
A Little Harmonic Analysis

Carl D. Offner

This is an introduction to some fundamental ideas of harmonic analysis. It assumes that the reader

knows the basics of measure theory and the Lebesgue integral, and knows a little (not much more

than the definitions) about Banach and Hilbert spaces. Some of this is reviewed in Section 2.1.
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1 The three classical domains

Classical 1-dimensional harmonic analysis takes place on three domains:

• The unit circle C in the complex plane. Usually, this is represented as the real numbers
R mod 2π, and functions on C are represented as periodic functions on R with period 2π.
Another notation for this domain, and the main one we use in these notes, is T, the 1-
dimensional torus.

• The real numbers R.

• The integers Z.

The important facts about all these domains from the standpoint of harmonic analysis are that

• They are all abelian groups under addition.

• They each have a topology that is compatible with the group structure in the sense that for
each of these domains G, addition as a map from G×G→ G is continuous. That is, each of
these domains is a topological group.

• They each have an invariant measure—that is, a measure that is invariant under translation.
The measure on Z is just the discrete measure assigning a mass of 1 to each point, and the
measure on T and on R is just any positive multiple of Lebesgue measure.

To say these measures are invariant is just to say that for any set E and any element x, the
measure of E + x is the same as the measure of E. Such a measure can be proved to exist
on any locally compact abelian group, where it is called Haar measure, and harmonic analysis
has been successfully abstracted to work in that context.

We shall use G (for “group”) to refer to any of these domains, when we are proving something that

is true of all of them. The measure on G will be denoted by dµ.

When we are dealing specifically with T, we will parametrize it by θ, and Lebesgue measure on T

will be dθ. Similarly, R will be parametrized by x, t, or similar variables, and Lebesgue measure
on R will be simply dx, or dt, and so on. The actual measure we use for µ will be a multiple of
Lebesgue measure. To be precise, if λ denotes Lebesgue measure on T or R, let us reserve the letter
m to denote the positive number such that dµ = mdλ. We will discuss this further in Section 6.

We noted above that the topology and the group structure of G are related by the fact that the
group operation is continuous as a map from G×G to G. We also noted that the measure and the
group structure of G are related by the fact that the measure is translation-invariant.
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There is a third relation—between the measure and the topology of G—that is somewhat more

subtle, but is equally important. A standard way of constructing Lebesgue measure on R(or T) is

to start with the length function on half-open intervals (i.e., intervals of the form [a, b)) and extend
it to the σ-algebra of sets generated by this family of intervals. This σ-algebra is just the family of
Borel sets in R or T. It is a standard result of measure theory that because of this construction,
any Borel set E of finite measure can be approximated by a set A that is a finite union of half-
open intervals, in the sense that µ(E∆A) is small (i.e., “given ǫ > 0, there is an A. . . ”), where

E∆A denotes the symmetric difference (E − A) ∪ (A − E). This fact, which says that in some

sense measurable sets are not too different from simple unions of intervals, is often expressed in this
context by saying that Lebesgue measure is regular.

2 Function spaces

The following spaces of functions1 on G are important for us:

2.1 The L
p spaces

The Lp spaces are defined for 1 ≤ p <∞ by

Lp(G) =

{
f :

∫

G

|f |p dµ <∞
}

Lp(G) is a Banach space (see below) under the norm

‖f‖p =

(∫

G

|f |p dµ
)1/p

As a limiting case, L∞(G) is the space of bounded measurable functions on G with the norm

‖f‖∞ = ess sup |f | = inf {r : µ{x : |f(x)| > r} = 0}

If f is actually continuous, this is just the usual supremum of |f |. The definition above takes account

of the possibility that there is a set of measure 0 on which |f | has large values—such a set can be

ignored in computing ‖f‖∞.

In all these Lp spaces, a function is really only determined up to a set of measure 0, since the integral
fails to distinguish functions differing on such sets. So “really”, elements of Lp are equivalence classes
of functions, two functions being in the same equivalence class iff they are equal almost everywhere
with respect to the measure µ. Analysts, however, almost never think in terms of these equivalence
classes—we talk of the functions directly, bearing in mind that we can’t really talk of the value of

the function at a point unless we know something more about the function (for instance, that it is

continuous).

The Cauchy-Schwarz inequality states that if f and g are in L2, then their product fg is in L1, and
‖fg‖1 ≤ ‖f‖2 ‖g‖2. Here is the standard short proof of this:

1The word “function” without any further qualification refers to a measurable function with values in C.
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First, this is clearly true when g = 0. (By this we mean, of course, that g is 0 almost everywhere.)

So we can assume that g is not almost everywhere 0, and therefore that
∫
G |g| dµ > 0 and also

∫
G
|g|2 dµ > 0.

Now for any t ∈ R, (|f | − t |g|)2 ≥ 0, so we have

0 ≤
∫

G

(|f | − t |g|)2 dµ =

∫

G

|f |2 dµ− 2t

∫

G

|fg| dµ+ t2
∫

G

|g|2 dµ

This is a quadratic function of t, and it attains its minimum when

t =

∫
G
|fg| dµ

∫
G
|g|2 dµ

Therefore, substituting in this value for t, we have

0 ≤
∫

G

|f |2 dµ− 2

(∫
G
|fg| dµ

)2
∫
G
|g|2 dµ

+

(∫
G
|fg| dµ

)2
∫
G
|g|2 dµ

and therefore

(∫

G

|fg| dµ
)2

≤
∫

G

|f |2 dµ
∫

G

|g|2 dµ

and we are done.

There is a generalization of the Cauchy-Schwarz inequality known as Hölder’s inequality: for any p
such that 1 ≤ p ≤ ∞ we define its conjugate exponent q by

1

p
+

1

q
= 1

with the convention that 1/∞ = 0. Then also 1 ≤ q ≤ ∞, and p is reciprocally the conjugate

exponent of q. Hölder’s inequality states that if p and q are conjugate exponents and if f ∈ Lp(G)

and g ∈ Lq(G) then their product fg is in L1(G) and

‖fg‖1 ≤ ‖f‖p ‖g‖q

The proof of this is not much more complicated than the proof of the Cauchy-Schwarz inequality,

but we will not need Hölder’s inequality here2, so we omit it.

We have referred to the function f 7→ ‖f‖p as a norm. It certainly satisfies ‖af‖p = |a| ‖f‖p for any

a ∈ C, and ‖f‖p = 0 ⇐⇒ f = 0 almost everywhere. To complete the proof that ‖·‖p really is a

norm, we have to show that the triangle inequality holds. This is easy to see for p = 1 and p = ∞.

2For our purposes here, the only Lp spaces we need are those for which p is 1, 2, or ∞.
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For p = 2 it follows from the Cauchy-Schwarz inequality:

‖f + g‖2
2 =

(∫

G

|f + g|2 dµ
)

=

∫

G

(|f |2 + 2ℜf ḡ + |g|)2 dµ

≤ ‖f‖2
2 + 2 ‖f‖2 ‖g‖2 + ‖g‖2

2

= (‖f‖2 + ‖g‖2)
2

For any other p between 1 and ∞, the triangle inequality (which becomes known in that context as

Minkowski’s inequality) follows in a somewhat more complicated fashion from Hölder’s inequality.
We omit that derivation.

By far the nicest behaved Lp space is L2, because it is a Hilbert space: we define the inner product
of two functions f and g to be

(f, g) =

∫

G

f ḡ dµ

so ‖f‖2
2 = (f, f). No other Lp space is a Hilbert space.

The Cauchy-Schwarz and Hölder inequalities are just the tip of the iceberg, which is the following
fundamental fact:

2.1 Theorem If 1 ≤ p < ∞, and if q is the conjugate exponent of p, then there is an isometric

isomorphism3 between Lq(G) and the dual space of Lp(G).

Under this correspondence, each linear functional T ∈ Lp(G)∗ corresponds to a function g ∈ Lq(G)

in such a way that for each f ∈ Lp(G),

Tf = (f, g) =

∫

G

f ḡ dµ

and we have ‖T ‖ = ‖g‖q, where the operator norm ‖T ‖ is defined by ‖T ‖ = sup
{
|Tf | : ‖f‖p = 1

}
.

For p = 2 this is immediate: L2 is a Hilbert space, and any Hilbert space is naturally isomorphic
to its dual space. But for any other exponent p, the result is deep—it is equivalent to the Radon-
Nikodym theorem in measure theory. We won’t prove this theorem here.

This theorem in turn can be used to prove the following result, which is sometimes called the
“Landau resonance theorem”:

2.2 Theorem If

• 1 ≤ p <∞, and q is the conjugate exponent of p,

• f is a function on G

3The correspondence is usually set up, as it is here, so as to be conjugate-linear, so is often referred to as a
conjugate-isomorphism.
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and if fg ∈ L1(G) for every g ∈ Lq(G), then f ∈ Lp(G). Further, in such a case,

‖f‖p = sup

{
‖fg‖1

‖g‖q
: g ∈ Lq(G)

}

We won’t prove this theorem either, although we will use it below. The proof is fairly straightforward.

Since T has finite measure,

L∞(T) ⊂ L2(T) ⊂ L1(T)

Each of these inclusions is easy to see: if f ∈ L∞(T), then certainly any power of |f | has a finite

integral on T, and so in particular f ∈ L2(T). And if f ∈ L2(T), then by the Cauchy-Schwarz

inequality4,

‖f‖1 =

∫

T

|f(θ)| dµ(θ)

≤
(∫

T

12 dµ(θ)

)1/2(∫

T

|f(θ)|2 dµ(θ)

)1/2

=
√

2πm ‖f‖2

≤ ∞

so f ∈ L1(T). An equivalent way to write the above computation is this:

‖f‖1 = ‖f · 1‖1 ≤ ‖f‖2 ‖1‖2

and ‖1‖2 <∞ because T has finite measure.

There is a more general statement of this: if 1 ≤ r < s ≤ ∞, then Lr(T) ⊇ Ls(T). This result

follows similarly from Hölder’s inequality, but the result for L∞, L2, and L1 is all we need here.

The opposite inclusions are true for Z, since it is discrete with the counting measure: if 1 ≤ r <
s ≤ ∞, then Lr(Z) ⊂ Ls(Z). In particular,

L1(Z) ⊂ L2(Z) ⊂ L∞(Z)

We won’t need these results here.

On R, there is no relation between any of the Lp spaces—they all contain (for instance) all continuous
functions of compact support, so they have a non-trivial intersection. But no one of them includes
any other. This makes harmonic analysis on R a more delicate matter than on T or Z.

There is one final result we need. We mentioned above that Lebesgue measure on R and T is
regular—in particular, that any measurable set can be approximated arbitrarily closely in measure
by a finite union of half-open intervals.

It then follows (pretty immediately from the definition of the integral) that the set of finite linear
combinations of characteristic functions of half-open intervals is dense in Lp provided 1 ≤ p <∞.

4Remember that we are using the letter m to denote the positive number such that dµ = m dλ, where λ denotes
Lebesgue measure.
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2.2 Spaces of continuous functions

We define

Cb(G) = the set of bounded continuous functions on G

Cu(G) = the set of bounded uniformly continuous functions on G

These spaces are Banach spaces under the uniform norm ‖f‖∞.

Since T is compact, any continuous function on T is uniformly continuous, and so

Cb(T) = Cu(T)

On Z, all functions are continuous, and so

Cb(Z) = Cu(Z) = L∞(Z)

2.3 The continuity of translation

Let us consider the operation of translation on each of our function spaces. That is, for each t ∈ G,
define an operator Tt taking the function f to the function Ttf , defined by (Ttf)(x) = f(x − t).

That is, Tt translates f to the right by t.

Clearly, Tt maps each of the function spaces we have defined above into itself. Let us change our
notation slightly: for any function f , define ft = Ttf . For each f , the function t 7→ ft is a map from
G into some function space.

Now we can ask if this map is continuous as a function of t. That is, for each f , is the function
t 7→ ft a continuous map from G to the function space in question?

Well, first of all, this map is trivially continuous when G = Z, so we can forget about that case. Now

when G = R and the function space is Cb(R), the map is not in general continuous. For instance,

consider the function f(x) = sinx2. It is not true that ‖ft − f‖∞ → 0 as t→ 0.

However, if f ∈ Cu(G), then it is true that ‖ft − f‖∞ → 0 as t → 0—this is just the definition of

uniform continuity. So translation is continuous on Cu(G).

As far as the Lp spaces go, translation is not continuous on L∞(G), for the same reason as for Cb.

In fact, here we even have a simpler counterexample—just take f to be the characteristic function
of (0,∞).

It is a remarkable fact, however, that translation is continuous on Lp, provided that 1 ≤ p <∞.

2.3 Theorem Translation is continuous in Lp. Precisely, if 1 ≤ p < ∞, then for each s ∈ G,
‖ft − fs‖p → 0 as t→ s. Furthermore the convergence is uniform in s.

Proof. Since ‖ft − fs‖p = ‖ft−s − f‖p, the entire theorem will be proved if we can show that

‖ft − f‖p → 0 as t → 0.

We have already noted that the set of finite linear combinations of characteristic functions of half-
open intervals is dense in Lp.
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So let φ be a finite linear combination of characteristic functions of half-open intervals approximating

f in Lp. For each half-open interval [a, b), we have5

∥∥Tt(χ[a,b)) − χ[a,b)

∥∥
p
≤ (2m |t|)1/p

and this tends to 0 as t→ 0. Hence the same is true for φ. But then

‖ft − f‖p ≤ ‖ft − φt‖p + ‖φt − φ‖p + ‖φ− f‖p
= 2 ‖f − φ‖p + ‖φt − φ‖p

which proves the theorem.

3 Convolutions

Let G denote any of the three classical domains, and let µ denote its invariant measure.

3.1 Lemma If f is a measurable function from G to C, then the function on G × G to C defined by
(x, y) → f(x+ y) is measurable.

Proof. This function is the composition f ◦a of f with the function a(x, y) = x+y. f is measurable

by assumption. a is measurable because it is continuous (since G is a topological group). Hence

f ◦ a, as the composition of two measurable functions, is also measurable.

3.2 Theorem If f and g are in L1(G), then the integral
∫
f(x − t)g(t) dµ(t) exists for almost all x,

and defines a function f ∗ g, called the convolution of f and g. The convolution has the following
properties:

1. f ∗ g is in L1(G), and in fact ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1.

2. Convolution is commutative.

3. Convolution is associative.

4. Convolution is linear in each variable.

Proof. We know that f(x− t)g(t) is a measurable function on G×G. Replacing f and g by their

absolute values |f | and |g|, Fubini’s theorem together with translation invariance of the integral on

G then shows that f(x− t)g(t) is in L1(G×G): for we have
∫ ∫

|f(x− t)g(t)| dµ(t) dµ(x) =

∫ ∫
|f(x− t)||g(t)| dµ(x) dµ(t)

=

∫
‖f‖1 g(t) dµ(t)

= ‖f‖1 ‖g‖1

This in turn proves item 1. The other items are straightforward.

5Again recall that m denotes the positive number such that dµ = m dλ, where λ denotes Lebesgue measure.
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Convolution also acts nicely on other function spaces. Here are a few examples of this, which we
will need later:

3.3 Theorem If p and q are conjugate exponents with 1 ≤ p ≤ ∞, and if f ∈ Lp and g ∈ Lq, then
f ∗ g ∈ Cu (that is, it is a bounded uniformly continuous function), and

‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q

Proof. By Hölder’s inequality, |f ∗ g(x)| ≤
∫
|f(x− t)g(t)| dµ(t) ≤ ‖f‖p ‖g‖q,6 and so f ∗ g ∈ L∞

and ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q.

Now at least one of p and q is not ∞. Without loss of generality, let us assume that p <∞. Then

|f ∗ g(x− s) − f ∗ g(x)| ≤
∫

|fs(x− t) − f(x− t)||g(t)| dµ(t) ≤ ‖fs − f‖p ‖g‖q → 0

as s → 0, uniformly in x, the limit by continuity of translation (Theorem 2.3). Thus, f ∗ g is
uniformly continuous.

If f : G→ C we define f̃(x) = f(−x). The map f → f̃ is an isometry on Lp for all p ≥ 1. Further,

considering convolution by f as an operator on Lp(this is just formal until after the proof of the

next theorem), convolution by f̃ corresponds to the formal adjoint of that operator. That is, if the

pairing between Lp and Lq is given as usual by (f, g) =
∫
G f ḡ dµ, we have (formally at least)

(f ∗ g, h) = (g, f̃ ∗ h)

This is just to say that formally, we have
∫ (∫

f(x− t)g(t) dµ(t)

)
h(x) dµ(x) =

∫
g(t)

(∫
f(x− t)h(x) dµ(x)

)
dµ(t)

=

∫
g(t)

(∫
f̃(t− x)h(x) dµ(x)

)
dµ(t)

We will show that this is actually true when used reasonably. The notation itself is useful in the
proof of the next theorem.

3.4 Theorem If f ∈ L1 and g ∈ Lp (1 ≤ p ≤ ∞), then f ∗ g ∈ Lp and ‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p.

Proof. The case p = 1 has already been taken care of by Theorem 3.2, and the case p = ∞ is
handled by Theorem 3.3. Thus, we may assume that 1 < p < ∞. Let q be the conjugate exponent
for p, so 1/p+ 1/q = 1 and 1 < q <∞. If h is any function in Lq, then

∫
|f ∗ g(x)h(x)| dµ(x) =

∫
|f(x)g̃ ∗ h(x)| dµ(x) ≤ ‖f‖1 ‖g̃ ∗ h‖∞ ≤ ‖f‖1 ‖g‖p ‖h‖q

by the previous theorem. Thus by the Landau resonance theorem (Theorem 2.2), f ∗ g must be in

Lp with norm at most ‖f‖1 ‖g‖p.
6Note that this inequality holds everywhere, not just almost everywhere. Of course, since f ∗ g will be shown to

be continuous, this has to be the case.
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Theorem 3.3 can be used to give an elegant though non-elementary proof of the fact that if E is

a measurable subset of R whose Lebesgue measure µ(E) is greater than 0, then the difference set
E − E contains an open interval.

3.5 Theorem If E is a Lebesgue measurable subset of R such that µ(E) > 0, then the difference set
E − E contains an open set.

Proof. We may assume that 0 < µ(E) <∞; otherwise replace E by a subset with finite measure;
proving the theorem for that subset proves it for E.

Now χE and χ̃E are in L2; in fact, ‖χE‖2 = ‖χ̃E‖2 = µ(E)1/2. We know by the theorem that

χE ∗ χ̃E is continuous, and χE ∗ χ̃E(0) =
∫
χ2
E(x) dµ(x) = µ(E) > 0. Hence there is an open set

containing 0 on which χE ∗ χ̃E > 0. But any x for which χE ∗ χ̃E(x) > 0 is an element of the

difference set of E.

4 Approximate identities

Theorem 3.2 shows that convolution by an L1 function defines a bounded linear map from L1 to

L1. In fact, convolution makes L1 into what is called a Banach algebra—a Banach space having a

bilinear7 and associative multiplication (denoted by ∗, say) such that the norm satisfies

‖f ∗ g‖ ≤ ‖f‖ ‖g‖

Here the multiplication is just convolution, and it is commutative, although in Banach algebras in
general it does not need to be.

There also does not need to be a multiplicative identity, although sometimes there is. For instance,
on Z, the delta function

δ(n) =

{
1 n = 0

0 n 6= 0

is a convolution identity: for any f ∈ L1(Z), we have

f ∗ δ(n) =

∞∑

i=−∞

f(n− i)δ(i) = f(n)

On the other hand, there is no convolution identity in L1(R) or L1(T)—such a function would be
the “physicists’ delta function”, which can be represented as a measure of mass 1 concentrated at

0, but cannot be represented as a function in L1.

Why do we care about convolution identities? Well, it turns out that convolutions are powerful
ways of filtering out information about a function. For example, suppose we have a function f in

L1. This function may be quite irregular, containing all sorts of kinks and spikes. Suppose we want
to create a smoothed version of this function—a function that is more well-behaved and that is a
good approximation to this function. One standard thing to do is to take a moving average: let us

7A consequence of bilinearity is that multiplication distributes over addition in both operands.
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for the moment simplify things by using Lebesgue measure (i.e., we let m = 1, and dµ(t) = dt).

Let s > 0 and define the function Ss(f) (S for “smooth”) by

Ss(f)(x) =
1

2s

∫ x+s

x−s

f(t) dt

Note that this definition makes sense either on R or on T. Then intuitively,

• Ss(f) is close to f .

• Ss(f) gets closer to f as s ↓ 0.

• Ss(f) is more well-behaved than f .

Further, if we define the function

φs(t) =
1

2s
χ[−s,s](t)

then Ss(f) is just f ∗ φs.
Now note that the function φs approaches the “delta function” as s ↓ 0. That is, it looks more and
more like a spike at 0, and the area under the function is always 1. (See Figure 1.)

φ1

φ 1

5

φ 1

10

Figure 1: The moving average kernel φs.
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Because of this behavior, the family {φs} is called an approximate identity. In general, we make the

following definition:

Definition An approximate identity on G (G here being either R or T, and we’re back to using

the measure µ) is a family {φs} of real-valued functions such that

1. φs ≥ 0.

2.
∫
φs(x) dµ(x) = 1.

3. For each δ > 0, lims→0

∫
|x|≤δ

φs(x) dµ(x) = 1.

Equivalently, for each δ > 0, lims→0

∫
|x|>δ φs(x) dµ(x) = 0.

Sometimes the notation is such that the limit occurs as s → ∞ or as s ↑ 1. These are just trivial
notational changes. And sometimes the family is actually a sequence {φn}, and the limit occurs as
n→ ∞.

4.1 Lemma If {φs} is an approximate identity on G and if f ∈ L∞ is such that limt→0 f(t) = 0, then

lims→0

∫
f(t)φs(t) dµ(t) → 0.

Proof. For each ǫ > 0 there is a δ > 0 such that |f(t)| < ǫ for |t| < δ. Then

∣∣∣∣
∫
f(t)φs(t) dµ(t)

∣∣∣∣ ≤
∫

|f(t)φs(t)| dµ(t)

=

∫

|t|<δ

+

∫

|t|>δ

≤ ǫ+ ‖f‖∞
∫

|t|>δ

φs(t) dµ(t)

So first make ǫ small and then make s small.

4.2 Theorem If {φs} is an approximate identity on G, then

1. If f ∈ Cb (i.e. f is a bounded continuous function) then f ∗ φs ∈ Cu (it’s bounded and

uniformly continuous) and f ∗ φs → f pointwise.

2. If f ∈ Cu (i.e. f is bounded and uniformly continuous) then f ∗ φs ∈ Cu and f ∗ φs → f
uniformly.

3. If 1 ≤ p <∞ and f ∈ Lp then f ∗ φs ∈ Lp and f ∗ φs → f in Lp.

Proof. 1. f ∗ φs ∈ Cu by Theorem 3.3. For a fixed x ∈ G,

∣∣∣∣
∫
f(x− t)φs(t) dµ(t) − f(x)

∣∣∣∣ ≤
∫

|f(x− t) − f(x)|φs(t) dµ(t)

The lemma then yields convergence at x.

2. If f is uniformly continuous, the family of functions gx(t) = f(x − t) − f(x) converges to 0 as

t→ 0 uniformly in x, so the convergence in part 1 is uniform.
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3. If f ∈ L1, we have (using Fubini’s Theorem)

‖f ∗ φs − f‖1 =

∫ ∣∣∣∣
∫ (

f(x− t) − f(x)
)
φs(t) dµ(t)

∣∣∣∣ dµ(x)

≤
∫ (∫ ∣∣f(x− t) − f(x)

∣∣φs(t) dµ(t)

)
dµ(x)

=

∫
‖ft − f‖1 φs(t) dµ(t)

which converges to 0 as s→ 0, by the lemma and the fact that translation is continuous in L1.

When 1 < p <∞, we use the Landau resonance theorem (Theorem 2.2). (Actually, we can use the

same argument when p = 1; it’s just that the proof just given for p = 1 is simpler.) Let q be the
conjugate exponent for p. We know by the theorem that

‖f ∗ φs − f‖p = sup
‖g‖

q
≤1

∫ (
f ∗ φs(x) − f(x)

)
ḡ(x) dµ(x)

Now ∫ (
f ∗ φs(x) − f(x)

)
ḡ(x) dµ(x) =

∫ (∫
f(x− t)φs(t) dµ(t) − f(x)

)
ḡ(x) dµ(x)

=

∫ (∫ (
f(x− t) − f(x)

)
φs(t) dµ(t)

)
ḡ(x) dµ(x)

=

∫ (∫ (
f(x− t) − f(x)

)
ḡ(x) dµ(x)

)
φs(t) dµ(t)

≤ ‖g‖q
∫

‖ft − f‖p φs(t) dµ(t)

Hence

‖f ∗ φs − f‖p ≤
∫

‖ft − f‖p φs(t) dµ(t) → 0

as s→ 0, by the lemma and the fact that translation is continuous in Lp.

As a corollary, we can prove that continuous functions are dense in Lp for 1 ≤ p <∞:

4.3 Theorem If f ∈ Lp with 1 ≤ p <∞, there is a sequence {fn} of continuous functions with compact

support converging to f in Lp. That is, the set of continuous functions with compact support (which

are all in Lp) is dense in Lp.

Proof. First approximate f by a function in g in Lp with compact support. Then take an approx-

imate identity {φn}, all of whose members have compact support. Each function g ∗ φn is then a
continuous function of compact support, and g ∗ φn → g in Lp.

5 Why we like convolutions

Here is an extended quotation from the little out-of-print book Smoothing and Approximation of

Functions by Harold S. Shapiro (1969). The book itself is a tiny gem, and this quotation explains
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the way in which analysts have learned to use convolutions. By Kλ, Shapiro is referring to a family

of functions of the form λK(λx) that constitutes an approximate identity as λ → ∞. K̂ refers to
the Fourier transform of K, which we will get to later. The quotation is from pages 8-10 of the
book:

Our main purpose, as we have said, is to illustrate the use of convolutions in approxi-
mation problems. In particular, what is perhaps the most powerful and general known
method for generating approximations to f may be summarized thus: “convolve f with a
peaking kernel”. The reasons for the dazzling versatility of this method may be summed
up as follows:

a) Convolution is a smoothness-increasing operation. That is, if g is integrable and of

norm one, f ∗g is at least as smooth as f by just about any conceivable test (modulus of

continuity, moduli of smoothness of higher order, number of derivatives, total variation,
etc.). This isn’t too surprising perhaps if we think of convolution as a (generalized)
moving average.

b) Various special structural properties of a function f (e.g., having a given period, or

being a trigonometric polynomial of degree not exceeding n) are likewise inherited by
f ∗ g.
At bottom a) and b) are the same: very roughly, they say that properties based on the
translation group are hereditary under convolution. And because of the commutativity
of convolution, their presence in either factor ensures their presence in the convolution
product. Thus, convolution is like a marriage in which (unlike real life) the “best”

properties of each parent are inherited by the offspring (i.e. differentiability, periodicity,

etc. are “dominant genes”). Thus, suppose a lowly bounded measurable function f is
convolved with an integrable function g which happens to have 100 derivatives. The
resulting function has again 100 derivatives, but moreover resembles f if g is chosen to
be a peaking kernel (for instance, if g is Kλ for large λ and suitable K, then f ∗Kλ tends

almost everywhere to f). If f moreover has period 2π, so have all the approximating

functions. And if, in addition, K̂ = 0 for |x| ≥ 1 (so that Kλ has a Fourier transform

vanishing for |x| ≥ λ), this property too is inherited by f ∗ Kλ which must, therefore,

be a trigonometric polynomial of degree less than λ.

Moreover, convolutions have other properties which make them technically very nice to
work with. For instance, if f and g are differentiable we can for the derivative of f ∗g take

our choice of the expressions f ′ ∗ g and f ∗ g′. For higher derivatives there is still greater
freedom. Also the close tie-in with Fourier transforms puts powerful techniques from
harmonic analysis at our disposal. Furthermore, the asymptotic behavior of convolutions
is often easy to estimate.

In addition, it turns out (although this is far from obvious a priori) that under suitable

restrictions the operations of passing from a function to its derivative or its (suitably

normalized) primitive may be realized as convolutions with suitable kernels. These facts

enhance the importance of convolutions, and play an essential role in the theory which
follows.

Finally, although this plays only a minor role in the present book, the notion of con-
volution admits of far reaching and fruitful generalization: not only can functions be

convolved with one another, but more general entities (functionals) can meaningfully
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be convolved with functions, and under suitable circumstances, with one another. Of
course, such “convolutions” cannot any longer be interpreted as “smoothing” operations.

6 Fourier analysis on T

6.1 The invariant measure on T

Now we need to be specific about the measure we are going to use on T. This is really just a matter
of convenience. Unfortunately, no matter which measure we pick, there are always factors of 2π

or
√

2π that clutter up our equations. Physicists have the ability to use units in which the speed
of light is 1, and this simplifies things for them. Unfortunately, we can’t let 2π be 1, and we have
to make an arbitrary choice. The choice we use is the conventional one, and it is probably used
because it fits in most naturally with applications to complex function theory, where we identify T

with the unit circle in the complex plane.

So here is the choice we make: On T, we will use

dµ =
1

2π
dλ

or, more simply, dµ(θ) = dθ/2π. This makes the total measure of T equal to 1. Note that this
makes

‖f‖p =

(
1

2π

∫ π

−π

|f(θ)|p dθ
)1/p

The inner product in L2 is given by

(f, g) =
1

2π

∫ π

−π

f(θ)g(θ) dθ

Convolution becomes

(f ∗ g)(θ) =
1

2π

∫ π

−π

f(θ − φ)g(φ) dφ

And finally, the conditions for φs to be an approximate identity become:

1. φs ≥ 0.

2.
∫
φs(θ) dθ = 2π.

3. For each δ > 0, lims→0

∫
|x|≤δ

φs(θ) dθ = 2π.

Or equivalently, lims→0

∫
δ≤|x|≤π

φs(θ) dθ = 0.
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6.2 Fourier coefficients

We already noted that L2(T) is a Hilbert space. In this space, the functions

en(θ) = einθ

are orthonormal. This follows immediately from the observation that

∫ π

−π

einθ dθ =

∫ 2π

0

einθ dθ =

{
2π n = 0

0 n 6= 0

(Note that any other choice of dµ would mean that we would have to define en to be a non-trivial

multiple of einθ in order for en to have norm 1.)

Thus, any function f ∈ L2(T) has a set of Fourier coefficients

f̂(n) = (f, en) =
1

2π

∫ π

−π

f(θ)e−inθ dθ

and we know the following, just by elementary Hilbert space arguments:

• The sum
∑∞

−∞ f̂(n)en converges in L2(T) to the orthogonal projection of f on the subspace

of L2(T) generated by the {en}. (This subspace is the closure in L2(T) of the set of finite

linear combinations of elements of {en}.)

• Consequently, we have for any f ∈ L2(T), the following inequality, known as Bessel’s inequal-
ity:

‖f‖2 ≥
∞∑

−∞

∣∣∣f̂(n)
∣∣∣
2

If furthermore the set of functions {en} is an orthonormal basis of L2(T)—that is, if finite linear

combinations of these functions are dense in L2(T)—then we can recover f in terms of its Fourier
expansion:

f(θ) =

∞∑

n=−∞

f̂(n)einθ

where, again, the convergence of the series is understood in the sense of convergence of functions in

L2(T). That is,

lim
n→∞

∥∥∥∥∥f −
n∑

k=−n

f̂(k)ek

∥∥∥∥∥
2

= 0

In this case, Bessel’s inequality will become an actual equality. So we have a question:

• Is this true? That is, is the orthonormal set {en} a basis for L2(T)?
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Now actually, the Fourier transform (that is, the map from f to f̂) is naturally defined on L1(T),

which properly includes L2(T). (This is just because the integral that defines f̂(n) makes sense for

any f ∈ L1(T).) For such functions, we can still form a Fourier series, formally at least, and we can
ask

• Is the mapping from f to f̂ 1-1? That is, is f determined by its Fourier coefficients?

• If so, how can we retrieve f from its Fourier coefficients? A more classical way of asking this
question is to ask under what conditions and in what sense the Fourier series of f converges
to f .

6.3 Fejér’s theorem

After several false starts, some answers to these questions were found, first by Dirichlet in 1829.
These answers were stated in terms of pointwise convergence and assumed some regularity of the
function f . For instance, if f is at least twice differentiable, then its Fourier series can be shown to
converge to f pointwise. A small industry developed of finding successively weaker conditions on f
that would ensure that its Fourier series converged to it. Dirichlet himself believed that it would be
possible to prove that the Fourier series of any continuous function converges at each point to that
function.

However, understanding pointwise convergence turns out to be inherently difficult, and in addition,
pointwise convergence itself does not really address some important questions. The first problem
that was found—and it was a big one—was that there are in fact functions that are continuous at
all points, but whose Fourier series does not converge at one or more points. This was shown in an
explicit construction by du Bois Reymond in 1876.

The situation then was this: on the one hand, Fourier series had proved to be immensely powerful
and useful in mathematics and mathematical physics—mathematicians and physicists both felt that
in some sense the Fourier series of a function gives an accurate representation of that function; on
the other hand, convergence of a Fourier series could not be assured for continuous functions.

The breakthrough came in 1900, and was due to Fejér. But before seeing what he did, let us first
see where the problem lay:

If we denote the Fourier coefficients of f by an = f̂(n), and if we denote the nth partial sum of the
Fourier series for f by sn:

sn(θ) =

n∑

k=−n

ake
ikθ
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then we have

sn(θ) =
1

2π

n∑

k=−n

eikθ
∫ π

−π

f(φ)e−ikφ dφ

=
1

2π

∫ π

−π

f(φ)

(
n∑

k=−n

eik(θ−φ)

)
dφ

=
1

2π

∫ π

−π

f(φ)Dn(θ − φ) dφ

= (f ∗Dn)(θ)

where by summing the geometric series, we find that

Dn(θ) =

n∑

k=−n

eikθ =
sin
(
n+ 1

2

)
θ

sin 1
2θ

Dn(θ) is called the Dirichlet kernel. Figure 2 shows what this family of functions looks like.

We can see that, although Dn(θ) appears to become more concentrated at 0 as n becomes larger, it
has some fatal flaws, any one of which prevents it from being an approximate identity:

• It takes on both positive and negative values.

• It does not really tend to 0 outside a neighborhood of 0—it just oscillates faster and faster
there.

• Although 1
2π

∫ π
−πDn(θ) dθ does equal 1, the integral 1

2π

∫ π
−π |Dn(θ)| dθ is not even bounded—it

tends to ∞ roughly as logn.

Because of the second of these three points, any proof of convergence has to rely on cancellation of
positive and negative values of the integrand in the convolution f ∗Dn. This makes reasoning about
pointwise convergence quite difficult. Dirichlet’s argument was a real masterpiece of hard analysis,
and led ultimately to the modern definition of bounded variation.

What Fejér did was this: Instead of considering the partial sums directly, he considered averages of
them. He considered the Cesàro means defined by

σn(θ) =
1

n

n−1∑

k=0

sk(θ)

By a similar computation as before, we have

σn(θ) =
1

n

n−1∑

k=0

(f ∗Dk)(θ)

=
1

n

(
f ∗

n−1∑

k=0

Dk

)
(θ)

= (f ∗Kn)(θ)
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D2(θ)

D6(θ)

−π π

Figure 2: The Dirichlet kernel
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where

Kn(θ) =
1

n

n−1∑

k=0

Dk

=
1

n

n−1∑

k=0

sin
(
k + 1

2

)
θ

sin 1
2θ

=
1

n

1

sin 1
2θ

ℑ
n−1∑

k=0

ei(k+
1

2 )θ

=
1

n

(
sin 1

2nθ

sin 1
2θ

)2

where the last line is found by summing the geometric series in the line above. Kn is called the
Fejér kernel. Figure 3 shows three members of this family.

The Fejér kernel looks like a real approximate identity, and in fact it is:

• Kn ≥ 0. This is obvious from the formula for Kn.

• 1
2π

∫ π
−π

Kn(θ) dθ = 1. This is a straightforward computation. The easiest way to see it is

to note that it simply states that the nth Cesàro mean of the Fourier series for the constant
function 1 is 1.

• For each δ > 0, limn→∞

∫
δ<|θ|<πKn(θ) dθ = 0. This is because the numerator in Kn is

bounded above by 1, and for θ restricted to be outside of a neighborhood of 0 (mod 2π), the
sin in the denominator is bounded away from 0, so the n in the denominator controls the
growth.

To be precise: Given any 0 < δ < π, if δ < θ < π − δ, we have
(
sin 1

2θ
)2 ≥

(
sin 1

2δ
)2

so

|Kn(θ)| ≤
1

n
(
sin 1

2δ
)2

on that interval, and so for each δ > 0,
∫
δ<|θ|<π

Kn(θ) dθ → 0 as n→ ∞

This answers our questions at the beginning of this section: If f ∈ L2(T), then f ∗Kn → f in L2,

and therefore the set {en} forms a basis for L2. Therefore in fact the partial sums of the Fourier

series for f also converge to f in L2. Further, again since the set {en} is an orthonormal basis of

L2(T), Bessel’s inequality is replaced by Parseval’s formula:

1

2π

∫ π

−π

|f(θ)|2 dθ = ‖f‖2
2 =

∞∑

n=−∞

∣∣∣f̂(n)
∣∣∣
2

We also know that the converse is true: if {an : −∞ < n <∞} is any square summable sequence

then
∑
anen converges8 in L2(T) to a function f whose Fourier coefficients are f̂(n) = an. Thus,

8This uses (as do all the preceding mentions of convergence in L2) the fact that L2 is complete—as are all the Lp

spaces. This remarkable fact was known historically as the Riesz-Fischer theorem. It was proved first in this context.
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K2(θ)

K5(θ)

K12(θ)

−π π0

Figure 3: The Fejér kernel
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thinking of the set of Fourier coefficients as a function on Z, we see that the Fourier transform f → f̂

is a unitary isomorphism (i.e., linear, bijective and norm-preserving) from L2(T) to L2(Z). It is for

this reason that the L2 theory of the Fourier transform is so well-behaved and understandable.

In addition, if f ∈ L1(T), the Cesàro means of the Fourier series of f converge to f in L1. Therefore,

f is determined by its Fourier series and the map f → f̂ is 1-1. Now by the formula for Fourier
coefficients, we have

∣∣∣f̂(k)
∣∣∣ =

∣∣∣∣
1

2π

∫ π

−π

f(θ)e−ikθ dθ

∣∣∣∣ ≤
1

2π

∫ π

−π

|f(θ)| dθ = ‖f‖1

So the Fourier transform f → f̂ maps L1(T) into L∞(Z), and we just saw that the map is 1-1. But
the map is not onto, nor is it norm-preserving.

We also see that if f ∈ C(T), then the Cesàro means of the Fourier series of f converge uniformly

to f . (This was actually the original setting for Fejér’s theorem.)

7 Convolutions and the Fourier transform

As we have seen, the Fourier transform f → f̂ takes functions on T to functions on Z. Scientists
and engineers often think of T as representing space or time, and Z as the “frequency domain”,

in the sense that each Fourier coefficient f̂(n) is the amplitude of a particular frequency in the
Fourier series for f . This correspondence between functions on these two domains is worth looking

at closely. We have already seen that the correspondence, when taken as a map on L2(T), is a

unitary isomorphism with L2(Z).

To go further, there is an important formula that relates convolutions and Fourier transforms:

7.1 Theorem If f and g are both in L1(T), then

f̂ ∗ g(n) = f̂(n)ĝ(n)

Proof.

f̂ ∗ g(n) =
1

2π

∫ π

−π

f ∗ g(θ)e−inθ dθ

=
1

2π

∫ π

−π

(
1

2π

∫ π

−π

f(θ − φ)g(φ) dφ

)
e−inθ dθ

=
1

2π

∫ π

−π

(
1

2π

∫ π

−π

f(θ − φ)e−in(θ−φ) dθ

)
g(φ)e−inφ dφ

=

(
1

2π

∫ π

−π

f(ψ)e−inψ dψ

)(
1

2π

∫ π

−π

g(φ)e−inφ dφ

)

= f̂(n)ĝ(n)

We already noted that L1(T) is an algebra with convolution as the multiplication, and we know

that the Fourier transform maps L1(T) into L∞(Z). Now L∞(Z) is also an algebra, under pointwise
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multiplication. This theorem shows that the Fourier transform is actually an algebra homomorphism

from L1(T) into L∞(Z).

Let us see how this formula can be used:

7.1 Pointwise convergence

Pointwise convergence is determined, as we have seen, by the properties of the Dirichlet kernel

Dn(θ) =
sin
(
n+ 1

2

)
θ

sin 1
2θ

Since

Dn(θ) =

n∑

k=−n

eikθ

we know that

D̂n(i) =

{
1 −n ≤ i ≤ n

0 otherwise

That is, D̂n is the characteristic function of the interval [−n, n] on Z. Of course, this fits in exactly

with Theorem 7.1:

ŝn(i) = f̂ ∗Dn(i) = f̂(i)D̂n(i) =

{
f̂(i) n ≤ i ≤ n

0 otherwise

which is just how sn is defined: it is the function whose non-zero Fourier coefficients are just a

subset (the subset with indices −n to n) of those of f .

7.2 Cesàro summation

Cesàro summation (usually called “(C,1) summation” or “(C,1) summability”) is determined by the
properties of the Fejér kernel

Kn(θ) =
1

n

n−1∑

k=0

Dk(θ)

We therefore have

K̂n(i) =
1

n

n−1∑

k=0

D̂k(i) =





1 − i

n
−n ≤ i ≤ n

0 otherwise

That is, K̂n is a “tent function” on Z, having its vertex at 0 (where its value is 1), and decreasing

linearly in both directions until it reaches 0 at i = ±n.
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Thus, we have for the nth Cesàro mean of the Fourier series for f ,

σ̂n(i) = f̂ ∗Kn(i) = f̂(i)K̂n(i) =





(
1 − i

n

)
f̂(i) −n ≤ i ≤ n

0 otherwise

So the Cesàro means take account of the Fourier coefficients between −(n− 1) and n− 1, but give

less weight to the ones with higher frequency. This can be thought of as one reason why (C,1)
summation is more well-behaved than plain pointwise convergence.

Note that as Kn becomes more concentrated at 0 (i.e., as n becomes large), its Fourier transform K̂n

becomes more spread out. This phenomenon is quite general, and there are many ways of making
it precise. The intuition behind it is that for a function to be concentrated near a point, it must
have a large derivative near that point, which in turn means that higher-order harmonics need to
be present in its Fourier expansion. This general property of the Fourier transform is known as the
“uncertainty principle”. (One of the ways of expressing it precisely is equivalent to the uncertainty

principle of quantum mechanics.)

Another way to think of the uncertainty principle as applied to this case is that as a function f
becomes more and more like the physicists’ delta function δ, the sequence of its Fourier coefficients
becomes more and more like the sequence of Fourier coefficients of δ. (This can actually be inter-

preted to make sense, by regarding δ as a measure.) That sequence is identically 1, because formally,

we have

δ̂(n) =
1

2π

∫ π

−π

δ(θ)e−inθ dθ = 1

This fits in with Theorem 7.1: as f approaches the identity in the convolution algebra L1, f̂

approaches the identity in the algebra (under pointwise multiplication) L∞.

7.3 Abel summation

One might try to come up with other methods of summing Fourier series, by looking at other
ways of weighting the Fourier coefficients. For instance, we could try having the weights decrease
exponentially: Suppose we had a function Pr(θ) such that for 0 < r < 1,

P̂r(k) = r|k|

Then

f̂ ∗ Pr(k) = f̂(k)P̂r(k) = r|k|f̂(k)

and we might hope that Pr is an approximate identity as r ↑ 1 and that this form of summation is
actually useful.

This is all true. The form of summation is known as Abel summation, and the kernel Pr(θ) is the
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Poisson kernel. We can see what Pr(θ) is by summing its Fourier series explicitly:

Pr(θ) =

∞∑

k=−∞

r|k|eikθ

=

−1∑

k=−∞

r|k|eikθ +

∞∑

k=0

r|k|eikθ

=

∞∑

k=1

rke−ikθ +

∞∑

k=0

rkeikθ

=
re−iθ

1 − re−iθ
+

1

1 − reiθ

=
1 − r2

1 − 2r cos θ + r2

For any value of r, the convergence is absolute and uniform in θ. Thus 1
2π

∫ π
−π Pr(θ)e

−inθ dθ can be

integrated term-by-term, and this shows that Pr in fact has the Fourier coefficients we started with.

We still have to show that Pr(θ) is an approximate identity:

• Pr(θ) ≥ 0. This is immediate.

•
∫ π
−π

Pr(θ) = 2π. This just says that P̂r(0) = 1.

• For each δ > 0, limr↑1

∫
δ<|θ|<π Pr(θ) dθ = 0. The proof of this is more or less the same as that

for Kn: if δ < |θ| < π, we have cos θ < cos δ < 1. Therefore,

Pr(θ) ≤
1 − r2

1 − 2r cos δ + r2

As r ↑ 1, the numerator of the fraction on the right approaches 0, and the denominator
approaches 2(1 − cos δ) > 0, so Pr(θ) → 0 as r ↑ 1.

so Pr(θ) is in fact an approximate identity. The Poisson kernel is important because it solves the
Dirichlet problem for the unit disc in C: say f is a continuous function on T, and define F on the
unit disc C by wrapping f around it:

F (eiθ) = f(θ)

then (with z = reiθ) Pr ∗ f(θ) is a harmonic function in the unit disc |z| < 1 such that it approaches

F radially (in fact, non-tangentially) at every point of C.

Figure 4 shows what this kernel looks like. Figure 5 shows how the Fourier transforms of the Fejér
and Poisson kernels spread out and approach the constant sequence 1 as the kernels become more
concentrated at 0.
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Figure 4: The Poisson kernel



7.3 Abel summation 27

K3(θ)

K10(θ)

−π π0

K10(θ) (dark curve)

K3(θ) (light curve)

-10 0 10
b b b b b b b b

b

b

b

b

b

b b b b b b b bb
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b

K̂10(n) (upper dots)

K̂3(n) (lower dots)

P.5(θ)

P.8(θ)

−π π0

P.8(θ) (dark curve)

P.5(θ) (light curve)

-10 0 10
b b b b b b b

b

b

b

b

b

b

b
b b b b b b b

b b b b b b
b

b
b

b

b

b
b

b
b

b b b b b b

P̂.8(n) (upper dots)

P̂.5(n) (lower dots)

Figure 5: The Fejér and Poisson kernels and their Fourier transforms. As the kernels become more
concentrated at 0, the sequence of their Fourier coefficients spreads out and approaches the constant
sequence 1. This is an example of the uncertainty principle in harmonic analysis.
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8 A historical sketch

Here is an outline of the early history of harmonic analysis, much of it from secondary sources. It
is limited in scope. I have restricted myself to providing a historical context for the mathematical
content of this exposition. In particular, I have completely ignored the work of Riemann and Cantor.

8.1 The eighteenth century

1747 D’Alembert derived the partial differential equation

∂2u

∂t2
=
∂2u

∂x2

that describes the displacement u(t, x) of a violin string as a function of time t and distance
x along the string. He then showed that a general solution to this equation has the form

u(x, t) = f(t+ x) + g(t− x)

If the string is normalized so that it has length 1, then from the requirements that u(0, t) =

u(1, t) = 0 (i.e., that the displacement always be 0 at the endpoints), we get first (looking at

u(0, t)) that g ≡ −f , so

u(x, t) = f(t+ x) − f(t− x)

Then (looking at u(1, t)) we see that f must be periodic of period 2:

f(t+ 2) = f(t)

D’Alembert then noted that there were many functions of this form, including trigonometric
functions. Implicitly, however, the functions he considered all had the form of a single analytic
expression.

1748 Euler, after seeing d’Alembert’s paper, published equivalent results, with one significant dif-
ference: he was willing to allow as a function f any continuous curve that could be drawn
by hand. In particular, it might be given by different expressions over different parts of the
interval, and its graph might include corners. Euler may have come to this definition by
considering that the initial displacement of a vibrating string could be pretty arbitrary.

Euler felt, quite rightly, that his notion of function was considerably more general than that
of d’Alembert.

These results focused attention on the problem of characterizing periodic functions. Everyone
agreed that trigonometric functions were bona fide functions, and were periodic. And everyone

agreed that finite linear combinations of them (what we now call trigonometric polynomials)
were also.

In 1749, Euler considered starting with the function f(t) = sinnπt (where n is a positive

integer). Then

f(t+ x) − f(t− x) = 2 sinnπx cosnπt

and Euler pointed out that any linear combination of functions of this form is a solution of
d’Alembert’s equation.
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1753 Daniel Bernoulli proposed that (assuming the string has length 1) the initial shape of the

string can be expanded in a sine series containing infinitely many terms:

f(x) =

∞∑

n=1

an sinnπx

which gives

u(t, x) = 2

∞∑

n=1

an sinnπx cosnπt

That is, Bernoulli suggested that such a series provided a general solution of d’Alembert’s
equation. The numbers n were explicitly understood to represent the frequencies of the simple
modes of vibration of the string.

Euler immediately criticized this result, since it seemed to imply that any function could be
represented as a trigonometric series, and Euler felt this was clearly absurd.

1759 Lagrange performed a somewhat similar analysis, arriving at his result by replacing the string
by a discrete set of masses tied together by a massless string, solving the linear equations thus
generated, and proceeding to the limit as the number of masses tends to infinity. However,
he never actually came up with a trigonometric series representation, and in fact, he felt
strongly that such a representation was impossible. He believed throughout his life that any
expression such as a trigonometric series could not possibly give rise to a graph that vanished
on a subinterval without vanishing everywhere.

The 18th century concept of function. An extensive argument developed between d’Alembert,
Euler, Bernoulli, and Lagrange concerning the meaning and validity of these results. The
controversy, in addition to being quite bitter, was confused and confusing, because the notion
of function in the eighteenth century was quite different from what it is today.

The word “function” seems to have been used first around the time of Leibnitz. In the eigh-
teenth century, it was used to refer to algebraic expressions, and also to functions defined by
means of an infinite sequence of algebraic operations, such as power series and some infinite
products. There was no clear definition of function, however—and implicit functions (e.g.,

functions defined as solutions of algebraic equations) were also recognized. All such functions

were in some sense “rigid”—generally speaking, they were analytic functions9 and were deter-
mined by their values on a small interval. Mathematicians were used to operating with these
functions in a formal way. It is fair to say that the primary meaning of “function” was similar
to what we now mean by “expression”.

Nevertheless, it was apparent that other kinds of functional dependence might appear, in
nature at least. So by the eighteenth century, the term “continuous function” was used to
denote the kind of function I have just described. The term “discontinuous function” or
“mechanical function” was used to denote a function that was more general in some sense. For
instance, it might be patched together from functions that were “continuous” on neighboring
intervals. In Euler’s usage, it was even more general than this—perhaps what we might now
call “piecewise smooth”. But in all cases, these functions were continuous in the modern
sense—one could “draw” them.

9This of course is a notion that did not exist at that time.
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The eighteenth century was not a time in which mathematicians were accustomed to defining
their terms, and so in fact, these usages were not at all consistent. In addition, these mathe-
maticians produced results that blatantly contradicted their own fiercely held beliefs, with no
apparent recognition of this problem. And the disputes between these scholars were heated
and at times truly unpleasant.

Still, the disagreement between Euler and d’Alembert had some real content10. In essence,
d’Alembert was saying that the only functions that could be effectively dealt with mathe-
matically were functions that had derivatives. There is something to this point. The wave
equation, after all, is a differential equation. From this equation, d’Alembert had derived a
functional equation, and Euler pointed out that a function did not have to be smooth at all
points to satisfy this equation. On the other hand, it does not seem right that such a func-
tion should be allowed as a solution to a differential equation. Euler had really come upon a
striking phenomenon: there are some differential equations that in a very natural sense admit
non-differentiable solutions. Furthermore, these solutions are physically meaningful. But this
phenomenon did not really begin to be understood until the time of Riemann, and Euler was
far ahead of his time in this area.

In this argument, one can see the germ of the distinction between analytic function theory and
the theory of “functions of a real variable”. Mathematicians in the eighteenth century were
quite accustomed to representing functions as power series, and power series are determined
locally. It was the need to consider functions arising from physical problems, and the behavior
of trigonometric series—which are not determined locally—that led to the controversy and
ultimately to our modern notion of function.

It seems to me, following the history into the next century, that the function concept developed
in parallel with ideas of continuity and discontinuity—roughly speaking, as more kinds of
discontinuous functions were needed or discovered, the notion of function was further refined.

All this, however, did not stop Euler, d’Alembert, and Bernoulli from finding cases in which

trigonometric series did actually represent specific functions such as x, x2, and so on, on a
finite interval. (Amazingly from our vantage point, no one noticed the problem this caused

with their notion of function.) This amounted to finding the Fourier coefficients of particular
functions. These investigations were at first ad hoc, since the general formula had not been
discovered. But in 1757, Clairaut succeeded in finding the general formula for the coefficients
in a cosine series. He derived it by a process of interpolation, and claimed that it would work
for any function.

This culminated in Euler’s remarkable discovery of 1777:

1777 Euler showed that the formula

an = 2

∫ 1

0

f(x) sinnπxdx

for computing the coefficients in a sine series could be derived by integrating term-by-term.
In today’s language, he discovered the orthogonality of the trigonometric functions. His paper
was not published until 1793, ten years after his death.

10I am following here the excellent discussions in Truesdell (1960) and Luzin (1998).
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8.2 The nineteenth century

1807 Fourier, unaware of Euler’s results, rediscovered the formula for what are now known as

“Fourier coefficients”. In his presentation to the French Academy on the theory of heat11, he

. . . laid down the proposition that an arbitrary function given graphically by means
of a curve, which may be broken by (ordinary) discontinuities, is capable of represen-
tation by means of a single trigonometrical series. This theorem is said to have been
received by Lagrange with astonishment and incredulity (Hobson, 1927 (Volume I,

3d edition); 1926 (Volume II, 2nd edition), Volume 2, p. 480).

. . . as well as hostility. Lagrange, who died in 1813, prevented Fourier’s papers from being
published. In consequence, Fourier’s results were not widely disseminated until the publication
of his Théorie analytique de la chaleur, in 1822.

The functions that Fourier was willing to consider not only had corners or cusps in their
graphs—they also had jump discontinuities. Such functions did not make physical sense for a
vibrating string, but were reasonable initial conditions for problems involving heat conduction.
It was Fourier’s contention that such functions could be represented as trigonometric series
that was so surprising and controversial.

Fourier gave some indications of how he thought that his trigonometric series could be proved
to converge. One way involved replacing the trigonometric functions by their power series.
Hardy has an interesting discussion of this in his book Divergent Series. Fourier’s other
suggestion was to write an expression for the sum of the first n terms of the series. In this
way, he came up explicitly with the “Dirichlet kernel”. He did not pursue this method,
however; it was left to Dirichlet to take up where Fourier had left off.

1823 Poisson tried to prove Fourier’s theorem. He claimed, in our notation, that Pr ∗ f(θ) → f(θ)

if f is continuous, and hence that for continuous functions

lim
r↑1

∞∑

n=−∞

r|n|f̂(n)einθ = f(θ)

Poisson evidently believed that this proved the theorem—that one could pass to the limit by
simply setting r = 1 without any further justification.

Actually, Poisson didn’t even quite prove this. His argument that Pr ∗ f(θ) → f(θ) was badly
botched by today’s standards; in fact it’s hard to make much sense of it. In 1872 Schwarz
fixed up this part of the proof.

Cauchy didn’t think much of Poisson’s proof. He himself gave two proofs of the theorem, but
his proofs were also flawed.

1826 Abel (1826) proved what is now called “Abel’s theorem”: if the series
∑∞

k=1 an converges

(i.e., if the sequence of partial sums converges), say to the limit S, then the power series∑∞
k=1 anx

n converges for all |x| < 1 and limx↑1

∑∞
k=1 anx

n = S. (This would now be called

the consistency theorem for Abel summability—that is, if a series is convergent in the ordinary

sense, then it is Abel summable to the same value.) Abel may have been at least partially

11An annotated copy of this paper is in Grattan-Guinness (1972).
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motivated by Poisson’s attempted proof of Fourier’s theorem—at any rate, his paper does
refer to expressions of the form

∞∑

n=1

(an sin θ + bn cos θ)rn

One of the significant aspects of Abel’s paper was that he had to take careful account of
the possible non-absolute convergence of the series

∑
an—in fact, if the series is absolutely

convergent, a much simpler proof would suffice.

In this paper, Abel also pointed out that Cauchy’s “proof” that the sum of a series of con-
tinuous functions is necessarily continuous cannot be correct; he gives a Fourier series that
converges to a discontinuous function as a counterexample.

Did Abel prove “Abel’s theorem”? In 1863, Liouville published a short note (Dirichlet, 1863)
in which he stated that he found Abel’s proof difficult to understand, and that Dirichlet had
helped him by showing him another proof, which he reproduced. (This was after Dirichlet’s

death.) I think it is possible that Liouville was being overly modest and wanted an excuse for
publishing Dirichlet’s quite elegant argument.

But the matter didn’t die, it seems. Grattan-Guinness (1970) refers to Liouville’s note, and

goes to some pains to show that Abel’s proof is incorrect. There is in fact a little sloppiness
in Abel’s proof. The issue is this (I am abstracting things just a little, and changing the

notation): Abel points out, following Cauchy, that a series
∑
ai converges if and only if the

family of finite sums

m+n∑

i=m

ai

approaches 0 with m. (This is now called the “Cauchy criterion”.) In using this in the proof

of his Theorem IV (which is what is now called “Abel’s theorem”), he should thus write

∣∣∣∣∣
m+n∑

i=m

ai

∣∣∣∣∣ < ǫ

However, Abel writes this without the absolute value signs12. It’s not at all hard to see that
this is easily fixed, and that is what all subsequent authors have done in giving Abel’s proof.
Grattan-Guiness, however, thinks that one would have to introduce absolute values like this:

m+n∑

i=m

|ai| < ǫ

which of course is wrong—this would be correct only if the series were absolutely convergent
to begin with. Grattan-Guinness then concludes that the proof is unsalvageable.

Bottazzini (1986), similarly, refers to Liouville’s note. Without reproducing Abel’s proof, he
then quotes the start of Dirichlet’s proof, but leaves out the two or three lines that drive the

12He would really have had to bound it explicitly above and below, because the term “absolute value”, and the
associated notation, did not exist at the time. It was introduced much later, by Weierstrass.
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point home. While he does not actually say that Abel’s proof is wrong, he does say (correctly)

that the subsequent Theorem V in Abel’s paper is incomplete (because it implicitly assumed

uniform convergence)—except that he doesn’t make it clear that he is talking about Theorem
V rather than Theorem IV. He then quotes Hardy as saying that Abel’s proof contained within
it the germ of the idea of uniform convergence, and says that Hardy was therefore mistaken.

The problem with this is that Hardy was referring to the proof of Theorem IV, not Theorem V.
Now it is true that Abel’s theorem—Theorem IV—is today usually proved with some mention
of uniform convergence. Abel did not have that notion, but his proof is correct nonetheless,
and that is what Hardy meant. There is no doubt about Hardy’s meaning—Hardy was an
expert in series and summability, and had taken a particular interest in this proof. So while
Bottazzini doesn’t actually say that Abel’s proof is wrong, it would be hard to read him and
not come away with that impression.

So both these writers are confused, and Abel really did give a correct proof.

1829 Dirichlet gave the first rigorous proof of Fourier’s theorem. Riemann (1868) says that this

paper was the first in which the fact that Fourier series are non-absolutely convergent was
noticed and dealt with correctly.

Riemann states this in the historical introduction to his paper on Fourier analysis, which was
his Habilitationsschrift (probationary essay) at Göttingen in 1854. It remained unpublished

until 1868, when Dedekind discovered it after Riemann’s death. Riemann actually says more:
He says that Dirichlet was the first person to discover the phenomenon of conditional conver-
gence. This, however, cannot be true. Cauchy was evidently aware of the difference between
absolutely and conditionally convergent series, and we already noted that Abel took careful
account of this distinction in 1826. It is true, however, that Dirichlet begins his paper by point-
ing out that one of Cauchy’s attempted proofs of convergence for Fourier series fails on just

this point13. Riemann based his history in this paper on a long conversation with Dirichlet,
so this probably represents Dirichlet’s memory of the essential difficulty in the proof.

Dirichlet’s proof worked for functions that were “piecewise monotonic”, and guaranteed conver-
gence at points of continuity of such functions. Dirichlet believed the proof could be extended
to prove convergence for any continuous function.

Dirichlet’s proof was extensively analyzed, and his sufficient condition was relaxed or modified
in several different directions by a number of mathematicians, notably Lipschitz (1864; this

is where the “Lipschitz condition” originated), Dini (1872 and 1880), and Jordan (1881),
who gave the modern definition of bounded variation, and showed that it was the natural
condition for Dirichlet’s original argument. Lebesgue (1905) gives an overview of these different

conditions and gives a still more general one that subsumes them all.

The assumption throughout much of this period was that Fourier series really do converge
pointwise for continuous functions, and it was just a matter of finding the proof.

Dirichlet’s concept of function. Dirichlet’s paper also marked a significant advance in the di-
rection of the modern notion of function: In this paper, he gave his famous example of the
characteristic function of the rationals, or, as he actually put it, a function which takes one
value on the rationals and a different value on the irrationals. In a reworking of this paper in
1837, he gave a definition of a continuous function that is quite close to the modern one:

13Cauchy’s other proof, which Dirichlet was not aware of, was based on the Cauchy integral theorem and so really
only applies to analytic functions.
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Let a and b be two fixed numbers, and let x be a variable which is to take on all
values between a and b. Now if to each x there corresponds a single finite y in such
a way that, while x runs continuously through the interval from a to b, y = f(x)

also varies gradually, then y is called a continuous function of x for this interval. It
is not at all necessary here that y depend on x according to the same [formal] law
in the whole interval; one does not have to think at all of a dependence expressible
by mathematical operations. Represented geometrically, i.e., with x and y thought
of as abscissa and ordinate, a continuous function appears as a connected curve,
of which only one point corresponds to each value of x between a and b. This
definition does not prescribe a common law for the individual parts, or as drawn
without obeying any rule at all. It follows that such a function can be considered
as completely determined for such an interval only if it given either graphically over
the whole [extent of that] interval, or if it satisfies mathematical laws valid on its

individual parts. As long as one has decided on the values of a function only for
part of the interval, its continuation to the rest of the interval can be made entirely
at will. (Dirichlet, 1837, ; translation from ; Birkhoff, 1973, p. 13)

There is a heated controversy among historians as to just how close Dirichlet got to the modern
definition of function. Lakatos thinks he was still quite far away from the modern conception,
and Bottazzini agrees. Their reasons are the following:

• At a jump discontinuity, Dirichlet says that a function has “two values”, which he denotes
by f(x+ 0) and f(x− 0).

• Dirichlet restricts his definition (the one given above) to continuous functions.

My own opinion is that Lakatos and Bottazzini are wrong, for the following reasons:

First, it does not seem to me that Dirichlet would have been at all surprised to see a definition
in which f had a unique value at a jump discontinuity and in which f(x + 0) and f(x − 0)
were just notations for the right- and left-hand limits of f at x. This is what those notations

came to mean in the late 1800’s, and now they are usually written as f(x+) and f(x−). I
don’t think Dirichlet was really confused on this point at all. In fact, I think his statement
was just a way of saying that one could pick two reasonable values for f at x. (Lakatos and
Bottazzini would no doubt object to this, and insist that what I have written here is a back

reading.)

In any case, compare this statement of Dirichlet’s to Fourier’s notion of what happened at a
jump discontinuity: Fourier understood there to be a vertical line in the graph of the function
at such a point. That is, Fourier thought of a function as a graph that could be drawn, in the
eighteenth century tradition. So Dirichlet’s notion of what happens at a jump discontinuity
is not at all foreign to us and is quite different from that of Fourier.

But of even more significance, I think, is the question of why Dirichlet restricted his definition
to continuous functions:

One reason that Dirichlet did this is that his proof—based on the formulas for the Fourier
coefficients—relies on integration. The only definition of the definite integral available at that

point was Cauchy’s, which was stated in terms of continuous functions. (Even Cauchy’s proof
of the existence of the definite integral was incomplete, however, since he did not have the
concept of uniform continuity.) Dirichlet had succeeded in weakening this in his paper to

accommodate a function that had a finite number of jump discontinuities, by taking the sum
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of the integrals over the subintervals on which the function was continuous. He believed that
this line of reasoning could be extended to handle many more functions, and in his 1829 paper
he suggested that it could handle functions that have an infinite number of discontinuities, so
long as (in today’s language) the set of these discontinuities is nowhere dense. In a later letter
to Gauss, he suggested a condition that looks like what we would now call a set of measure 0.
His example of the characteristic function of the rationals was produced to give an example
of a function for which he did not see any way of defining an integral.

So Dirichlet was trying to make the class of allowable functions as large as he could, given
the analytical tools that were available. In fact, he says as much in his 1829 paper. Riemann
certainly understood this quite well—one of the main results of his paper was his definition of
what we now call the Riemann integral. It was developed explicitly to further Dirichlet’s goal

of widening the class of functions to which the proofs of harmonic analysis could apply14.

There certainly was an evolution in the understanding of what constituted a function from
Dirichlet through Riemann to Weierstrass and Cantor, and then to Baire and Lebesgue. But
I think Dirichlet’s conception lies well within this path of development, and is fundamentally

different from the notions of d’Alembert, Euler, and even Fourier15.

1872 Schwarz gave the modern proof that Pr ∗ f(θ) → f(θ) when f is continuous. (This was the

paper in which Schwarz solved the Dirichlet problem for the disc.) This may have been the
first proof that used what is now seen to be an approximate identity argument.

Subsequently, in 1885, Weierstrass proved what is now called the Weierstrass approximation

theorem, by giving an approximate identity argument based on a kernel of the form e−x
2

. He
was familiar with this kernel because essentially the same convolution provides a solution to
the heat equation in mathematical physics.

1876 du Bois Reymond gave an explicit construction of a continuous function whose Fourier series
fails to converge at a particular point. He also constructed a continuous function whose Fourier
series fails to converge at the points of a dense set.

This showed the futility of trying to prove pointwise convergence for continuous functions in
general. It led to a number of investigations into ways of simplifying and understanding the
kind of pathological examples that du Bois Reymond had produced. A particularly incisive
analysis was made by Lebesgue in 1909, and this led ultimately to the Banach-Steinhaus
theorem, which can be used to give an easy (although non-constructive) proof of du Bois

Reymond’s result.

Counterexamples were in the air at this time; one year earlier, du Bois Reymond had published

Weierstrass’s example of a continuous nowhere differentiable function16.

1880 Starting in this year, and possibly inspired by du Bois Reymond’s counterexample, interest
revived in dealing with series that diverged but for which there was a reasonable method of
associating a sum. Such methods ultimately became known as summability methods. The
first paper of this sort was by Frobenius in 1880—he showed that (using modern terminology)

14I have followed Hawkins (1970) and Dauben (1979) in this discussion.
15As another example: Fourier, whom Dirichlet held in high esteem, always used the term “discontinuity” in Euler’s

sense. So even though Fourier’s work, more than any other’s, demonstrated the need for a wider notion of function,
he remains a true transitional figure, with one foot still in the past.

16The example actually dates from 1872 in a paper presented by Weierstrass to the Königl. Akademie der Wis-
senschaften. Weierstrass subsequently communicated his proof to du Bois Reymond, who published it with attribution
in 1875.
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Cesàro summability implies Abel summability. That is, if

sk =

n∑

k=1

an

is the sequence of partial sums of a (possibly divergent) series, and if the sequence of averages

1

n

n∑

k=1

sk

converges, say to a limit S, then also the power series
∑∞

n=1 anx
n has a limit as x ↑ 1, and

that limit is also S. This paper was followed by papers of Hölder (1882), Cesàro (1890), and

Borel (1896).

8.3 The dawn of the twentieth century

1900 Fejér proved that the (C,1) means of the Fourier series of a continuous function converge
everywhere to that function. Fejér’s theorem was a sensation, and led to an explosion of work
in this area. In 1910 Hardy proved a Tauberian theorem for (C,1) summability—the first

modern Tauberian theorem—and pointed out that his theorem gave a simple derivation of
Dirichlet’s theorem from Fejér’s theorem. Immediately after that (also in 1910), Littlewood
proved the considerably harder analogue of Hardy’s theorem for Abelian summability. This led
to the famous Hardy-Littlewood collaboration. In Littlewood’s preface to Hardy’s Divergent
Series, he writes:

The title holds curious echoes of the past, and of Hardy’s past. Abel wrote in 1828:
‘Divergent series are the invention of the devil, and it is shameful to base on them
any demonstration whatsoever.’ In the ensuing period of critical revision they were
simply rejected. Then came a time when it was found that something after all
could be done about them. This is now a matter of course, but in the early years
of the century the subject, while in no way mystical or unrigorous, was regarded
as sensational, and about the present title, now colourless, there hung an aroma of
paradox and audacity.

We end by mentioning some of the later history concerning pointwise convergence of Fourier
series:

1915 Luzin hypothesized that the Fourier series of an L2 function (and thus in particular, of a

continuous function) converges almost everywhere.

1923 In the other direction, Kolmogoroff constructed an L1 function whose Fourier series diverges

almost everywhere. In 1926 he constructed an L1 function whose Fourier series diverges
everywhere. This still left the Luzin conjecture unresolved, however.

1966 Carleson proved the Luzin conjecture: the Fourier series of an L2 function must converge
pointwise almost everywhere. Hunt then proved this also holds for any Lp function with
1 < p ≤ ∞.
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8.4 A question

Now here is a question: Why was Fejér’s theorem such a sensation? Looking at things from to-
day’s perspective, Poisson had given an essentially equivalent result 77 years previously, and it had
subsequently been made perfectly rigorous by Schwarz.

The answer seems to involve the following elements:

• At the time that Poisson produced what is now called the Poisson kernel, the question that
Fejér answered was not yet posed. It simply wasn’t realized that he had answered a significant
question.

• By the time of du Bois Reymond’s counterexample, the idea of finding an interpretation for
the sum of a possibly non-convergent series was regarded with great suspicion. No one believed
at that time that anything useful could be done with such series.

• Later, when methods of summing divergent series began to be studied seriously, it seems that
(C,1) summability of a series looked so much closer to ordinary summability that it seemed
different in kind from what we now call Abel summability. It’s not that Abel summability was
unknown or forgotten—it was very well known. But it evidently didn’t seem to be the same
sort of thing as (C,1) summability, and was not yet referred to as a summability method.

To put it another way, today we would say that the question is

“How can a function be recovered from its Fourier coefficients?”

It may be however, that at the time, people thought that the question was

“How can a function be recovered from the partial sums of its Fourier series?”

That question was clearly answered by Fejér.

In both Fejér’s announcement of 1900 and his full paper of 1904, he refers to Poisson’s theorem
and to Schwarz’s paper. (In fact, Fejér was a student of Schwarz.) But in both cases, the
point he makes is that his theorem, together with the 1880 Frobenius theorem, gives a proof
of Poisson’s theorem. He doesn’t seem to regard Poisson’s theorem as really addressing the
same issue as his own theorem.

In Borel’s Leçons sur les Séries Divergentes of 1901, there is no mention of Fejér’s theorem—
presumably the book was written just as the theorem was announced. There is, however, an
extensive discussion of Cesàro summability, and no mention whatsoever of Poisson’s theorem
or Abel’s theorem. Borel at this time seems not to have thought of Poisson’s work as an
example of a summability method.

Borel’s book was revised in 1927 by Georges Bouligand, with Borel’s approval. The second
edition contained extensive material about Fourier series, and included both Fejér’s theorem
and Poisson’s theorem. Nevertheless, the authors still saw them as intuitively very different:
they referred to

. . . two principles of summation:

1. The principle of averages;

2. The principle of convergence factors.
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and called them “two quite distinct ideas”, which they then went on to show were really

equivalent. (Borel, 1901, second edition, pages 92 and 88).

• So it may be—I am much less certain of this point, however—that Hardy was alone in 1910 in
understanding that the Poisson integral was a method of summability, although even he did
not use that term yet. In Hardy’s 1910 paper, he uses the term “summability” only to refer
to Cesàro summability. But in Littlewood’s subsequent paper of that same year, he thanks
Hardy for pointing out the connection of his Tauberian theorem for power series to Poisson’s
theorem (as well as for suggesting the problem itself). And in 1913, a joint paper of Hardy

and Littlewood lists several methods of associating a “sum” (their quotes) to a series, among

which is what we now call Abel summability. Perhaps it was really the intensive work of Hardy
and Littlewood in summability methods and Tauberian theorems that unified this whole area.
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