimension.

SVD usually sorts the eigenvectors by decreasing order of
variance.
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The Meaning of the PCs

The eigenvalues eigenvalues actually correspond to the
variance along each PC.

By computing the ratio of each eigenvalue si to the total sum,
one can obtain the fraction of total variance explained by each
PC when the data is projected onto them.

Subtracting the sum of variance fraction for the first d PCs
from 1, we can obtain the residual variance rd – the amount
of variance in the original data left unexplained by discarding
the PCs corresponding to the lower M-d eigenvalues:

rd = 1−
d∑

i=1

si
M∑
j=1

sj

Which is a typical measure of the error made by approximating
the data set using only the first d principal components
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PCA of Conformational Data

We can apply PCA to a set of molecular conformations, which
will serve as our high-dimensional points.

The input dimensionality of each point is 3N, where N is the
number of atoms in the molecule.

We have n such conformations, that have been gathered
through sampling (for example MD simulations), and we want
to reduce the dimensionality of each ”point” (conformation)
for analysis purposes.

The data used as input for PCA is in the form of several
atomic position vectors corresponding to different structural
conformations which together constitute a vector set.

Each vector in the conformational vector set has dimension
3N and is of the form [x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN ],
where [xi , yi , zi ] corresponds to the Cartesian coordinates of
the i th atom.
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PCA of Conformational Data

First, all conformations need to be aligned with a reference
structure.

It is important because usually molecular conformations that
result from simulations are similar in shape but
translated/rotated with respect to each other.

Aligning all conformations to the same reference structure
yields comparable results in general.

The PCA procedure can then be used exactly as detailed
above.

The first step is to determine the average conformation that
contains the average for all 3N dimensions of the data set.
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PCA of Conformational Data

It is important to note that this ”average conformation” is not
a physically feasible molecule.

It is used to center the data.

The PCs can be used to obtain a low-dimensional
representation of each point and to synthesize (or interpolate)
new conformations by following the PCs.

The PCs represent the ”main directions” followed collectively
by the atoms.

Interpolating along each PC makes each atom follow a linear
trajectory, that corresponds to the direction of motion that
explains the most data variance.
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PCA of Conformational Data

For this reason, the PCs are often called Main or Collective
Modes of Motion.

Interpolating along the first few PCs has the effect of
removing atomic ”vibrations”that correspond to the least
important modes of motion.

It is now possible to define a lower-dimensional subspace of
protein motion spanned by the first few PCs and project the
initial high dimensional data onto this subspace.

Since the PCs are displacements (and not positions), in order
to interpolate conformations along the main modes of motion
one has to start from one of the known structures and add a
multiple of the PCs as perturbations.
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PCA of Conformational Data

in order to produce conformations interpolated along the first
PC one can compute c + λ1PC1 where c is a conformation
from the (aligned) data set and λ1 adds a deviation from the
structure c along the main direction of motion.

The parameter can be either positive or negative.

However, large values of the interpolating parameter will start
stretching the molecule beyond physically acceptable shapes,
since the PCs make all atoms follow straight lines and will
fairly quickly destroy the molecule’s topology.

A typical way of improving the physical feasibility of
interpolated conformations is to subject them to a few
iterations of energy minimization.
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PCA of Conformational Data

PCA is typically used to determine the smallest number of
uncorrelated principal components that explain a large
percentage of the total variation in the data, as quantified by
the residual variance.

The exact number of principal components chosen is
application-dependent and constitutes a truncated basis of
representation.

The example shows Cyanovirin-N (CV-N) protein (2EZM).

This protein only has 101 amino acids and using Cα based
simulation yields 303 degrees of freedom.

Folding/unfolding simulations starting from the native PDB
structure produce abundant conformation samples of CV-N
along the folding reaction.
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PCA Example
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Example – HIV Protease

The HIV-1 protease plays a vital role in the maturation of the
HIV-1 virus by targeting amino acid sequences in the gag and
gag-pol polyproteins.

The active site of HIV-1 protease is formed by the homodimer
interface and is capped by two identical beta-hairpin loops
from each monomer, which are usually referred to as ”flaps”.

The active site structure for the bound form is significantly
different from the structure of the unbound conformation.

In the bound state the flaps adopt a closed conformation
acting as clamps on the bound inhibitors or substrates,
whereas in the unbound conformation the flaps are more open.

A backbone-only representation of HIV-1 has 594 atoms,
which amounts to 1,782 degrees of freedom for each
conformation.

This is the input to the simulation.
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Example – HIV Protease

Applying PCA to a set of HIV-1 samples from simulation
produces 1,782-dimensional principal components.

Since the physical interpretation of the PCs is quite intuitive
in this case, the PC coordinates can be split in groups of 3 to
obtain the (x , y , z) components for each of the 594 atoms.

These components are 3-dimensional vectors that point in the
direction each atom would follow along the first PC.

Note that the first mode of motion corresponds mostly to the
”opening” and ”closing” of the flaps

Thus, interpolating in the direction of the first PC produces
an approximation of this motion, but using only one degree of
freedom.

This way, the complex dynamics of the system and the 1,782
apparent degrees of freedom have been approximated by just
one, effectively reducing the dimensionality of the
representation.
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PCA Example
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Non-Linear Dimensionality Reduction

PCA is a linear method, since the PCs are computed as a
series of linear operations on the input coordinates.

Linear methods work well only when the collective atom
motions are small (or linear), which is hardly the case for most
interesting biological processes.

Non-linear dimensionality reduction methods are normally
much more computationally expensive and have other
disadvantages as well.

However, they are much more effective in describing complex
processes using much fewer parameters.
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Non-Linear Example

The data in the following example is apparently
two-dimensional, and naively considering the data variance in
this way leads to two ”important” principal components.

However, the data has been sampled from a one-dimensional,
but nonlinear, process.
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Non-Linear Dimensionality Reduction

Most interesting molecular processes are low-dimensional but
highly nonlinear in nature.

For example, in protein folding the atom positions follow very
complicated, curved paths to achieve the folded shape.

However, the process can often still be thought of as mainly
one-dimensional.

Linear methods such as PCA would fail to correctly identify
collective modes of motion that do not destroy the protein
when followed.

Several non-linear dimensionality reduction techniques exist,
that can be classified as either parametric or non-parametric.
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Parametric vs. Non-parametric Method

Parametric methods need to be given a model to try to fit
the data, in the form of a mathematical function called a
kernel.

Kernel PCA is a variant of PCA that projects the points onto
a mathematical hypersurface provided as input together with
the points.

When using parametric methods, the data is forced to lie on a
supplied surface, so in general this does not work well with
molecular motion data.

Non-parametric methods use the data itself in an attempt
to infer the non-linearity from it

The most popular methods are Isometric Feature Mapping
(Isomap) Locally Linear Embedding (LLE).
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Isometric Feature Mapping (Isomap)

is based on an improvement over a previous technique known
as MultiDimensional Scaling (MDS).

Isomap aims at capturing the non-linearity of a data set by
computing relationships between neighboring points.

MDS is a technique that produces a low-dimensional
representation for an input set of n points, where the
dimensions are ordered by variance, so it is similar to PCA in
this respect.

However, MDS requires as input a data set of points, and a
distance measure d(i , j) between any pair of points xi and xj .
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Multidimensional Scaling (MDS)

MDS first computes all the pairwise distances between the
input points, and creating a matrix D so that Dij = d(i , j).

The goal is to produce, for every point, a set of n Euclidean
coordinates such that the Euclidean distance between all pairs
match as close as possible the original pairwise distances Dij .

If the distance measure between points has the metric
properties, then n Euclidean coordinates can always be found
such that the Euclidean distance between them matches the
original distances.

Such coordinates are assumed to be centered around 0.
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Multidimensional Scaling (MDS)

The matrix of pairwise distances D can then be converted
into a matrix of dot products by squaring the distances and
performing a ”double centering” on them to produce the
matrix B of pairwise dot products B = −1

2HnD
2Hn

Hn = In − 1
n11

T is a centering matrix (11T is a n × n matrix
of all 1’s).

Let’s assume that n Euclidean coordinates exist for each data
point and that such coordinates can be placed in a matrix X .

Then, multiplying X by its transpose should equal the matrix
B of dot products computed before.
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Multidimensional Scaling (MDS)

Finally, in order to retrieve the coordinates in the unknown
matrix X , we can perform an SVD of B which can be
expressed as: B = XXT = QΛQT

The left and right singular vectors coincide because B is a
symmetric matrix.

The diagonal matrix of eigenvalues can be split into two
identical matrices, each having the square root of the
eigenvalues, and a solution for X can be found as X = QΛ1/2.

Just like PCA, the coordinates are ordered by variance.
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Geodesic Distances

The notion of ”geodesic”
distance was originally
defined as shortest path
between two points on the
surface of the Earth

The concept can be
generalized to any
mathematical surface, and
defined as ”the length of the
shortest path between two
points that lie on a surface,
when the path is constrained
to lie on the surface.
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The Isomap Algorithm Outline

1 Build the neighborhood graph. Take all input points and
connect each point to the closest ones according to the
distance measure used. Different criteria can be used to select
the closest neighbors, such as the k closest or all points within
some threshold distance.

2 Compute all pairwise geodesic distances. These are computed
as the shortest paths on the neighborhood graph. Efficient
algorithms for computing all-pairs-shortest-paths exist, such as
Dijkstra’s algorithm. All geodesic distances can be put in a
matrix D.

3 Perform MDS on geodesic distances. Take the matrix D and
apply MDS to it. That is, apply the double-centering formula
explained above to produce B, and compute the
low-dimensional coordinates by computing B’s eigenvectors
and eigenvalues.
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The Isomap Algorithm

The Isomap method augments classical MDS with the notion
of geodesic distance, in order to capture the non-linearity of a
data set.

Isomap uses MDS to compute few Euclidean coordinates that
best preserve pairwise geodesic distances, rather than direct
distances.

Since the coordinates computed by MDS are Euclidean, these
can be plotted on a Cartesian set of axes.

The effect of Isomap is similar to ”unrolling” the non-linear
surface into a natural parameterization.

Isomap approximates the geodesic distances from the data
itself, by first building a neighborhood graph for the data.

A neighborhood graph consists of the original set of points,
together with a connection between ”neighboring” points.
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The Isomap Algorithm

After the neighborhood graph has been built, it can be used
to approximate the geodesic distance between all pairs of
points as the shortest path distance along the graph.

Naturally, the sampling of the data set has to be enough to
capture the inherent topology of the non-linear space for this
approximation to work.

MDS then takes these geodesic distances and produces the
Euclidean coordinates for the set.
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Advantages and Disadvantages

The Isomap algorithm captures the non-linearity of the data
set automatically, from the data itself. It returns a
low-dimensional projection for each point;

These projections can be used to understand the underlying
data distribution better.

However, Isomap does not return ”modes of motion” like
PCA does, along which other points can be interpolated.

Also, Isomap is much more expensive than PCA, since building
a neighborhood graph and computing all-pairs-shortest-paths
can have quadratic complexity on the number of input points.

Plus, there is the hidden cost of the distance measure itself,
which can also be quite expensive.
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Applications to Bioinformatics

In order to apply Isomap to a set of molecular conformations
all that is needed is a distance measure between two
conformations, for example lRMSD.

There is no need to pre-align all the conformations in this
case, since lRMSD already includes pairwise alignment.

Thus, the Isomap algorithm as described above can be
directly applied to molecular conformations.

Choosing an appropriate value for a neighborhood parameter
(such as k) may require experience, though, and it may
depend on the data.

It should be noted that we do not know, a priori, what the
surface looks like.

But we know that the process should be low-dimensional and
highly non-linear in nature.

The distance measure has an impact on the final coordinates
as well.
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CVN Example

There is a clear difference between PCA and Isomap.

Isomap identified an intermediate and folding route where
PCA did not.

However, Isomap is much more expensive.
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