CS612 Homework Assignment 4

Due Mon. April 24, on Gradescope

1. Representing a sequence as a matrix: One thing you will have to do for your term project is encode a
protein sequence as a set of binary vectors of size 21. This is called “one-hot encoding”. You can use
other representations, of course. Given the following sequence: "DDHHGFDYNGVMVV”, express it as
a binary matrix of size 14 x 21, where 14 is the sequence size and 21 is the “alphabet” of amino acids
one letter codes + space. Every position is a binary vector where The one-letter codes for all amino acids
is: "ACDEFGHIKLMNPQRSTVWY-" (notice the dash in the end). You should attach your code and
the end matrix. You can look here for help: https://machinelearningmastery.com/how-to-one-hot-encode-
sequence-data-in-python/. There are also many R functions.

2. Molecular Dynamic simulations hands-on exercise: In this assignment you will perform a simple MD
simulation of Ubiquitin. You will have to download the NAMD software and you will use VMD for
visualizing and processing the results. Download NAMD and VMD at

http://www.ks.uiuc.edu/Development/Download/download.cgi.

They are perfectly safe and you can delete them later.

a. Do the NAMD tutorial at http://www.ks.uiuc.edu/Training/Tutorials/#namd . Do only the part that
refers to ubiquitin in a water sphere.
Attach a screenshot of the final trajectory to your submission.

b. The log files contain a lot of information about the run of the simulation. Look at the log file and see
how the information is output to the file (quite self-explanatory). What is the final potential energy
of the system? What is the final bond energy? VdW energy?

3. Transformations on Molecules:

a. Read the PDB file 2EZM from the PDB website. Leave only the C,N and CA atoms (you can either
edit the file or use the VMD selection option). These are only the main backbone atoms (except
the carboxyl O but it’s not important for the dihedral calculations below). Calculate the backbone
dihedral angles (¢ and 1)) for amino acid 10 given the following guidelines:

— Each atom can be represented as a 3-D points with the X,y,z coordinates taken from the PDB
file.

— A dihedral angle is defined by four atoms - A,B,C,D as follows: Find the normal to the planes
defined by A,B,C (or the vectors B-A and C-B) and by B,C,D (or the vectors C-B and D-C) and
get the angle between the two normals to get the magnitude of the dihedral angle.

— The sign of the dihedral angle is determined by the angle between the normal to the plane
ABC and the vector D-C. If the angle is < 90° (or the dot product between the two vectors is
negative), reverse the sign of the dihedral angle.

— The vector B-A is obtained by subtracting the x,y,z coordinates of A from those of B (same for
C-B, D-Cetc.).

— The cosine of the angle between two vectors is defined as the dot product of the two vectors
(after normalization). To normalize a vector divide it by its magnitude, which is defined as
V22 + y% + 22 for a 3D vector. So to get an angle between two vectors — first normalize them,
then calculate their dot product and then do arccos on the result (acos in Matlab and R).

https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/
https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/
http://www.ks.uiuc.edu/Development/Download/download.cgi
http://www.ks.uiuc.edu/Training/Tutorials/#namd

— Remember that the dot-product of two vectors u = [uy, ug, ug] and v = [v1, ve, v3] is ug * v +
U9 * V9 + ug * vg and it is a scalar (number), not a vector.

— Notice that even though I am using degrees here, most programming languages use radi-
ans! To convert from radians to degrees use the following formula: angle(deg) = angle(rad)x*
180/pi.

— The normal to the plane defined by two vectors is defined as the cross-product of the two vectors
(after normalization as defined above). The cross product of two vectors u = [u1, ug, us] and
v = [v1,v2,v3] is a vector perpendicular to v; and v and is defined as follows: vy X v =
[ug * v3 — w3 * Vo, U3 * V1 — U7 * V3, U * Vo — Uz x v1]. Notice that u X v is not necessarily
normalized and has to be normalized to calculate the dihedral angle correctly.

— The dihedral angle ¢ is defined as the dihedral angle between C*~!, N, C A, C (where C~!
is the C atom of the previous amino acid) and ¢ is defined as the dihedral angle between
N,CA,C, N“t! (where N**! is the N atom of the next amino acid). In other words: ¢ is the
rotation angle around the N-CA axis and 1 is the rotation angle around CA-C axis.

To verify the correctness of your calculations you can upload the molecule on VMD and select
Mouse— > Labels— > Dihedrals, and then click on the four consecutive atoms in the
VMD graphical window. The value of the dihedral angle will appear on that window. You may
use MatLab, R, Excel or any reasonable programming language. Attach the code as part of
your homework. For this section you may use any programming language you want. For your
convenience you can also use the MatLab or R setup below. In any case attach the code you

used.
b. Calculate the energy for the structure above with only the backbone atoms. Use a simplified energy

function that counts only steric clashes between atoms. The energy is the sum over all the pairs of
atoms that are at least 4 atoms apart on the peptide chain (that is — do not share a covalent bond, a
planar angle or a dihedral angle). The energy for each pair of atoms is:

Bii 100/r; ifry; < 3.4
0 Otherwise

Where r;; is the distance between two atoms. In this (simplified) function we model each atom as a
hard sphere with a radius of 1.7A, hence the 3.4 - two atoms collide only if their distance is smaller
than the sum of their radii. Output the total energy and also report the pairs of severely clashing
atoms, whose contribution to the energy is at least 20, and their distances.

c. Rotate the dihedral bond between the N and CA of the last amino acid by 30°. You can perform the

rotation using quaternions or matrices as taught in class. If using quaternion, use the N-CA vector as
the rotation axis and don’t forget to translate the molecule such that N is at the origin. The rotation
is equivalent to transforming all the atoms after the axis by 30°. Does the structure change much?
What atoms move in space as the result of this rotation? What is the RMSD between the original
and the modified structure? You can measure the RMSD using VMD or the code you wrote for
HW3.
To view the structures you can either type the transformed coordinates back to a PDB file or save
the coordinate file with the .crd suffix. In order to view the file in VMD, add a line at the top of the
.crd file with anything in it. Read the pdb file and then File— Load data into molecule. Upload the
.crd file and it will appear as another frame.

d. Now rotate the dihedral bond between CA and C of amino acid 40 by 20°. What is the RMSD
between the original and the modified structure now? Upload the three structures to vid or chimera
and attach an image of the superimposed structures as part of your homework.

e. Calculate the energy for the two structures you created in ¢ and d above.

General Setup

To calculate the backbone dihedral angles of residue 10 you will need the coordinates of 5 atoms: C° N,CA,C,N!.
You can extract the coordinates from the attached PDB file into a text file using your favorite text editor or, after
saving only the relevant records to a file called, for example, res10.pdb using the unix command: awk ’{print
$7¢7$8“ 789}’ res10.pdb > res10.txt. This command prints only fields 7,8, and 9 of each line — these are the
X,y,z coordinates of the PDB file.

To extract only the backbone coordinates for the molecule, you can upload it to VMD and click File— >
Savecoordinates— > Dihedrals

You can use this file as input to R or Matlab (see setup from previous homework assignment for help).

Common troubleshooting:

* Notice that v; x v2 = —(vg X v1), so make sure the order of the vectors is correct.
* Make sure your vectors are normalized when calculating the angle between them.

Further explanation for NAMD tutorial

Start with preparing the system here: http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/node7.html
Then prepare the water sphere here:
http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/node8.html

The files you need are in the build-1-1 directory. For the wat_sphere.tcl script to work you may need
to copy the files ubg.psf and ubqg.pdb from the example—-output subdirectory to your working direc-
tory in build-1-1. The generated files you will need for your simulation will be named ubg_ws.psf and
ubg_wb.pdb.

Then run your simulation as described here: http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-
win-html/node9.html. Notice that the command line to run the simulation (in your dos/Unix terminal) is: namd?2
ubg.ws_eqg.conf > ubg.ws_eq.logs&.

This means that your simulation output is written into a log file named ubg_ws_eq. 1og, which is what I want
you to attach to your HW. This is the file where you should find your energy values. Much of the file is all kinds
of machine instructions and many many numbers, but you will see that it documents the run of the simulation.
For example, you will see lines that look like this:

ETITLE : TS BOND ANGLE DIHED IMPRP
ELECT VDW BOUNDARY MISC KINETIC

TOTAL TEMP POTENTIAL TOTALS3 TEMPAVG

ENERGY : 0 1947.9207 1238.5705 263.8635 10.7301
-18781.7697 1984.0070 71.1903 0.0000 0.0000
-13265.4876 0.0000 -13265.4876 -13265.4876 0.0000

TS stands for time step, and the second line gives you the energy values in the order that appears in the first line.
the second number (1947.9207) corresponds to BOND - the bonded energy, etc.

What I am asking are values taken from the final line, which, when I ran it, was:

ENERGY : 2600 244.0385 671.4530 315.3755 45.0069
—22732.2423 1504.1822 3.1973 0.0000 4342.0934
-15606.8955 312.9086 -19948.9889 -15586.7004 309.7774

http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/node7.html
http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/node8.html
http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/node9.html
http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/node9.html

That is, step 2600. You should get similar but non-identical values.
See also here: http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/node12.html.

The snapshot I ask can be obtained by uploading the file ubg_ws.psf onto VMD (using File—new Molecule)
and then using File—Load data into Molecule and select ubg_ws_eq.coor which should appear in your
sphere-1-2 directory after the end of the simulation. This is your final snapshot. You can save the molecule
image either by a screenshot or by using File—Render and select the default (vimdscene.tga) and click ~Start
rendering”. The .tga suffix can be converted to png or jpg using an image editor.

Please don’t attach any other file. They are very big and some are not even text files.

Setup for Matlab

Matlab offers a lot of matrix operations that you would otherwise have to implement yourself. We provide some
hints/directions for those of you who choose to implement this assignment in Matlab. The very first step you
need to do is to read from an ASCII file that contains the cartesian coordinates of the chain you will manipulate
and save these coordinates in a data structure that will represent your chain. The simplest data structure at this
point is an array, where positions 3 % (¢ — 1) + 1,3 % (i — 1) 4+ 2, and 3 * (¢ — 1) + 3 contain the coordinates of
atom i. Note that Matlab starts counting from 1. You can read the coordinates into Matlab using the command:

cartesian_coordinates = textread(input_file, % f');

Where the input file contains the coordinates. You can write a simple program that leaves in only the coordinates
or save the PDB file in crd format on VMD, and delete the first dummy line, or use the awk command as above.
You can check how many coordinates you have read with the command length(cartesian coordinates). The
textread command stores all coordinates read from the backbone.crd file in the cartesian coordinates array. You
could manipulate this array with the dihedral rotations you will define. However, it might be more convenient
for matrix operations and for clarity to store the cartesian coordinates in a matrix with N rows and 3 columns
for each row. In this way, row i contains all the three cartesian coordinates for atom i. Define the number of
atoms in the backbone with the command:

N = length(cartesian_coordinates)/3;

Now you need to declare a matrix with the right dimensions. Since you actually need to work with homogeneous
coordinates, it might be convenient to declare a matrix with N rows and 4 columns, where the last column
contains 1. You can do so with the command:

backbone_chain = zeros(N,4);

which creates a matrix with N rows and 4 columns initialized to all zeros. You can set the fourth column to 1
with the command:

backbone_chain(:,4) = 1,

Now you need to place the cartesian coordinates from the array to this matrix. You can do so with the for loop
below:

fori=1:N

forj=1:3

backbone_chain(i, j) = cartesian_coordinates((i — 1) x 3 + 7);
end,

end,

The cartesian coordinates you have just read will serve as a basis for performing rotations, according to what
method you choose to represent and manipulate the protein. Say the position of atom i needs to be transformed
by your transformation matrix. You can do so by multiplying trans mat with backbone chain(i, :) as in trans

http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/node12.html

mat * backbone chain(i, :)’. Note that the colon is very convenient as it gives an entire row or an entire column
and that backbone chain(i, :)’ gives you the transpose that is necessary for the multiplication to be carried out.
In any case, your transformation matrices need to have dimension 4x4 to work with homogeneous coordinates.
You can initialize an empty 4x4 matrix by writing

transmat = zeros(4,4);.

Then you can set the elements of this matrix to what they should be for the particular method you use. You
can evaluate all the cosines and sines that you need in Matlab. Matlab offers you built-in operations such as dot
product or vector norm. Make sure that you understand these operations before you apply them.

* I thank Prof. Lydia Kavraki for providing this section.

Setup for R

You can see basic vector and matrix operations in the previous homework setup. I couldn’t find an easy way
to do cross product in R, so I attach an R file with some functions implemented by me, as well as some basic
quaternion stuff. Feel free to use it as a basis for your implementation. Don’t forget the “apply” and “sweep”’
options in R that can save you lots of time instead of using loops which are less efficient.

