
High Performance Fortran (HPF) is a new program-
ming language for writing parallel programs. It is
based on the Fortran 90 language, with extensions
that enable the programmer to specify how array oper-
ations can be divided among multiple processors for
increased performance. In HPF, the program specifies
only the pattern in which the data is divided among
the processors; the compiler automates the low-level
details of synchronization and communication of data
between processors.

Digital’s DEC Fortran 90 compiler is the first imple-
mentation of the full HPF version 1.1 language
(except for transcriptive argument passing, dynamic
remapping, and nested FORALL and WHERE con-
structs). The compiler was designed for a distributed-
memory machine made up of a cluster (or farm) of
workstations and/or servers powered by Digital’s
Alpha microprocessors.

In a distributed-memory machine, communication
between processors must be kept to an absolute mini-
mum, because communication across the network is
enormously more time-consuming than any operation
done locally. Digital’s DEC Fortran 90 compiler
includes a number of optimizations to minimize the
cost of communication between processors.

This paper briefly reviews the features of Fortran 90
and HPF that support parallelism, describes how the
compiler implements these features efficiently, and
concludes with some recent performance results
showing that HPF programs compiled with Digital’s
compiler yield performance that scales linearly or even
superlinearly on significant applications on both
distributed-memory and shared-memory architectures.

Historical Background

The desire to write parallel programs dates back to the
1950s, at least, and probably earlier. The mathematician
John von Neumann, credited with the invention of the
basic architecture of today’s serial computers, also
invented cellular automata, the precursor of today’s
massively parallel machines. The continuing motiva-
tion for parallelism is provided by the need to solve
computationally intense problems in a reasonable time
and at an affordable price. Today’s parallel machines,

Digital Technical Journal Vol. 7 No. 3 1995 5

Compiling High
Performance Fortran
for Distributed-
memory Systems

Jonathan Harris
John A. Bircsak
M. Regina Bolduc
Jill Ann Diewald
Israel Gale
Neil W. Johnson
Shin Lee
C. Alexander Nelson
Carl D. Offner

Digital’s DEC Fortran 90 compiler implements
most of High Performance Fortran version 1.1,
a language for writing parallel programs. The
compiler generates code for distributed-memory
machines consisting of interconnected work-
stations or servers powered by Digital’s Alpha
microprocessors. The DEC Fortran 90 compiler
efficiently implements the features of Fortran 90
and HPF that support parallelism. HPF programs
compiled with Digital’s compiler yield perfor-
mance that scales linearly or even superlinearly
on significant applications on both distributed-
memory and shared-memory architectures.

which range from collections of workstations con-
nected by standard fiber-optic networks to tightly cou-
pled CPUs with custom high-speed interconnection
networks, are cheaper than single-processor systems
with equivalent performance. In many cases, equiva-
lent single-processor systems do not exist and could
not be constructed with existing technology.

Historically, one of the difficulties with parallel
machines has been writing parallel programs. The work
of parallelizing a program was far from the original sci-
ence being explored; it required programmers to keep
track of a great deal of information unrelated to the
actual computations; and it was done using ad hoc
methods that were not portable to other machines.

The experience gained from this work, however, led
to a consensus on a better way to write portable
Fortran programs that would perform well on a variety
of parallel machines. The High Performance Fortran
Forum, an international consortium of more than
100 commercial parallel machine users, academics,
and computer vendors, captured and refined these
ideas, producing the language now known as High
Performance Fortran.1–3 HPF programming systems
are now being developed by most vendors of parallel
machines and software. HPF is included as part of the
DEC Fortran 90 language.4

One obvious and reasonable question is: Why
invent a new language rather than have compilers
automatically generate parallel code? The answer is
straightforward: it is generally conceded that auto-
matic parallelization technology is not yet sufficiently
advanced. Although parallelization for particular archi-
tectures (e.g., vector machines and shared-memory
multiprocessors) has been successful, it is not fully
automatic but requires substantial assistance from the
programmer to obtain good performance. That assis-
tance usually comes in the form of hints to the compiler
and rewritten sections of code that are more paralleliz-
able. These hints, and in some cases the rewritten code,
are not usually portable to other architectures or com-
pilers. Agreement was widespread at the HPF Forum
that a set of hints could be standardized and done in a
portable way. Automatic parallelization technology is
an active field of research; consequently, it is expected
that compilers will become increasingly adept.5–12 Thus,
these hints are cast as comments—called compiler
directives—in the source code. HPF actually contains
very little new language beyond this; it consists primar-
ily of these compiler directives.

The HPF language was shaped by certain key
considerations in parallel programming:

■ The need to identify computations that can be
done in parallel

■ The need to minimize communication between
processors on machines with nonuniform memory
access costs

■ The need to keep processors as busy as possible by
balancing the computation load across processors

It is not always obvious which computations in
a Fortran program are parallelizable. Although some
DO loops express parallelizable computations, other
DO loops express computations in which later itera-
tions of the loop require the results of earlier itera-
tions. This forces the computation to be done in order
(serially), rather than simultaneously (in parallel).
Also, whether or not a computation is parallelizable
sometimes depends on user data that may vary from
run to run of the program. Accordingly, HPF contains
a new statement (FORALL) for describing parallel
computations, and a new directive (INDEPENDENT)
to identify additional parallel computations to the
compiler. These features are equally useful for distrib-
uted- or shared-memory machines.

HPF’s data distribution directives are particularly
important for distributed-memory machines. The
HPF directives were designed primarily to increase
performance on “computers with nonuniform mem-
ory access costs.”1 Of all parallel architectures, distrib-
uted memory is the architecture in which the location
of data has the greatest effect on access cost. On
distributed-memory machines, interprocessor com-
munication is very expensive compared to the cost of
fetching local data, typically by several orders of mag-
nitude. Thus the effect of suboptimal distribution of
data across processors can be catastrophic. HPF direc-
tives tell the compiler how to distribute data across
processors; based on knowledge of the algorithm, pro-
grammers choose directives that will minimize com-
munication time. These directives can also help
achieve good load balance: by spreading data appro-
priately across processors, the computations on those
data will also be spread across processors.

Finally, a number of idioms that are important in
parallel programming either are awkward to express in
Fortran or are greatly dependent on machine architec-
ture for their efficient implementation. To be useful in
a portable language, these idioms must be easy to
express and implement efficiently. HPF has captured
some of these idioms as library routines for efficient
implementation on very different architectures.

For example, consider the Fortran 77 program in
Figure 1, which repeatedly replaces each element of
a two-dimensional array with the average of its north,
south, east, and west neighbors. This kind of compu-
tation arises in a number of programs, including itera-
tive solvers for partial differential equations and
image-filtering applications. Figure 2 shows how this
code can be expressed in HPF.

On a machine with four processors, a single HPF
directive causes the array A to be distributed across
the processors as shown in Figure 3. The program

6 Digital Technical Journal Vol. 7 No. 3 1995

executes in parallel on the four processors, with each
processor performing the updates to the array ele-
ments it owns. This update, however, requires inter-
processor communication (or “data motion”). To
compute a new value for A(8, 2), which lives on
processor 0, the value of A(9, 2), which lives on
processor 1, is needed. In fact, processor 0 requires the
seven values A(9, 2), A(9, 3), … A(9, 8) from proces-
sor 1, and the seven values A(2, 9), A(3, 9), … A(8, 9)
from processor 2.13 Each processor, then, needs seven
values apiece from two neighbors. By knowing the lay-
out of the data and the computation being performed,
the compiler can automatically generate the inter-
processor communication instructions needed to exe-
cute the code.

Even for seemingly simple cases, the communica-
tion instructions can be complex. Figure 4 shows the
communication instructions that are generated for the
code that implements the FORALL statement for a
distributed-memory parallel processor.

Digital Technical Journal Vol. 7 No. 3 1995 7

Figure 1
A Computation Expressed in Fortran 77

integer n, number_of_iterations, i,j,k
parameter(n=16)
real A(n,n), Temp(n,n) É

... (Initialize A, number_of_iterations) ...
do k=1, number_of_iterations

C
Update non-edge elements only
do i=2, n-1

do j=2, n-1
Temp(i, j)=(A(i, j-1)+A(i, j+1)+A(i+1, j)+A(i-1, j))*0.25

enddo
enddo
do i=2, n-1

do j=2, n-1
A(i, j)=Temp(i,j)

enddo
enddo

enddo

Figure 2
The Same Computation Expressed in HPF

integer n, number_of_iterations, i, j, k
parameter (n=16)
real A(n, n)

!hpf$ distribute A(block, block) É
...(Initialize A, number_of_iterations)É...
do k=1, number_of_iterations

forall (i=2:n-1, j=2:n-1) !Update non-edge elements only
A(i, j)=(A(i, j-1)+A(i, j+1)+A(i+1, j)+A(i-1, j))*0.25

endforall
enddo

0 2

1 3

Figure 3
An Array Distributed over Four Processors

Although the communication needed in this sim-
ple example is not difficult to figure out by hand,
keeping track of the communication needed for
higher-dimensional arrays, distributed onto more
processors, with more complicated computations, can
be a very difficult, bug-prone task. In addition, a num-
ber of the optimizations that can be performed would
be extremely tedious to figure out by hand. Never-
theless, distributed-memory parallel processors are
programmed almost exclusively today by writing pro-
grams that contain explicit hand-generated calls to the
SEND and RECEIVE communication routines. The
difference between this kind of programming and pro-
gramming in HPF is comparable to the difference
between assembly language programming and high-
level language programming.

This paper continues with an overview of the HPF
language, a discussion of the machine architecture tar-
geted by the compiler, the architecture of the compiler
itself, and a discussion of some optimizations per-
formed by its components. It concludes with recent
performance results, showing that HPF programs
compiled with Digital’s compiler scale linearly in sig-
nificant cases.

Overview of the High Performance
Fortran Language

High Performance Fortran consists of a small set of
extensions to Fortran 90. It is a data-parallel program-
ming language, meaning that parallelism is made pos-
sible by the explicit distribution of large arrays of data
across processors, as opposed to a control-parallel

language, in which threads of computation are distrib-
uted. Like the standard Fortran 77, Fortran 90, and C
models, the HPF programming model contains a sin-
gle thread of control; the language itself has no notion
of process or thread.

Conceptually, the program executes on all the
processors simultaneously. Since each processor con-
tains only a subset of the distributed data, occasionally
a processor may need to access data stored in the
memory of another processor. The compiler deter-
mines the actual details of the interprocessor commu-
nication needed to support this access; that is, rather
than being specified explicitly, the details are implicit
in the program.

The compiler translates HPF programs into low-
level code that contains explicit calls to SEND and
RECEIVE message-passing routines. All addresses in
this translated code are modified so that they refer to
data local to a processor. As part of this translation,
addressing expressions and loop bounds become
expressions involving the processor number on which
the code is executing. Thus, the compiler needs to gen-
erate only one program: the generated code is parame-
trized by the processor number and so can be executed
on all processors with appropriate results on each
processor. This generated code is called explicit single-
program multiple-data code, or explicit-SPMD code.

In some cases, the programmer may find it useful
to write explicit-SPMD code at the source code level.
To accommodate this, the HPF language includes an
escape hatch called EXTRINSIC procedures that is
used to leave data-parallel mode and enter explicit-
SPMD mode.

8 Digital Technical Journal Vol. 7 No. 3 1995

Figure 4
Compiler-generated Communication for a FORALL Statement

Processor 0 Processor 1 Processor 2 Processor 3

SEND SEND SEND SEND
A(8, 2)…A(8, 8) A(9, 2)…A(9, 8) A(2, 9)…A(8, 9) A(9, 9)…A(15, 9)
to Processor 1 to Processor 0 to Processor 0 to Processor 1

SEND SEND SEND SEND
A(2, 8)…A(8, 8) A(9, 8)…A(15, 8) A(8, 9)…A(8, 15) A(9, 9)…A(9, 9)
to Processor 2 to Processor 3 to Processor 3 to Processor 2

RECEIVE RECEIVE RECEIVE RECEIVE
A(9, 2)…A(9, 8) A(8, 2)…A(8, 8) A(2, 8)…A(8, 8) A(9, 8)…A(15, 8)
from Processor 1 from Processor 0 from Processor 0 from Processor 1

RECEIVE RECEIVE RECEIVE RECEIVE
A(2, 9)…A(8, 9) A(9, 9)…A(15, 9) A(9, 9)…A(9, 15) A(8, 9)…A(8, 15)
from Processor 2 from Processor 3 from Processor 3 from Processor 2

We now describe some of the HPF language exten-
sions used to manage parallel data.

Distributing Data over Processors
Data is distributed over processors by the
DISTRIBUTE directive, the ALIGN directive, or
the default distribution.

The DISTRIBUTE Directive For parallel execution of
array operations, each array must be divided in mem-
ory, with each processor storing some portion of
the array in its own local memory. Dividing the array
into parts is known as distributing the array. The HPF
DISTRIBUTE directive controls the distribution of
arrays across each processor’s local memory. It does
this by specifying a mapping pattern of data objects
onto processors. Many mappings are possible; we illus-
trate only a few.

Consider first the case of a 16 3 16 array A in an
environment with four processors. One possible speci-
fication for A is

real A(16, 16)
!hpf$ distribute A(*, block)

The asterisk (*) for the first dimension of A means
that the array elements are not distributed along
the first (vertical) axis. In other words, the elements
in any given column are not divided among differ-
ent processors, but are assigned as a single block to
one processor. This type of mapping is referred to as
serial distribution. Figure 5 illustrates this distribution.

The BLOCK keyword for the second dimension
means that for any given row, the array elements are
distributed over each processor in large blocks. The
blocks are of approximately equal size—in this case,
they are exactly equal—with each processor holding
one block. As a result, A is broken into four contigu-
ous groups of columns, with each group assigned to
a separate processor.

Another possibility is a (*, CYCLIC) distribution.
As in (*, BLOCK), all the elements in each column are
assigned to one processor. The elements in any given
row, however, are dealt out to the processors in round-
robin order, like playing cards dealt out to players
around a table. When elements are distributed over n
processors, each processor contains every nth column,
starting from a different offset. Figure 6 shows the
same array and processor arrangement, distributed
CYCLIC instead of BLOCK.

As these examples indicate, the distributions of the
separate dimensions are independent.

A (BLOCK, BLOCK) distribution, as in Figure 3,
divides the array into large rectangles. In that figure,
the array elements in any given column or any given
row are divided into two large blocks: Processor 0 gets
A(1:8, 1:8), processor 1 gets A(9:16, 1:8), processor 2
gets A(1:8, 9:16), and processor 3 gets A(9:16,9:16).

The ALIGN Directive The ALIGN directive is used to
specify the mapping of arrays relative to one another.
Corresponding elements in aligned arrays are always
mapped to the same processor; array operations
between aligned arrays are in most cases more efficient
than array operations between arrays that are not
known to be aligned.

The most common use of ALIGN is to specify that
the corresponding elements of two or more arrays be
mapped identically, as in the following example:

Digital Technical Journal Vol. 7 No. 3 1995 9

0 31 2

Figure 5
A (*, BLOCK) Distribution

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 6
A (*, CYCLIC) Distribution

!hpf$ align A(i) with B(i)

This example specifies that the two arrays A and B are
always mapped the same way. More complex align-
ments can also be specified. For example:

!hpf$ align E(i) with F(2*i-1)

In this example, the elements of E are aligned with the
odd elements of F. In this case, E can have at most half
as many elements as F.

An array can be aligned with the interior of a larger
array:

real A(12, 12)
real B(16, 16)

!hpf$ align A(i, j) with B(i+2, j+2)

In this example, the 12 3 12 array A is aligned with
the interior of the 16 3 16 array B (see Figure 7). Each
interior element of B is always stored on the same
processor as the corresponding element of A.

The Default Distribution Variables that are not explic-
itly distributed or aligned are given a default distribu-
tion by the compiler. The default distribution is not
specified by the language: different compilers can
choose different default distributions, usually based
on constraints of the target architecture. In the DEC
Fortran 90 language, an array or scalar with the default
distribution is completely replicated. This decision was
made because the large arrays in the program are the
significant ones that the programmer has to distribute
explicitly to get good performance. Any other arrays
or scalars will be small and generally will benefit from
being replicated since their values will then be available
everywhere. Of course, the programmer retains com-
plete control and can specify a different distribution
for these arrays.

Replicated data is cheap to read but generally
expensive to write. Programmers typically use repli-
cated data for information that is computed infre-
quently but used often.

Data Mapping and Procedure Calls
The distribution of arrays across processors introduces
a new complication for procedure calls: the interface
between the procedure and the calling program must
take into account not only the type and size of the rel-
evant objects but also their mapping across processors.
The HPF language includes special forms of the
ALIGN and DISTRIBUTE directives for procedure
interfaces. These allow the program to specify whether
array arguments can be handled by the procedure as
they are currently distributed, or whether (and how)
they need to be redistributed across the processors.

Expressing Parallel Computations
Parallel computations in HPF can be identified in four
ways:

■ Fortran 90 array assignments
■ FORALL statements
■ The INDEPENDENT directive, applied to DO

loops and FORALL statements
■ Fortran 90 and HPF intrinsics and library functions

In addition, a compiler may be able to discover paral-
lelism in other constructs. In this section, we discuss
the first two of these parallel constructions.

Fortran 90 Array Assignment In Fortran 77, operations
on whole arrays can be accomplished only through
explicit DO loops that access array elements one at a
time. Fortran 90 array assignment statements allow
operations on entire arrays to be expressed more simply.

In Fortran 90, the usual intrinsic operations for
scalars (arithmetic, comparison, and logical) can be
applied to arrays, provided the arrays are of the same
shape. For example, if A, B, and C are two-dimensional
arrays of the same shape, the statement C = A 1 B
assigns to each element of C a value equal to the sum
of the corresponding elements of A and B.

In more complex cases, this assignment syntax can
have the effect of drastically simplifying the code. For
instance, consider the case of three-dimensional
arrays, such as the arrays dimensioned in the following
declaration:

real D(10, 5:24, -5:M), E(0:9, 20, M+6)

In Fortran 77 syntax, an assignment to every ele-
ment of D requires triple-nested loops such as the
example shown in Figure 8.

In Fortran 90, this code can be expressed in a single
line:

D = 2.5*D+E+2.0

The FORALL Statement The FORALL statement is an
HPF extension to the American National Standards
Institute (ANSI) Fortran 90 standard but has been
included in the draft Fortran 95 standard.

10 Digital Technical Journal Vol. 7 No. 3 1995

B

A

Figure 7
An Example of Array Alignment

FORALL is a generalized form of Fortran 90 array
assignment syntax that allows a wider variety of array
assignments to be expressed. For example, the diago-
nal of an array cannot be represented as a single
Fortran 90 array section. Therefore, the assignment of
a value to every element of the diagonal cannot be
expressed in a single array assignment statement. It
can be expressed in a FORALL statement:

real, dimension(n, n) :: A
forall (i = 1:n) A(i, i) = 1

Although FORALL structures serve the same pur-
pose as some DO loops do in Fortran 77, a FORALL
structure is a parallel assignment statement, not a
loop, and in many cases produces a different result
from an analogous DO loop. For example, the
FORALL statement

forall (i = 2:5) C(i, i) = C(i-1, i-1)

applied to the matrix

11 0 0 0 0
0 22 0 0 0

C = 0 0 33 0 0
0 0 0 44 0
0 0 0 0 55

produces the following result:

11 0 0 0 0
0 11 0 0 0

C = 0 0 22 0 0
0 0 0 33 0
0 0 0 0 44

On the other hand, the apparently similar DO loop

do i = 2, 5
C(i, i) = C(i-1, i-1)

end do

produces

11 0 0 0 0
0 11 0 0 0

C = 0 0 11 0 0
0 0 0 11 0
0 0 0 0 11

This happens because the DO loop iterations are per-
formed sequentially, so that each successive element of
the diagonal is updated before it is used in the next
iteration. In contrast, in the FORALL statement, all
the diagonal elements are fetched and used before any
stores happen.

The Target Machine

Digital’s DEC Fortran 90 compiler generates code
for clusters of Alpha processors running the Digital
UNIX operating system. These clusters can be separate
Alpha workstations or servers connected by a fiber dis-
tributed data interface (FDDI) or other network
devices. (Digital’s high-speed GIGAswitch/FDDI sys-
tem is particularly appropriate.14) A shared-memory,
symmetric multiprocessing (SMP) system like the
AlphaServer 8400 system can also be used. In the case
of an SMP system, the message-passing library uses
shared memory as the message-passing medium; the
generated code is otherwise identical. The same exe-
cutable can run on a distributed-memory cluster or an
SMP shared-memory cluster without recompiling.
DEC Fortran 90 programs use the execution envi-
ronment provided by Digital’s Parallel Software
Environment (PSE), a companion product.3, 15 PSE
is responsible for invoking the program on multiple
processors and for performing the message passing
requested by the generated code.

The Architecture of the Compiler

Figure 9 illustrates the high-level architecture of
the compiler. The curved path is the path taken
when compiler command-line switches are set for
compiling programs that will not execute in parallel,
or when the scoping unit being compiled is declared
as EXTRINSIC(HPF_LOCAL).

Figure 9 shows the front end, transform, middle
end, and GEM back end components of the compiler.
These components function in the following ways:

■ The front end parses the input code and produces
an internal representation containing an abstract
syntax tree and a symbol table. It performs exten-
sive semantic checking.16

Digital Technical Journal Vol. 7 No. 3 1995 11

Figure 8
An Example of a Triple-nested Loop

do i = 1, 10
do j = 5, 24

do k = -5, M
D(i, j, k) = 2.5*D(i, j, k) + E(i-1, j-4, k+6) + 2.0

end do
end do

end do

[]
]

]

[

[

■ The transform component performs the transfor-
mation from global-HPF to explicit-SPMD form.
To do this, it localizes the addressing of data, inserts
communication where necessary, and distributes
parallel computations over processors.

■ The middle end translates the internal representa-
tion into another form of internal representation
suitable for GEM.

■ The GEM back end, also used by other Digital
compilers, performs local and global optimization,
storage allocation, code generation, register alloca-
tion, and emits binary object code.17

In this paper, we are mainly concerned with the
transform component of the compiler.

An Overview of Transform

Figure 10 shows the transform phases discussed in this
paper. These phases perform the following key tasks:

■ LOWER. Transforms array assignments so that
they look internally like FORALL statements.

■ DATA. Fills in the data space information for each
symbol using information from HPF directives
where available. This determines where each data
object lives, i.e., how it is distributed over the
processors.

■ ITER. Fills in the iteration space information for
each computational expression node. This deter-
mines where each computation takes place and
indicates where communication is necessary.

■ ARG. Pulls functions in the interior of expressions
up to the statement level. It also compares the map-
ping of actual arguments to that of their corre-
sponding dummies and generates remapping into
compiler-generated temporaries if necessary.

■ DIVIDE. Pulls all communication inside expres-
sions (identified by ITER) up to the statement level
and identifies what kind of communication is
needed. It also ensures that information needed for
flow of control is available at each processor.

■ STRIP. Turns global-HPF code into explicit-SPMD
code by localizing the addressing of all data objects
and inserting explicit SEND and RECEIVE calls
to make communication explicit. In the process,
it performs strip mining and loop optimizations,
vectorizes communication, and optimizes nearest-
neighbor computations.

Transform uses the following main data structures:

■ Symbol table. This is the symbol table created by
the front end. It is extended by the transform phase
to include dope information for array and scalar
symbols.

■ Dotree. Transform uses the dotree form of the
abstract syntax tree as an internal representation of
the program.

■ Dependence graph. This is a graph whose nodes are
expression nodes in the dotree and whose edges
represent dependence edges.

■ Data spaces. A data space is associated with each
data symbol (i.e., each array and each scalar). The
data space information describes how each data
object is distributed over the processors. This infor-
mation is derived from HPF directives.

■ Iteration spaces. An iteration space is associated
with each computational node in the dotree. The
iteration space information describes how compu-
tations are distributed over the processors. This
information is not specified in the source code but
is produced by the compiler.

The interrelationship of these data structures is dis-
cussed in Reference 18. The data and iteration spaces
are central to the processing performed by transform.

The Transform Phases

LOWER
Since the FORALL statement is a generalization of a
Fortran 90 array assignment and includes it as a special
case, it is convenient for the compiler to have a uni-
form representation for these two constructions. The

12 Digital Technical Journal Vol. 7 No. 3 1995

FRONT END TRANSFORM MIDDLE END GEM

OBJECT
CODE

SOURCE
CODE

Figure 9
Compiler Components

LOWER DATA ITER

ARG DIVIDE STRIP

Figure 10
The Transform Phases

LOWER phase implements this by turning each
Fortran 90 array assignment into an equivalent
FORALL statement (actually, into the dotree repre-
sentation of one). This uniform representation means
that the compiler has far fewer special cases to consider
than otherwise might be necessary and leads to no
degradation of the generated code.

DATA
The DATA phase specifies where data lives. Placing
and addressing data correctly is one of the major tasks
of transform. There are a large number of possibilities:

When a value is available on every processor, it is
said to be replicated. When it is available on more than
one but not all processors, it is said to be partially
replicated. For instance, a scalar may live on only one
processor, or on more than one processor. Typically, a
scalar is replicated—it lives on all processors. The repli-
cation of scalar data makes fetches cheap because each
processor has a copy of the requested value. Stores to
replicated scalar data can be expensive, however, if the
value to be stored has not been replicated. In that case,
the value to be stored must be sent to each processor.

The same consideration applies to arrays. Arrays
may be replicated, in which case each processor has a
copy of an entire array; or arrays may be partially repli-
cated, in which case each element of the array is avail-
able on a subset of the processors.

Furthermore, arrays that are not replicated may be
distributed across the processors in several different
fashions, as explained above. In fact, each dimension
of each array may be distributed independently of
the other dimensions. The HPF mapping directives,
principally ALIGN and DISTRIBUTE, give the pro-
grammer the ability to specify completely how each
dimension of each array is laid out. DATA uses the
information in these directives to construct an internal
description or data space of the layout of each array.

ITER
The ITER phase determines where the intermediate
results of calculations should live. Its relationship to
DATA can be expressed as:

■ DATA decides where parallel data lives.
■ ITER decides where parallel computations happen.

Each array has a fixed number of dimensions and an
extent in each of those dimensions; these properties
together determine the shape of an array. After DATA
has finished processing, the shape and mapping of
each array is known. Similarly, the result of a computa-
tion has a particular shape and mapping. This shape
may be different from that of the data used in the com-
putation. As a simple example, the computation

A(:,:,3) + B(:,:,3)

has a two-dimensional shape, even though both arrays
A and B have three-dimensional shapes. The data
space data structure is used to describe the shape of
each array and its layout in memory and across proces-
sors; similarly, iteration space is used to describe the
shape of each computation and its layout across
processors. One of the main tasks of transform is to
construct the iteration space for each computation so
that it leads to as little interprocessor communication
as possible: this construction happens in ITER. The
compiler’s view of this construction and the interac-
tion of these spaces are explained in Reference 18.

Shapes can change within an expression: while some
operators return a result having the shape of their
operands (e.g., adding two arrays of the same shape
returns an array of the same shape), other operators
can return a result having a different shape than the
shape of their operands. For example, reductions like
SUM return a result having a shape with lower rank
than that of the input expression being reduced.

One well-known method of determining where
computations happen is the “owner-computes” rule.
With this method, all the values needed to construct
the computation on the right-hand side of an assign-
ment statement are fetched (using interprocessor
communication if necessary) and computed on the
processor that contains the left-hand-side location.
Then they are stored to that left-hand-side location (on
the same processor on which they were computed).
Thus a description of where computations occur is
derived from the output of DATA. There are, however,
simple examples where this method leads to less than
optimal performance. For instance, in the code

real A(n, n), B(n, n), C(n, n)
!hpf$ distribute A(block, block)
!hpf$ distribute B(cyclic, cyclic)
!hpf$ distribute C(cyclic, cyclic)

forall (i=1:n, j=1:n)
A(i, j) = B(i, j) + C(i, j)

end forall

the owner-computes rule would move B and C to
align with A, and then add the moved values of B and
C and assign to A. It is certainly more efficient, how-
ever, to add B and C together where they are aligned
with each other and then communicate the result to
where it needs to be stored to A. With this procedure,
we need to communicate only one set of values rather
than two. The compiler identifies cases such as these
and generates the computation, as indicated here, to
minimize the communication.

ARG
The ARG phase performs any necessary remapping of
actual arguments at subroutine call sites. It does this
by comparing the mapping of the actuals (as deter-
mined by ITER) to the mapping of the corresponding
dummies (as determined by DATA).

Digital Technical Journal Vol. 7 No. 3 1995 13

In our implementation, the caller performs all
remapping. If remapping is necessary, ARG exposes
that remapping by inserting an assignment statement
that remaps the actual to a temporary that is mapped
the way the dummy is mapped. This guarantees that
references to a dummy will access the correct data as
specified by the programmer. Of course, if the parame-
ter is an OUT argument, a similar copy-out remapping
has to be inserted after the subroutine call.

DIVIDE
The DIVIDE phase partitions (“divides”) each expres-
sion in the dotree into regions. Each region contains
computations that can happen without interprocessor
communication. When region R uses the values of
a subexpression computed in region S, for example,
interprocessor communication is required to remap
the computed values from their locations in S to their
desired locations in R. DIVIDE makes a temporary
mapped the way region R needs it and makes an
explicit assignment statement whose left-hand side
is that temporary and whose right-hand side is the
subexpression computed in region S. In this way,
DIVIDE makes explicit the interprocessor communi-
cation that is implicit in the iteration space information
attached to each expression node.

DIVIDE also performs other processing:

■ DIVIDE replicates expressions needed to manage
control flow, such as an expression representing
a bound of a DO loop or the condition in an IF
statement. Consequently, each processor can do
the necessary branching.

■ For each statement requiring communication,
DIVIDE identifies the kind of communication
needed.
Depending on what knowledge the two sides of the
communication (i.e., the sender and the receiver)
have, we distinguish two kinds of communication:
– Full knowledge. The sender knows what it is

sending and to whom, and the receiver knows
what it is receiving and from whom.

– Partial knowledge. Either the sender knows
what it is sending and to whom, or the receiver
knows what it is receiving and from whom, but
the other party knows nothing.
This kind of message is typical of code dealing
with irregular data accesses, for instance, code
with array references containing vector-valued
subscripts.

STRIP
The STRIP phase (shortened from “strip miner”;
probably a better term would be the “localizer”) takes
the statements categorized by DIVIDE as needing

communication and inserts calls to library routines to
move the data from where it is to where it needs to be.

It then localizes parallel assignments coming from
vector assignments and FORALL constructs. In other
words, each processor has some (possibly zero) num-
ber of array locations that must be stored to. A set of
loops is generated that calculates the value to be stored
and stores it. The bounds for these loops are depen-
dent on the distribution of the array being assigned to
and the section of the array being assigned to. These
bounds may be explicit numbers known at compile
time, or they may be expressions (when the array size
is not known at compile time). In any case, they are
exposed so that they may be optimized by later phases.
They are not calls to run-time routines.

The subscripts of each dimension of each array in
the statement are then rewritten in terms of the loop
variable. This modification effectively turns the origi-
nal global subscript into a local subscript. Scalar sub-
scripts are also converted to local subscripts, but in this
case the subscript expression does not involve loop
indices. Similarly, scalar assignments that reference
array elements have their subscripts converted from
global addressing to local addressing, based on the
original subscript and the distribution of the corre-
sponding dimension of the array. They do not require
strip loops. For example, consider the code fragment
shown in Figure 11a.

Here k is some variable whose value has been
assigned before the FORALL. Let us assume that A
and B have been distributed over a 4 3 5 processor
array in such a way that the first dimensions of A and B
are distributed CYCLIC over the first dimension of the
processor array (which has extent 4), and the second
dimensions of A and B are distributed BLOCK over
the second dimension of the processor array (which
has extent 5). (The programmer can express this
through a facility in HPF.) The generated code is
shown in Figure 11b.

If the array assigned to on the left-hand side of such
a statement is also referenced on the right-hand side,
then replacing the parallel FORALL by a DO loop
may violate the “fetch before store” semantics of the
original statement. That is, an array element may be
assigned to on one iteration of the DO loop, and this
new value may subsequently be read on a later itera-
tion. In the original meaning of the statement, how-
ever, all values read would be the original values.

This problem can always be resolved by evaluating
the right-hand side of the statement in its entirety into
a temporary array, and then—in a second set of DO
loops—assigning that temporary to the left-hand side.
We use dependence analysis to determine if such a
problem occurs at all. Even if it does, there are cases in
which loop transformations can be used to eliminate
the need for a temporary, as outlined in Reference 19.

14 Digital Technical Journal Vol. 7 No. 3 1995

■ Constant folding
■ Optimizations of arithmetic IF, logical IF, and

block IF-THEN-ELSE
■ Global common subexpression elimination
■ Removal of invariant expressions from loops
■ Global allocation of general registers across pro-

gram units
■ In-line expansion of statement functions and

routines
■ Optimization of array addressing in loops
■ Value propagation
■ Deletion of redundant and unreachable code
■ Loop unrolling
■ Software pipelining to rearrange instructions

between different unrolled loop iterations
■ Array temporary elimination

In addition, the transform component performs
some important optimizations, mainly devoted to
improving interprocessor communication. We have
implemented the following optimizations:

Message Vectorization
The compiler generates code to limit the communica-
tion to one SEND and one RECEIVE for each array
being moved between any two processors. This is the
most obvious and basic of all the optimizations that a
compiler can perform for distributed-memory archi-
tectures and has been widely studied.20–22

(Some poor implementations always introduce the
temporary even when it is not needed.)

Unlike other HPF implementations, ours uses
compiler-generated inlined expressions instead of
function calls to determine local addressing values.
Furthermore, our implementation does not introduce
barrier synchronization, since the sends and receives
generated by the transform phase will enforce any
necessary synchronization. In general, this is much less
expensive than a naive insertion of barriers. The
reason this works can be seen as follows: first, any value
needed by a processor is computed either locally or
nonlocally. If the value is computed locally, the normal
control flow guarantees correct access order for that
value. If the value is computed nonlocally, the gener-
ated receive on the processor that needs the value
causes the receiving processor to wait until the value
arrives from the sending processor. The sending
processor will not send the value until it has computed
it, again because of normal control-flow. If the sending
processor is ready to send data before the receiving
processor is ready for it, the sending processor can
continue without waiting for the data to be received.
Digital’s Parallel Software Environment (PSE) buffers
the data until it is needed.15

Some Optimizations Performed by the Compiler

The GEM back end performs the following
optimizations:

m = my_processor() É
...
if k mod 5 = [m/4] then

do i = (if m mod 4 = 0 then 2 else 1), (if m mod 4 = 3 then 24 else 25)
A(i, [k/5]) = B(i, [k/5])

end do
end if

(b) Pseudocode Generated for Code Fragment

Digital Technical Journal Vol. 7 No. 3 1995 15

real A(100, 20), B(100, 20)
!hpf$ distribute A(cyclic, block), B(cyclic, block)

...
forall (i = 2:99)

A(i, k) = B(i, k)
end forall

Figure 11
Code Fragment and Pseudocode Generated for Code Fragment

(a) Code Fragment

If the arrays A and B are laid out as in Figure 12 and
if B is to be assigned to A, then array elements B(4),
B(5), and B(6), all of which live on processor 6,
should be sent to processor 1. Clearly, we do not want
to generate three distinct messages for this. Therefore,
we collect these three elements and generate one mes-
sage containing all three of them. This example
involves full knowledge.

Communications involving partial knowledge are
also vectorized, but they are much more expensive
because the side of the message without initial knowl-
edge has to be informed of the message. Although
there are several ways to do this, all are costly, either in
time or in space.

We use the same method, incidentally, to inline the
HPF XXX_SCATTER routines. These new routines
have been introduced to handle a parallel construct
that could cause more than one value to be assigned to
the same location. The outcome of such cases is deter-
mined by the routine being inlined. For instance,
SUM_SCATTER simply adds all the values that arrive
at each location and assigns the final result to that loca-
tion. Although this is an example of interprocessor
communication with partial knowledge, we can still
build up messages so that only a minimum number of
messages are sent.

In some cases, we can improve the handling of com-
munications with partial knowledge, provided they
occur more than once in a program. For more infor-
mation, please see the section Run-time Preprocessing
of Irregular Data Accesses.

Strip Mining and Loop Optimizations
Strip mining and loop optimizations have to do with
generating efficient code on a per-processor basis, and
so in some sense can be thought of as conventional.
Generally, we follow the processing detailed in
Reference 19 and summarized as:

■ Strip mining obstacles are eliminated where possi-
ble by loop transformations (loop reversal or loop
interchange).

■ Temporaries, if introduced, are of minimal size; this
is achieved by loop interchange.

■ Exterior loop optimization is used to allow reused
data to be kept in registers over consecutive itera-
tions of the innermost loop.

■ Loop fusion enables more efficient use of conven-
tional optimizations and minimizes loop overhead.

Nearest-neighbor Computations
Nearest-neighbor computations are common in code
written to discretize partial differential equations. See
the example given in Figure 2.

If we have, for example, 16 processors, with the array
A distributed in a (BLOCK, BLOCK) fashion over the
processors, then conceptually, the array is distributed as
in Figure 13, where the arrows indicate communica-
tion needed between neighboring processors. In fact,
in this case, each processor needs to see values only
from a narrow strip (or “shadow edge”) in the memory
of its neighboring processors, as shown in Figure 14.

The compiler identifies nearest-neighbor computa-
tions (the user does not have to tag them), and it alters
the addressing of each array involved in these compu-
tations (throughout the compilation unit). As a result,
each processor can store those array elements that are
needed from the neighboring processors. Those array
elements are moved in (using message vectorization)
at the beginning of the computation, after which the
entire computation is local.

Recognizing nearest-neighbor statements helps
generate better code in several ways:

■ Less run-time overhead. The compiler can easily
identify the exact small portion of the array
that needs to be moved. The communication for
nearest-neighbor assignments is extremely regular:
At each step, each processor is sending an entire
shadow edge to precisely one of its neighbors.
Therefore the communication processing overhead
is greatly reduced. That is, we are able to generate

16 Digital Technical Journal Vol. 7 No. 3 1995

7

8

9

10

11

12

1

2

3

4

5

6

4 8 12

1 5 9

2 6 10

3 7 11

1 2 5 6 7 8

mem[Bbase + 0]

mem[Bbase + 1]

mem[Abase + 0]

mem[Abase + 1]

PROCESSOR
NUMBER

ARRAY A ARRAY B

Figure 12
Two Arrays in Memory

Figure 13
A Nearest-neighbor Communication Pattern

communication involving even less overhead than
general communication involving full knowledge.

■ No local copying. If shadow edges were not used,
then the following standard processing would take
place: For each shifted-array reference on the right-
hand side of the assignment, shift the entire array;
then identify that part of the shifted array that lives
locally on each processor and create a local tempo-
rary to hold it. Some of that temporary (the part
representing our shadow edge) would be moved in
from a neighboring processor, and the rest of the
temporary would be copied locally from the origi-
nal array. Our processing eliminates the need for
the local temporary and for the local copy, which is
substantial for large arrays.

■ Greater locality of reference. When the actual com-
putation is performed, greater locality of reference
is achieved because the shadow edges (i.e., the
received values) are now part of the array, rather
than being a temporary somewhere else in memory.

■ Fewer messages. Finally, the optimization also
makes it possible for the compiler to see that some
messages may be combined into one message,
thereby reducing the number of messages that
must be sent. For instance, if the right-hand side
of the assignment statement in the above example
also contained a term A(i 1 1, j 1 1), even though
overlapping shadow edges and an additional
shadow edge would now be in the diagonally adja-
cent processor, no additional communication
would need to be generated.

Reductions
The SUM intrinsic function of Fortran 90 takes an
array argument and returns the sum of all its elements.
Alternatively, SUM can return an array whose rank is
one less than the rank of its argument, and each of
whose values is the sum of the elements in the argu-
ment along a line parallel to a specified dimension.

In either case, the rank of the result is less than that of
the argument; therefore, SUM is referred to as a
reduction intrinsic. Fortran 90 includes a family of
such reductions, and HPF adds more.

We inline these reduction intrinsics in such a way
as to distribute the work as much as possible across
the processors and to minimize the number of mes-
sages sent.

In general, the reduction is performed in three basic
steps:

1. Each processor locally performs the reduction oper-
ation on its part of the reduction source into a buffer.

2. These partial reduction results are combined with
those of the other processors in a “logarithmic”
fashion (to reduce the number of messages sent).

3. The accumulated result is then locally copied to the
target location.

Figure 15 shows how the computations and com-
munications occur in a complete reduction of an array
distributed over four processors. In this figure, each
vertical column represents the memory of a single
processor. The processors are thought of (in this case)
as being arranged in a 2 3 2 square; this is purely for
conceptual purposes—the actual processors are typi-
cally connected through a switch.

First, the reduction is performed locally in the
memory of each processor. This is represented by the
vertical arrows in the figure. Then the computations
are accumulated over the four processors in two steps:
the two parallel curved arrows indicate the inter-
processor communication in the first step, followed by
the communication indicated by the remaining curved
arrow in the second step. Of course, for five to eight
processors, three communication steps would be
needed, and so on.

Although this basic idea never changes, the actual
generated code must take into account various factors.
These include (1) whether the object being reduced

Digital Technical Journal Vol. 7 No. 3 1995 17

Figure 14
Shadow Edges for a Nearest-neighbor Computation

Figure 15
Computations and Communication for a Complete
Reduction over Four Processors

is replicated or distributed, (2) the different distri-
butions that each array dimension might have, and
(3) whether the reduction is complete or partial (i.e.,
with a DIM argument).

Run-time Preprocessing of Irregular Data Accesses
Run-time preprocessing of irregular data accesses is
a popular technique.23 If an expression involving the
same pattern of irregular data access is present more
than once in a compilation unit, additional run-time
preprocessing can be used to good effect. An abstract
example would be code of the form:

call setup(U, V, W)
do i = 1, n_time_steps, 1

do i = 1, n, 1
A(V(i)) = A(V(i)) + B(W(i))

enddo
do i = 1, n, 1

C(V(i)) = C(V(i)) + D(W(i))
enddo
do i = 1, n, 1

E(V(i)) = E(V(i)) + F(W(i))
enddo

enddo

which could be written in HPF as:

call setup(U, V, W)
do i = 1, n_time_steps, 1

A = sum_scatter(B(W(1:n)), A, V(1:n))
C = sum_scatter(D(W(1:n)), C, V(1:n))
E = sum_scatter(F(W(1:n)), E, V(1:n))

enddo

To the compiler, the significant thing about this
code is that the indirection vectors V and W are con-
stant over iterations of the loop. Therefore, the com-
piler computes the source and target addresses of the
data that has to be sent and received by each processor
once at the top of the loop, thus paying this price one
time. Each such statement then becomes a communi-
cation with full knowledge and is executed quite effi-
ciently with message vectorization.

Other Communication Optimizations
The processing needed to set up communication of
array assignments is fairly expensive. For each element
of source data on a processor, the value of the data and
the target processor number are computed. For each
target data on a processor, the source processor num-
ber and the target memory address are computed. The
compiler and run time also need to sort out local data
that do not involve communication, as well as to vec-
torize the data that are to be communicated.

We try to optimize the communication processing
by analyzing the iteration space and data space of the
array sections involved. Examples of the patterns of
operations that we optimize include the following:

■ Contiguous data. When the source or target local
array section on each processor is in contiguous
memory addresses, the processing can be optimized

to treat the section as a whole, instead of comput-
ing the value or memory address of each element in
the section.
In general, array sections belong to this category
if the last vector dimension is distributed BLOCK
or CYCLIC and the prior dimensions (if any) are
all serial.
If the source and target array sections satisfy even
more restricted constraints, the processing overhead
may be further reduced. For example, array opera-
tions that involve sending a contiguous section of
BLOCK or CYCLIC distributed data to a single
processor, or vice versa, belong to this category and
result in very efficient communication processing.

■ Unique source or target processor. When a proces-
sor only sends data to a unique processor, or a pro-
cessor only receives data from a unique processor,
the processing can be optimized to use that unique
processor number instead of computing the proces-
sor number for each element in the section. This
optimization also applies to target arrays that are
fully replicated.

■ Irregular data access. If all indirection vectors
are fully replicated for an irregular data access,
we can actually implement the array operation as
a full-knowledge communication instead of a more
expensive partial-knowledge communication.
For example, the irregular data access statement

A(V(:)) = B(:)

can be turned into a regular remapping statement if
V is fully replicated and A and B are both distributed.
Furthermore, if B is also fully replicated, the state-
ment is recognized as a local assignment, removing
the communication processing overhead altogether.

Performance

In this section, we examine the performance of three
HPF programs. One program applies the shallow-
water equations, discretized using a finite difference
scheme to a specific problem; another is a conjugate-
gradient solver for the Poisson equation, and the
third is a three-dimensional finite difference solver.
These programs are not reproduced in this paper, but
they can be obtained via the World Wide Web at
http://www.digital.com/info/hpc/f90/.

The Shallow-water Benchmark
The shallow-water equations model atmospheric
flows, tides, river and coastal flows, and other phe-
nomena. The shallow-water benchmark program uses
these equations to simulate a specific flow problem. It
models variables related to the pressure, velocity, and
vorticity at each point of a two-dimensional mesh that

18 Digital Technical Journal Vol. 7 No. 3 1995

is a slice through either the water or the atmosphere.
Partial differential equations relate the variables.
The model is implemented using a finite-difference
method that approximates the partial differential
equations at each of the mesh points.24 Models based
on partial differential equations are at the core of many
simulations of physical phenomena; finite difference
methods are commonly used for solving such models
on computers.

The shallow-water program is a widely quoted
benchmark, partly because the program is small
enough to examine and tune carefully, yet it performs
real computation representative of many scientific sim-
ulations. Unlike SPEC and other benchmarks, the
source for the shallow-water program is not controlled.

The shallow-water benchmark was written in HPF
and run in parallel on workstation farms using PSE.
There is no explicit message-passing code in the pro-
gram. We modified the Fortran 90 version that
Applied Parallel Research used for its benchmark data.
The F90/HPF version of the program takes advantage
of the new features in Fortran 90 such as modules.
The Fortran 77 version of the program is an unmodi-
fied version from Applied Parallel Research.

The resulting programs were run on two hardware
configurations: as many as eight 275-megahertz
(MHz) DEC 3000 Model 900 workstations connected
by a GIGAswitch system, and an eight-processor
AlphaServer 8400 (300-MHz) system using shared-
memory as the messaging medium. Table 1 gives the
speedups obtained for the 512 3 512-sized problem,
with ITMAX set to 50.

The speedups in each line are relative to the DEC
Fortran 77 code, compiled with the DEC Fortran
version 3.6 compiler and run on one processor. The
DEC Fortran 90 -wsf compiler is the DEC Fortran 90
version 1.3 compiler with the -wsf option (“parallel-
ize HPF for a workstation farm”) specified. Both

compilers use version 3.58 of the Fortran RTL. The
operating system used is Digital UNIX version 3.2.

Table 1 indicates that this HPF version of shallow
water scales very well to eight processors. In fact, we are
getting apparent superlinear speedup in some cases.
This is due in part to optimizations that the DEC
Fortran 90 compiler performs that the serial compiler
does not, and in part to cache effects: with more proces-
sors, there is more cache. On the shared-memory
machine, we are getting apparent superlinear speedups
even when compared to the DEC Fortran 90 -wsf
compiler’s one-processor code; this is likely due to cache
effects. The program appears to scale well beyond eight
processors, though we have not made a benchmark-
quality run on more than eight identical processors.

For purposes of comparison, Table 2 gives the pub-
lished speedups from Applied Parallel Research on the
shallow-water benchmark for the IBM SP2 and Intel
Paragon parallel architectures. The speedups shown
are relative to the one-processor version of the code.
This table indicates that the scaling achieved by the
DEC Fortran 90 compiler on Alpha workstation farms
is comparable to that achieved by Applied Parallel
Research on dedicated parallel systems with high-
speed parallel interconnects.

A Conjugate-gradient Poisson Solver
The Poisson partial differential equation is a work-
horse of mathematical physics, occurring in problems

Table 2
Speedups of HPF Shallow-water Code on IBM’s and
Intel’s Parallel Architectures

Number of Processors
8 4 3 2 1

IBM SP2 7.50 3.81 — 1.97 1.00
Intel Paragon 7.38 3.84 — 1.95 1.00

Digital Technical Journal Vol. 7 No. 3 1995 19

Table 1
Speedups of DEC Fortran 90/HPF Shallow-water Equation Code

DEC Fortran 90 -wsf DEC Fortran 77
Compiler Compiler

Number of Processors
8 4 3 2 1 1

Eight 275-MHz, 8.57 3.13 2.19 1.59 1.00 1.00
DEC 3000
Model 900
workstations in
a GIGAswitch farm
Eight-processor, 10.6 5.30 3.86 1.97 1.12 1.00
300-MHz,
shared-memory
SMP AlphaServer
8400 systems

of heat flow and electrostatic or gravitational poten-
tial. We have investigated a Poisson solver using the
conjugate-gradient algorithm. The code exercises
both the nearest-neighbor optimizations and the
inlining abilities of the DEC Fortran 90 compiler.25

Table 3 gives the timings and speedup obtained
on a 1000 3 1000 array. The hardware and software
configurations are identical to those used for the
shallow-water timings.

Red-black Relaxation
A common method of solving partial differential
equations is red-black relaxation.26 We used this
method to solve the Poisson equation in a three-
dimensional cube. We compare the parallelization
of this algorithm for a distributed-memory system
(a cluster of Digital Alpha workstations) with Parallel
Virtual Machine (PVM), which is an explicit message-
passing library, and with HPF.27 These algorithms are
based on codes written by Klose, Wolton, and Lemke
and made available as part of the suite of GENESIS
distributed-memory benchmarks.28

Table 4 gives the speedups obtained for both
the HPF and PVM versions of the program, which
solves a 128 3 128 3 128 problem, on a cluster of
DEC 3000 Model 900 workstations connected by an
FDDI/GIGAswitch system. The speedups shown are
relative to DEC Fortran 77 code written for and run on
a single processor. This table shows that the HPF ver-
sion performs somewhat better than the PVM version.

There is a significant difference in the complexity of
the programs, however. The PVM code is quite intri-
cate, because it requires that the user be responsible
for the block partitioning of the volume, and then for
explicitly copying boundary faces between processors.
By contrast, the HPF code is intuitive and far more
easily maintained. The reader is encouraged to obtain
the codes (as described above) and compare them.

Table 4
Speedups of DEC Fortran 90/HPF
and DEC Fortran 77/PVM on
Red-black Code

Number of Processors
8 4 2 1

DEC Fortran 77 1.00
DEC Fortran 77/PVM 7.01 3.73 1.79 —
DEC Fortran 90/HPF 8.04 4.10 1.95 1.05

In conclusion, we have shown that important algo-
rithms familiar to the scientific and technical commu-
nity can be written in HPF. HPF codes scale well to at
least eight processors on farms of Alpha workstations
with PSE and deliver speedups competitive with other
vendors’ dedicated parallel architectures.

Acknowledgments

Significant help from the following people has been
essential to the success of this project: High
Performance Computing Group engineering manager
Jeff Reyer; the Parallel Software Environment Group
led by Ed Benson and including Phil Cameron,
Richard Warren, and Santa Wiryaman; the Parallel
Tools Group managed by Tomas Lofgren and includ-
ing David LaFrance-Linden and Chuck Wan; the
Digital Fortran 90 Group led by Keith Kimball; David
Loveman for discussions of language issues; Ned
Anderson of the High Performance Computing
Numerical Library Group for consulting on numeri-
cal issues; Brendan Boulter of Digital Galway for the
conjugate-gradient code and help with benchmarking;
Bill Celmaster, for writing the PVM version of the red-
black benchmark and its related description; Roland
Belanger for benchmarking assistance; and Marco
Annaratone for useful technical discussions.

20 Digital Technical Journal Vol. 7 No. 3 1995

Table 3
Speedups of DEC Fortran 90/HPF on Conjugate-gradient Poisson Solver

DEC Fortran 90 -wsf DEC Fortran 77
Compiler Compiler

Number of Processors
8 4 3 2 1 1

Eight 275-MHz, 14.1 8.38 5.20 2.52 1.07 1.00
DEC 3000
Model 900
workstations in
a GIGAswitch farm
Eight-processor, 17.0 9.02 6.87 4.51 0.98 1.00
300-MHz,
shared-memory
SMP AlphaServer
8400 systems

References and Notes

1. High Performance Fortran Forum, “High Perfor-
mance Fortran Language Specification, Version 1.0,”
Scientific Programming, vol. 2, no. 1 (1993). Also
available as Technical Report CRPC-TR93300, Center
for Research on Parallel Computation, Rice University,
Houston, Tex.; and via anonymous ftp from
titan.cs.rice.edu in the directory public/HPFF/draft;
version 1.1 is the file hpf_v11.ps.

2. C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr.,
and M. Zosel, The High Performance Fortran
Handbook (Cambridge, Mass.: MIT Press, 1994).

3. Digital High Performance Fortran 90 HPF and
PSE Manual (Maynard, Mass.: Digital Equipment
Corporation, 1995).

4. DEC Fortran 90 Language Reference Manual(May-
nard, Mass.: Digital Equipment Corporation, 1994).

5. E. Albert, K. Knobe, J. Lukas, and G. Steele, Jr., “Com-
piling Fortran 8x Array Features for the Connection
Machine Computer System,” Symposium on Parallel
Programming: Experience with Applications,
Languages, and Systems, ACM SIGPLAN, July 1988.

6. K. Knobe, J. Lukas, and G. Steele, Jr., “Massively Par-
allel Data Optimization,” Frontiers ’88: The Second
Symposium on the Frontiers of Massively Parallel
Computation, IEEE, George Mason University,
October 1988.

7. K. Knobe, J. Lukas, and G. Steele, Jr., “Data Opti-
mization: Allocation of Arrays to Reduce Communica-
tion on SIMD Machines,” Journal of Parallel and
Distributed Computing,vol. 8 (1990): 102–118.

8. K. Knobe and V. Natarajan, “Data Optimization:
Minimizing Residual Interprocessor Data Motion on
SIMD Machines,” Frontiers ’90: The Third Sympo-
sium on the Frontiers of Massively Parallel Compu-
tation, IEEE, University of Maryland, October 1990.

9. M. Gupta and P. Banerjee, “Demonstration of Auto-
matic Data Partitioning Techniques for Parallelizing
Compilers on Multicomputers,” IEEE Transactions
on Parallel and Distributed Systems, vol. 3, no. 2
(1992): 179–193.

10. M. Gupta and P. Banerjee, “PARADIGM: A Compiler
for Automatic Data Distribution on Multicomputers,”
ICS93: The Seventh ACM International Conference
on Supercomputing, Japan, 1993.

11. S. Chatterjee, J. Gilbert, and R. Schreiber, “The
Alignment-distribution Graph,” Sixth Annual Work-
shop on Languages and Compilers for Parallel
Computing, 1993.

12. J. Anderson and M. Lam, “Global Optimizations for
Parallelism and Locality on Scalable Parallel
Machines,” Proceedings of the ACM SIGPLAN ’93
Conference on Programming Language Design
and Implementation, ACM Press, vol. 28 (1993):
1290–1317.

13. The seven values A(9, 2), A(9, 3), … A(9, 8) can be
expressed concisely in Fortran 90 as A(9, 2:8).

14. R. Souza et al., “GIGAswitch System: A High-
performance Packet-switching Platform,” Digital
Technical Journal, vol. 6, no. 1 (1994): 9–22.

15. E. Benson, D. LaFrance-Linden, R. Warren, and
S. Wiryaman, “Design of Digital’s Parallel Software
Environment,” Digital Technical Journal, vol. 7,
no. 3 (1995, this issue): 24–38.

16. D. Loveman, “The DEC High Performance Fortran
90 Compiler Front End,” Frontiers ’95: The Fifth
Symposium on the Frontiers of Massively Parallel
Computation, pages 46–53, McLean, Virginia,
February 1995. IEEE.

17. D. Blickstein et al., “The GEM Optimizing Compiler
System,” Digital Technical Journal, vol. 4, no. 4
(Special Issue, 1992): 121–136.

18. C. Offner, “A Data Structure for Managing Parallel
Operations,” Proceedings of the 27th Hawaii Inter-
national Conference on System Sciences, Volume
II: Software Technology (IEEE Computer Society
Press, 1994): 33–42.

19. J. Allen and K. Kennedy, “Vector Register Allocation,”
IEEE Transactions on Computers, vol. 41, no. 10
(1992): 1290–1317.

20. S. Amarasinghe and M. Lam, “Communication Opti-
mization and Code Generation for Distributed Mem-
ory Machines,” Proceedings of the ACM SIGPLAN ’93
Conference on Programming Language Design
and Implementation, ACM Press, vol. 28 (1993):
126–138.

21. C.-W. Tseng, “An Optimizing Fortran D Compiler
for MIMD Distributed-Memory Machines,” Ph.D.
thesis, Rice University, Houston, Tex., 1993. Available
as Rice COMP TR93-199.

22. A. Rogers, “Compiling for Locality of Reference,”
Technical Report TR91-1195, Ph.D. thesis, Cornell
University, Ithaca, N.Y., 1991.

23. J. Saltz, R. Mirchandaney, and K. Crowley, “Run-time
Parallelization and Scheduling of Loops,” IEEE Trans-
actions on Computers (1991): 603–611.

24. R. Sadourney, “The Dynamics of Finite-difference
Models of the Shallow-water Equations,” Journal of
Atmospheric Sciences,vol. 32, no. 4 (1975).

Digital Technical Journal Vol. 7 No. 3 1995 21

25. B. Boulter, “Performance Evaluation of HPF for Scien-
tific Computing,” Proceedings of High Performance
Computing and Networking, Lecture Notes in
Computer Science 919 (Springer-Verlag, 1995).

26. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,
Numerical Recipes in Fortran: The Art of Scientific
Computing (Cambridge: Cambridge University Press,
2d edition, 1992).

27. A. Geist, PVM: Parallel Virtual Machine (Cam-
bridge, Mass.: MIT Press, 1994).

28. A. Hey, “The GENESIS Distributed Memory Bench-
marks,” Parallel Computing, vol. 17, no. 10–11
(1991): 1275–1283.

Biographies

22 Digital Technical Journal Vol. 7 No. 3 1995

Jonathan Harris
Jonathan Harris is a consulting engineer in the High
Performance Computing Group and the project leader
for the transform (HPF parallelization) component of the
DEC Fortran 90 compiler. Prior to the High Performance
Fortran project, he designed the instruction set for the
DECmpp, a 16K processor machine that became opera-
tional in 1987. He also helped design a compiler and
debugger for the machine, contributed to the processor
design, and invented parallel algorithms, some of which
were patented. He obtained an M.S. in computer science
in 1985 as a Digital Resident at the University of Illinois;
he has been with Digital since 1977.

John A. Bircsak
A principal software engineer in Digital’s High Performance
Computing Group, John Bircsak contributed to the design
and development of the transform component of the DEC
Fortran 90 compiler. Before joining Digital in 1991, he was
involved in the design and development of compilers at
Compass, Inc.; prior to that, he worked on compilers and
software tools at Raytheon Corp. He holds a B.S.E. in
computer science and engineering from the University
of Pennsylvania (1984) and an M.S. in computer science
from Boston University (1990).

M. Regina Bolduc
Regina Bolduc joined Digital in 1991; she is a principal
software engineer in the High Performance Computing
Group. Regina was involved in the development of the
transform and front end components of the DEC Fortran
90 compiler. Prior to this work, she was a senior member
of the technical staff at Compass, Inc., where she worked
on the design and development of compilers and compiler-
generator tools. Regina received a B.A. in mathematics
from Emmanuel College in 1957.

Israel Gale
Israel Gale is a principal writer in the High Performance
Computing Group and the author of Digital’s High
Performance Fortran Tutorial. He joined Digital in 1994
after receiving an A.M. degree in Near Eastern Languages
and Civilizations from Harvard University.

Jill Ann Diewald
Jill Diewald contributed to the design and implementa-
tion of the transform component of the DEC Fortran 90
compiler. She is a principal software engineer in the High
Performance Computing Group. Before joining Digital
in 1991, Jill was a technical coordinator at Compass,
Inc., where she helped design and develop compilers and
compiler-related tools. Prior to that position, she worked
at Innovative Systems Techniques and Data Resources,
Inc. on programming languages that provide economic
analysis, modeling, and database capabilities for the finan-
cial marketplace. She has a B.S. in computer science from
the University of Michigan.

Digital Technical Journal Vol. 7 No. 3 1995 23

Carl D. Offner
As a principal software engineer in Digital’s High
Performance Computing Group, Carl Offner has primary
responsibility for the high-level design of the transform
component of the DEC Fortran 90 compiler. He is also
a member of the Advanced Development Group working
on issues of parallelizing DO loops. Before joining Digital
in 1993, Carl worked at Intel and at Compass, Inc. on
compiler development. Before that, he taught junior high
and high school mathematics for 16 years. Carl represents
Digital at the High Performance Fortran Forum. He is
a member of ACM, AMS, and MAA and holds a Ph.D.
in mathematics from Harvard University.

C. Alexander Nelson
In 1991, Alex Nelson came to Digital to work on the
SIMD compiler for the MasPar machine. He is a principal
software engineer in the High Performance Computing
Group and helped design and implement the transform
component of the DEC Fortran 90 compiler. Prior to this
work, he was employed as a software engineer at Compass,
Inc. and a systems architect at Incremental Systems. He
received an M.S. in computer science from the University
of North Carolina in 1987 and an M.S. in chemistry (cum
laude) from Davidson College in 1985. He is a member
of Phi Beta Kappa.

Shin Lee
Shin Lee is a principal software engineer in Digital’s High
Performance Computing Group. She contributed to the
design and development of the transform component of
the DEC Fortran 90 compiler. Before joining Digital in
1991, she worked on the design and development of com-
pilers at Encore Computer Corporation and Wang Labs,
Inc. She received a B.S. in chemistry from National Taiwan
University and an M.S. in computer science from Michigan
State University.

Neil W. Johnson
Before coming to Digital in 1991, Neil Johnson was a
staff scientist at Compass, Inc. He has more than 30 years
of experience in the development of compilers, including
work on the vectorization and optimization phases and
tools for compiler development. As a principal software
engineer in Digital’s High Performance Computing
Group, he has worked on the development of the front-
end phase for the DEC Fortran 90 compiler. He is a mem-
ber of ACM and holds B.A. (magna cum laude) and M.A.
degrees in mathematics from Concordia College and the
University of Nebraska, respectively.

