1. Exercise 2.1 in the handout.
2. Exercise 2.2 in the handout.
3. Exercise 3.2 in the handout.
4. Exercise 5.1 in the handout. (I’m not expecting something long here. But it has to be convincing.)
5. Let $G = (V, E)$ be a bipartite graph. Let’s assume the two “parts” are v_1 and V_2, so v_1 and V_2 are disjoint and $V_1 \cup V_2 = V$. And we know that all edges go from a node in V_1 to a node in V_2.

A graph is said to be k-regular (for some $k \geq 1$) iff each vertex has exactly k edges incident on it.

We say that a bipartite graph (as above) has a perfect matching iff there is a set of edges E_0 such that

- Each edge joins a vertex in V_1 to V_2. (Well, we know this is automatically true in any case, right?)
- Each vertex in V_1 is the endpoint of exactly one of the edges in E_0.
- Each vertex in V_2 is the endpoint of exactly one of the edges in E_0.

Prove that if there is some $k \geq 1$ for which G is k-regular, then G has a perfect matching.