
Methods of Protein Structure
Comparison

Introduction

Many of the algorithms discussed before require comparing two molecules (or molecular complexes).
For example, when trying to fold a protein, how do we know whether our resulting protein is
similar to the native structure. But how do we quantitatively measure the difference between two
structures? We have to come up with a function that, when given two protein structures, tells us
how similar or different they are from one another and this is not a trivial problem. Most intuitively,
our function, d(a, b) should have some or all of the properties of a distance function or a metric:

• The distance is non-negative: d(a, b) ≥ 0 for all a, b.

• The distance of a molecule from itself, d(a, a), is 0.

• The distance is symmetric. d(a, b) = d(b, a).

• Triangular inequality: For every c - d(a, c) + d(b, c) ≤ d(a, c)

To define such a function, we have to first decide on the right way to represent the molecule.
As discussed earlier, there may be several ways to represent a molecule. First, we focus on repre-
sentation as a set of atomic coordinates. In other words – a molecule with n atoms is represented
by a set of 3 ∗ n atomic coordinates, one for each of the location of the x, y, z coordinates of every
atom. There are many ways to measure conformational similarity, and finding a good measure for
conformational similarity is an active research area. What constitutes a good similarity measure
also depends on the type of molecules we are interested in, as we will see later.

1 Root Mean Square Deviation (RMSD)

The most popular method for measuring the distance between two molecules is the RMSD. It is
the average atomic distance between pairs of atoms from the two molecules. Formally, given two
conformations A and B of a molecule of N atoms, represented as two 3×N matrices a and a. The
ith position of each matrix, ai or ai represents the (x, y, z) coordinates of atom i.

RMSD(a, b) is defined as follows:

RMSD(X,Y ) =

√√√√ 1

N

N∑
i=1

|ai − bi|2

Where |ai − bi|2 is the square Euclidean distance between points ai and bi, defined as:

|ai − bi|2 = (aix − bix)2 + (aiy − biy)2 + (aiz − biz)2
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RMSD is one of the simplest measures to quantify how different two protein conformations really
are. It is intuitive and simple to compute by representing conformations as coordinate vectors. One
problem is that the measure, as defined above, does not account for the absolute position and
orientation of the two molecules. This way, even two identical conformations will turn up a very
big RMSD if translated and/or rotated with respect to one another. However, this can be easily
solved using least RMSD (lRMSD) as seen next.

Another extension of the RMSD measure is the weighted RMSD (wRMSD), which allows fo-
cusing on selected subsets of the atoms by assigning different weights to different atoms. It can be
useful, for example, in downplaying the regions known to be inherently disordered:

wRMSD(X,Y ) =

√√√√√√√√
N∑
i=1

wi|xi − yi|2

N∑
i=1

wi

1.1 Least RMSD – lRMSD

Least RMSD calculates RMSD after calculating the optimal alignment of two chains after removal
of the changes due to rigid body transformations (translation and rotation) To remove translation,
we simply align the centroids of the two conformations (centroid = average of all the coordinates).

Let us define the centroids as follows: ca = centroid(a) = 1
N

N∑
i=1

ai and cb = centroid(b) = 1
N

N∑
i=1

bi.

Then we make both molecules centered at the same point. The easiest way is to “drag” both
molecules so that their centers are at the origin. We do it by subtracting the centroid from every
coordinate:

a′i = ai − ca
b′i = bi − cb

Notice that:

• The centroid of each molecule is now at (0, 0, 0) (just calculate the geometric center and see!)

• While the position of the atoms changed, their relative positions with respect to one another
remained the same, since we moved them all by the same magnitude. This is called a rigid
translation, since we moved (translated) all the atoms as a rigid body.

Alternatively, ”drag” molecule a to align with the centroid of b by setting each coordinate in a
to:

a′i = ai − [ca − cb]

In any case, the centroids of the two molecules are now aligned.

2



Removing differences due to rotation are not as straight forward as removing translation, but
still rather simple. Generally, we need to find the optimal transformation U that minimizes the
distance E between y and the transformed x.

E =
1

N

N∑
i=1

|Uxi − yi|2

To solve this equation, we use some linear algebra for the eigenvector decomposition to find U :

NE =

N∑
i=1

(x2i + y2i )− 2Tr(Y TX ′)

So, after centering x and y to remove translations as described above, we do the following:

1. Store centered x and y as 3XN matrices (x,y,z) on rows for each of N points on columns)

2. Compute the transpose Y T of matrix Y

3. Compute the covariance matrix C = XY T

4. Apply SVD (Singular Value Decomposition) to the covariance matrix C

5. SVD yields matrices V , S, WT such that C = V SWT

6. Compute the determinant det(C) of the matrix C

7. compute the sign of this determinant: d=sign(det(C))

8. Finally, compute the optimal rotation U as

U = W

 1 0 0
0 1 0
0 0 d

V T

9. transform x by U and get a new vector Ux

10. lRMSD(x,y) = RMSD(Ux, y)

Despite being popular and simple to calculate, lRMSD has several major shortcomings:

1. Since we average the distance between pairs of atoms, we require a match list as input. In other
words – every atom in x should have a matching atom in y. This limits us to conformations
of the same protein chain. In other cases we need to define a match list and compute the
RMSD only on this list.

2. Since it is an average of the euclidean distances, it tends to average out localized changes.
Conversely, if a small perturbation occurs in a part of the structure, e.g. rotation of a hinge
connecting two domains, lRMSD will report a large value (see Figure 1). The main reason is
that lRMSD does not know how to attribute changes to specific atoms of the chain, since it
distributes change equally (through the averaging) to all atoms in a protein chain
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Figure 1: An example of two conformations of the same molecule. The only difference between
them is one dihedral angle, which would result in shift of one helix with respect to the other, hence
resulting in a large RMSD.

The root-mean-square distance measure accepts a list of pairs. It does not necessarily have to
be atomic coordinates. We can also calculate the RMS of dihedral angles should we want to use
an internal representation of the protein structure that includes bond lengths, planar angles, and
dihedral angles. Usually, we describe the configuration of the backbone by the set of pairs of
dihedral angle values, φ and ψ, which allows us to compare two structures without aligning them
first. It should be noted that RMS of dihedral angles may give us vastly different results than
atom-based RMSD. For example, modifying a small number of backbone dihedral angles can cause
significant change to the structure, while having only marginal effect on the dihedral angle RMSD
(as shown in the example above, Fig. 1). On the other hand, very similar structures are sometimes
characterized by significant variations in their dihedral angles simply because these variations may
partially cancel each other out. This can happen, for example, when there is a large-scale rotation
of the peptide plane that takes the φ and ψ angles at residues i and i + 1 to different regions in the
Ramachandran plot with a relatively small effect on the relative orientation of their side chains.
This is called a peptide plane flipping. In particular, if the changes to |ψi|+ |φi+ 1| are large but
changes to ψi + φi+1 are relatively small.

1.2 Local-Global Alignment

To overcome the main shortcomings of RMSD, CASP model evaluation uses two different tests:
Global Distance Test (GDT) and Longest Continuous Segment (LCS). This measure conducts
multiple superimpositions to find regions of similarity, switching between global alignment (GDT)
and local alignment (LCS), striking the balance between the advantages of each superimposition.
LCS finds the longest segments of residues that can fit under a selected RMSD cutoff. GDT is
searching for the largest (not necessary continuous) set of ”equivalent” residues that deviate by no
more than a specified distance cutoff. The alignment between the first molecule and the second
molecule is then evaluated using Local Global Alignment Scoring function (LGA S). The steps above
are repeated several times to find the complete set of local and global regions of 3D similarities
between given two protein structures.
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LCA: Both structures are scanned stepwise along their backbones and a moving search window
is used to select segments for a comparison. The least RMSD method (see above) is then applied.

GDT: Given two molecules M1 and M2, for each selected pair of three, five and seven residue
segments from both structures, calculate a superposition and an RMSD. Each calculated superpo-
sition is used as a starting point to an initial list of equivalent residues from both molecules. The
list is examined and all the pairs of atoms whose distance is above a given cutoff are removed. The
transformation is recalculated after removing these pairs. The above stage is repeated until there
is no change in the number of atoms. The result is the largest set of (not necessarily contiguous)
residues that can fit under a given distance cutoff.

The LGA Scoring Function: In the structure alignment search procedure, for each generated
list of equivalent residues, the following values are calculated:

• LCS vi is the percent of residues (continuous set) that can fit under an RMSD cutoff of vi Å
(for vi = 1.0, 2.0, . . . )

• GDT vi – an estimation of the percent of residues (largest set) that can fit under the distance
cutoff of vi Å (for vi = 0.5, 1.0, . . . ).

A scoring function (LGA S) can be defined as a combination of these values and can be used to
evaluate the level of structure similarity of selected regions. The combination can be done through
a weight factor w which determines how much weight to give each of the two components.

GDT is dependent on the distance cutoffs which are chosen arbitrarily. Later methods replace
it by a continuous distance dependent weight in the iterative weighted superimposition algorithm.
The algorithm finds the better superimposable core between the two structures as follows:

1. The atomic equivalences are established between the two structures and a vector of per-atom
weights {W1,W2, . . . ,Wn} is initialized to {1, 1 . . . , 1}.

2. A weighted superimposition is performed and the weighted RMSD is described above.

3. The deviations {d1, d2, . . . , dn} are calculated for all atom pairs, and their X-quantile, dX is
determined. X is an input parameter that defines the minimal size of the superimposable core
to be found; by default it is set to 50%.

4. The new weights are calculated according to the formula. Wi = exp(−d2i /d2X). If two atoms
are very closely superimposed, the weight is close to 1. Otherwise, it gets smaller as the
deviation of pairs of atoms gets larger.

5. . Steps 2 – 4 are iterated until the weighted RMSD value stops improving or the specified
maximum number of iterations is reached.

The similarity of the two structures can then be evaluated by the weighted RMSD or by taking the
average of weights recalculated for the structure according to step 4 with dX set to a fixed value,
e.g., 2Å. The complement of this number, denoted superimposition error or Esuper, ranges from 0
to 100% with lower values corresponding to more similar structure pairs:
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Esuper = 100%× (1− 1

n

n∑
i=1

exp(− d
2
i

d2X
))

This measurement is less sensitive to a small number of strongly deviating atoms due to the
exponential scaling. Large discrepancies are captured and quantified.

1.3 TM-score (Template Modeling Score)

Another problem that one runs into when using RMSD to compare protein structures is that the
RMSD distribution also depends on the size of the protein. This becomes important when the
models of several different size proteins are evaluated in comparison with one another. TM-score
aims to eliminate this dependence on the protein size. The score is a number in the range (0, 1],
where a higher score indicates a better match, and 1 is a perfect match. It is basically an extension
of the approach using by the GDT score, as it uses a distance measure to assess similarity.

The score is defined as follows:

TMscore = max{ 1

Ltarget

Laligned∑
i=1

1

1 + ( Di

D0(Ltarget)
)
}

Where Ltarget and Laligned are the lengths of the target protein and the aligned region respec-
tively. Di is the distance between the ith pair of residues and D0(Ltarget) = 1.24 3

√
Ltarget − 15− 1.8

is a normalization factor derived from an analysis of a large scale of structures. The use of Ltarget

eliminates the dependence of the score on the target size.

1.4 Comparing Protein Contacts

Contact-based measures rely on comparison of pairwise distances and/or interactions within one
structure with the corresponding distances/interactions in the other structure rather than the dis-
tances between the corresponding points in the two structures. Therefore there is no need to
superimpose the two structures. The Contact Area Difference (CAD) algorithm defines residue
contact as the difference in accessible surface area when calculated for a pair of residues separately
or together. While this contact area measure provides the most realistic assessment of fold similar-
ity between the two structures, it is very sensitive to the way the side chains are packed. In other
words, it requires specific residue pairs to be in contact with about the same area. If the side chains
are not packed correctly even with roughly similar fold, the distance will be large.

A ”contact” can be defined in several different ways. Given two residues whose C-α or C-β
atoms are located at the distance of dÅ, the residue contact strength can be calculated as

f(d) =


1 if d < dmin

dmax−d
dmax−dmin

if dmin < d < dmax

0 if d > dmax
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where dmin and dmax are predefined distance margin boundaries. The values of dmin and
dmax can be chosen in such a way that the corresponding contact strengths are correlated with the
pairwise residue contact areas which describe the real physical residue interactions. Cβ-Cβ contacts
approximate contact areas more accurately than Cα -Cα , because on average, Cβ atoms are closer
to their residues’ center of mass. Later on, the Cβ atoms were replaced by virtual points, Cβ’,
located in the direction of the Cα-Cβ bonds at the distance of 1.5× dist(Cα− Cβ) from the C-α
atom of each residue. The optimal margin boundaries were found to be dmin = 4Å and dmax = 8Å.

A matrix of atomic contact strength is then defined for each one of the structures: CR
nn for the

first (reference) structure and CM
nn for the second (model) structure. Each entry [i, j] represents

the contact strength between residues i and j. A contact similarity matrix CR∩M is constructed
using CR∩M

i,j = Min(CR[i, j], CM [i, j]) with a weight as |CR∩M | =
∑

i,j C
R∩M [i, j]. This weight

can be compared to either the weight of the contact matrices, |CR| or |CM |, or the union of the
two |CR∪M |, defined by CR∪M = Max(CR[i, j], CM [i, j]) (or their average). The three approaches
result in quantities ranging from 0 to 100% and reflecting recall, precision, and accuracy with which
the model reproduces the reference structure contacts.

For most pairs of experimentally determined structures of the same protein, protein flexibility
and experimental errors lead to the contact strength differences of 5-20%. Small flexible fragments
or even large domain movements have only minor effect on the contact strength matrices making
the contact strength measures robust to elastic large scale deformations. At the same time, these
measures are sensitive to major changes in packing occurring as a result of modeling errors.

An interesting insight is that for experimental structures, pairs may often differ in conformation
(as reflected by superimposition error) or in contacts (as reflected by contact strength difference),
but rarely in both. In contrast, computational models differ from their respective answers by
both parameters simultaneously, especially in the more difficult modeling cases. This observation
stressed the importance of applying complementary structure similarity measures that combine
distance-based and contact-based approaches.

2 Other Quality Assessment: Shape Similarity

Sometimes assessment of cavities on the surface of a protein is more important than the description
of the rest of the structure, especially when the goal is prediction of a binding site rather than of the
entire structure (which can be thought of as a scaffold). Methods that assess surface area, solvent
accessible surface area, that compute volumes, and detect cavities on proteins are very important in
the context of protein binding and docking. To generate a model of the protein surface, we model
each atom as a vdW sphere, the union of which gives the molecular surface

Not all molecular surface is accessible to solvent. Rolling a solvent ball over the VdW spheres
traces out the solvent accessible surface area (SASA) . SASA is important to quantitatively de-
termine interactions of the protein. Figure 3 shows two surfaces generated for the same molecule.
One for a 1.4Å ball and one for a 2.4Å ball. Increasing the radius reduces the SASA due to more
cavities that a bulkier ball cannot penetrate

Computational geometry methods that use Delaunay triangulations and alpha shapes assess
SASA and other geometric descriptors of molecular surfaces, volumes, and cavities. We will come
back to this topic in the context of molecular docking in Chapter ??.
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Figure 2: Stages in calculating molecular surface: (a) A molecule is represented by a set of vdW
spheres. (b) A probe ball is rolled on the surface of the molecule, recording the accessible surface
area. (c) The resulting outline indicates the solvent accessible surface.

(a) (b)

Figure 3: Two molecular surfaces made with a probe radius of 1.4Å (a) and 2.4Å (b)
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Figure 4: Examples of small compounds that can be used as drugs.

2.1 Ultrafast Shape Recognition (USR)

This method is an efficient global comparison of molecular shapes. It is suitable for comparing
small molecules. Since it is very fast it can be used for large database search and does not require
the molecules to be aligned. Drug design requires screening a number of potential compounds. The
goal is to find a set of molecules which closely resemble a lead molecule from a HUGE database
(millions of possible compounds).

Shape similarity may indicate similar binding properties and similar activity. The main idea is
that the shape of a molecule is uniquely determined by the relative positions of the atoms, which
are determined by the inter-atomic distances. The set of inter-atomic distances are constrained due
to forces that hold the atoms together, so gathering statistics about them help us gain information
about the shape of the molecule. Comparing statistics between different molecules help us assess
how similar they are.

Given a molecule, the center of every atom is represented as a coordinate. The shape is described
as 4 sets of atomic distance distributions from the following points:

• Center of mass – ctd

• Point closest to ctd – cst
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Figure 5: Using a set of points for calculating moments

• Point farthest from ctd – fct

• Point farthest from fct – ftf

As seen on the right, the feature points are marked as circles. Notice that the center of mass is
usually located outside the molecule.

The moments of the distributions for each one of the distances are calculated and stored as a
feature vector. They estimate of the size, compactness and symmetry of the molecule. The distance
between two molecules i and j is calculated as the Manhattan distance between their feature vectors
Mi and Mj : Slj = 1

1+ 1
12

12∑
i=1
| ~Mj

i− ~M l
i |
∈ (0, 1]

The feature vector for the molecule is defined as follows:

Where µ1 = average, µ2 = standard deviation = 1
n

n∑
k=1

(dcdtk −µctd
1 )2, µ3 = skewness = 1

n

n∑
k=1

(dcdtk −

µctd
1 )3 Here are two examples. In the first one, the similarity score is high, 0.966, and the molecules

indeed look very similar.
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In the second example the score is 0.812 and even though the general shapes of the two molecules
are similar, the differences are more noticeable.

Advantages and Disadvantages This is an extremely fast method due to calculation of only
4N distances and distributions. Also, it does not require the molecules to be aligned. On the other
hand, it is very sensitive to small changes in the molecule shape, and does not directly account for
chemical interactions and atom types. Because it is so sensitive to small changes in the shape, it
works better for smaller molecules.

3 Further Reading

• For more information about shape computing see http://cnx.org/content/m11616/latest/
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