
CS 624: Analysis of Algorithms

Assignment 11

Due: Monday, May 3, 2021

As always, I’m looking for clear and careful explanations. Make it understandable. Make me happy
I’m reading your paper!

1. Exercise 3.7 (page 16) in the lecture notes.

2. Here’s a problem:

Problem name: HITTING SET

Instance: A collection C of subsets of a set S together with a positive integer K. (Note: The
sets in the collection C may overlap. That’s what gives this problem its complexity. If they
don’t overlap at all, the problem is trivial.)

Question: Does S contain a hitting set for C of size K or less—that is, a subset S′ ⊆ S with

|S′| ≤ K and such that S′ contains at least one element of each set c ∈ C?

Prove that HITTING SET is NP-complete.

To do this you need to do two things:

(a) Prove that HITTING SET is in NP. This should be extremely easy.

(b) Prove that some problem that is already known to be NP-complete polynomially reduces
to HITTING SET.

Hint: In this case, I suggest you prove that VC ≤P HITTING SET.

3. It’s natural to think that VERTEX COVER (or actually, the problem of finding a minimal vertex

cover) can be dealt with by a greedy algorithm (which would almost certainly imply that VC

would be in P). If this were true, then we would have proved that P = NP, which would be quite
a remarkable result. The point of this problem is to show that this is quite unlikely.

Here is a reasonable greedy algorithm for solving VC on a graph G = (V, E). At each step in
the algorithm, we will pick a vertex. And we will pick it to get as quickly as we can to a vertex
cover—that’s what makes this a “greedy” algorithm. We will add that vertex to the vertex cover

(which is denoted by C, and is initialized to ∅), and then we will delete that vertex and all the
edges incident on that vertex from G:

Greedy-VC(G)

C ← ∅

while E 6= ∅ do

Pick a vertex v ∈ V having maximal degree in the current graph

C ← C ∪ {v}

V ← V \ {v}

E ← E \ {e ∈ E : e is incident on v}

return C

It’s pretty clear that this does produce a vertex cover. Unfortunately though, it doesn’t nec-
essarily produce a minimal vertex cover. I’m going to give a famous example of how it can go
wrong.

We start by creating a bipartite graph. The two “parts” of this graph will be the “top” vertices
and the “bottom” vertices.

There are 10 top vertices. (We have chosen 10 just to make the example informative but not too

complicated, but any number ≥ 2 could be chosen.)

We start by creating a group (the “first” group) of 10 bottom vertices, and we create 1 edge from
each bottom vertex to the corresponding top vertex, like this:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

b1

1
b1

2
b1

3
b1

4
b1

5
b1

6
b1

7
b1

8
b1

9
b1

10

Next, we add a second group of bottom vertices. We connect each of these to two top vertices,
in order. So the first new bottom vertex is connected to t1 and t2. The next new bottom vertex
is connected to t3 and t4. And so on. We can create 5 bottom vertices in this way. The new
bottom vertices thus look like this:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

b2

1 b2

2 b2

3 b2

4 b2

5

and so all together, we now have the following graph:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

b1
1 b1

2 b1
3 b1

4 b1
5 b1

6 b1
7 b1

8 b1
9 b1

10 b2
1 b2

2 b2
3 b2

4 b2
5

Next, we create a third group of bottom vertices. Each of these vertices is connected to three

top vertices. So we will have three vertices in the third bottom group, and they will connect to
all but the last top vertex:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

b3

1
b3

2
b3

3

The fourth group of bottom vertices looks like this:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

b4
1 b4

2

And so putting all these vertices together, we have this following graph:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

b1

1
b1

2
b1

3
b1

4
b1

5
b1

6
b1

7
b1

8
b1

9
b1

10
b2

1
b2

2
b2

3
b2

4
b2

5
b3

1
b3

2
b3

3
b4

1
b4

2

We will continue like this, until we have 10 groups of bottom vertices. (You should be able to see

easily why group 5 consists of two vertices, but groups 6–10 each consist of one vertex only.) The
final graph we wind up with looks like this. It’s not easy to see here what is really happening,
but I think that based on the pictures above, you should be able to understand it.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

b1
1 b1

2 b1
3 b1

4 b1
5 b1

6 b1
7 b1

8 b1
9 b1

10 b2
1 b2

2 b2
3 b2

4 b2
5 b3

1 b3
2 b3

3 b4
1 b4

2 b5
1 b5

2 b6
1 b7

1 b8
1 b9

1 b10
1

(a) Prove that no vertex in G has more than 10 edges.

(b) Prove that if 1 < k ≤ 10 and if we remove all the bottom vertices in groups k up through

group 10, then no vertex in G has more than k − 1 edges.

(c) Prove that the algorithm could therefore at each step pick the rightmost bottom vertex that
has not yet been deleted, and add it to the vertex cover.

(d) This would yield a vertex cover consisting of all the bottom vertices. And that is indeed a
vertex cover. However, since this is a bipartite graph, it is evident that the 10 top vertices
constitute a smaller vertex cover. So the algorithm is not guaranteed to produce the smallest
vertex cover.

The problem in this case is that there is a choice to be made of which vertex to pick next. In
the case of this graph, picking the bottom vertex was acceptable according to the algorithm,
but was not the best choice to make.

Using the same algorithm, what would be the best choice of vertices (acceptable to the

algorithm) to make at each step for this graph?

