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Abstract

This is the design report for the Transform components of the Digital Fortran compiler, later
inherited by the Compaq and HP Fortran compilers for Tru64 Unix running on Alpha.

Transform is that part of the compiler which deals with High Performance Fortran (HPF) data
mapping directives and parallel constructs. This report describes the data structures and internal
transformations needed to turn HPF code into SPMD code with message-passing, and describes the
plethora of optimizations introduced in order to generate efficient code. It also contains discussions
of the main design decisions that were made, both for compiler efficiency and for high-quality code
generation, with explanations of the trade-offs that were considered.

The same technology was later extended to apply to OpenMP Fortran code with data mapping
directives added for the purpose of generating efficient code on non-uniform memory access (NUMA)
machines; that extension is also described here.
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viii CONTENTS

Notation Used in this Report

1. The term “node” in this report always refers to a node in the compiler’s internal representation
of an expression tree. What is often referred to as a node of a MIMD machine is here called a
“processor”. Such a processor may in fact be composed of several physical computing units,
some of which may even compute in parallel. Such internal structure, however, is invisible to
the compiler described here; a processor is seen by this compiler as an atomic object.

An exception is made in Chapter 16, where a processor is referred to as an “hpf processor”,
and its internal structure is visible to the compiler.

2. If g is a function, the notation g ↑ indicates that g is an increasing function; and similarly, g ↓
indicates that g is a decreasing function. The functions for which this is used are all data or
iteration allocation functions, of the form

g(x) = alloc stride ∗ x + alloc offset

For such functions, g ↑ ⇐⇒ alloc stride > 0 and g ↓ ⇐⇒ alloc stride < 0.

3. ∨ is the boolean OR, and ∧ is the boolean AND. An empty OR is FALSE; an empty AND is
TRUE.

References to Future Work

Some future development work and optimizations for this compiler are indicated in this report.
Descriptions of this future work are distinguished from the main text by being set in italics in
paragraphs with wider margins.

This is an example of how a description of future work might appear in this report.

Page references to these descriptions are collected in the index, under the heading “future tasks”.



Chapter 1

The Programmer’s View of the
Compiler

1.1 The source language

This report describes the Transform components of the compiler whose source language is Digital
Fortran Version 5.0 [5], and whose target machine is either a farm of Digital Alpha workstations or
an SMP machine based on Alpha processors.

Digital Fortran Version 5.0 is in turn based on the latest version of standard Fortran ([6], often
referred to as “Fortran 95”), and also includes all of High Performance Fortran (“HPF”) Version
2.0 ([7]) with the following exceptions:

• nested FORALLs and WHERE statements within FORALLs.

• passing CYCLIC(N) arguments to local (i.e., HPF LOCAL) procedures.

• accessing non-local data within PURE functions called within a FORALL.

• the SORT UP and SORT DOWN library routines.

In addition, the language supports the following Approved Extensions described in Part III of the
HFP Version 2.0 specification:

• mapped pointers (Section 8.8).

• mapped components of derived types (Section 8.9)

• the SHADOW directive (Section 8.12).

• the HOME and RESIDENT clauses of the ON directive (parts of Sections 9.2 and 9.3) applied
to INDEPENDENT DO loops.

• the HPF LOCAL and HPF SERIAL extrinsic kinds, with their supporting libraries, as spec-
ified in Sections 11.1, 11.3, 11.5, and 11.7, with the exception of the LOCAL BLKCNT,
LOCAL LINDEX, and LOCAL UINDEX routines.

1
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• the extended HPF intrisic and library procedures as specified in Section 12.2 except for the
HPF MAP ARRAY and HPF NUMBER MAPPED routines.

This design report mainly describes how the compiler handles the HPF constructs in the language.
These constructs support data-parallel applications; i.e., applications containing large amounts of
data, typically in the form of arrays, which are to be operated on in parallel.

These techniques, originally developed to handle HPF, have been adapted to support data layout
directives in OpenMP Fortran, for use in compiling code to be executed on NUMA machines. These
data layout directives are based on the corresponding HPF directives. The way the compiler manages
these directives in processing OpenMP Fortran code is explained in Chapter 16.

1.1.1 Some comments on the language

Sequence association In (non-HPF) Fortran, any method of argument passing other than by
assumed shape implies sequence association between the actual and the dummy arguments.
This is not true in HPF, however: sequence association is enforced only in certain specified
circumstances (e.g., there is a SEQUENCE directive visible to the compiler).

In particular, in Fortran, without an explicit interface, an actual argument which is an array
element designator would be assumed to represent the first element of an array which is
sequence associated with its corresponding dummy. On a distributed-memory machine, this
in principle would lead to data motion which would really be unnecessary if the dummy were
not declared (via the HPF SEQUENCE directive) to be sequential.

However, HPF does not honor sequence association without such a directive, and so we do
not support this normal Fortran interpretation. Without a SEQUENCE directive visible to
the compiler, a call from a global HPF routine to another global HPF routine with an actual
argument of A(3), say, will result in the called routine being able to access just the element
A(3), and no other elements of A.

DO loop indexes Variables which are used as DO loop indexes should not have any HPF data
distribution directives applied to them. If they do, performance will most likely be degraded.
See Section 3.1.1, page 17.

Aliased arrays Many array sections are passed copy-in/copy-out to subroutines. There are some
unusual cases involving aliasing where this leads to different program semantics than the
conventional Fortran pass-by-reference. Such cases are actually forbidden by the Fortran
Standard—see Section 12.5.2.9 of the Standard ([6]), and also Section 12.5.2.3 of [1]—but
were known to occur in previous Fortran 77 code (where they were also illegal).

Implicit reshaping By default, HPF does not support the linear memory model for distributed
data. In particular, without using the SEQUENCE directive, there can be no implicit reshap-
ing via COMMON blocks or by passing an argument into a function and having the function
receive it in a different shape.

1.1.2 Some language restrictions

We currently insist on four restrictions to the HPF language; those restrictions are set in bold face
type below:
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CYCLIC(n) arguments We currently restrict the language so that

Arguments passed to HPF LOCAL routines cannot be distributed CYCLIC(n).

See page 34.

PURE functions The meaning of a PURE function in HPF is further restricted by adding the
following constraint to the conditions in the HPF Language report:

No name in the scope of a PURE procedure and no entity that is associated other
than by argument association (that is: use, host, pointer, storage, or sequence
association) with any name in the scope of a PURE procedure may be explicitly
(by user-written HPF directives) mapped (aligned or distributed).

The purpose of this restriction is to allow iterations of FORALL constructs containing PURE
functions to be distributed over processors in a distributed-memory machine where message-
passing is used for remote memory accesses. This restriction is capable of being checked by
the compiler at the time the PURE function itself is compiled. See page 17 for some discussion
of this restriction.

In addition, we interpret the HPF standard to to say that a PURE function may not modify
any of its arguments. (A PURE subroutine may, however; but note that PURE subroutines
cannot be called directely from inside a FORALL construct.)

mapped components of derived types Fortran requires that each bound in an explicit-shape-
spec of a field of a derived type must be a constant specification expression. (Outside of a
derived type, it does not have to be constant.)

HPF needs to require this also of expressions in any mappings applied to such fields of derived
types. For instance,

subroutine foo(n)
integer n

type t

real, dimension(10) :: a

!hpf$ distribute(cyclic(n)) :: a

end type t

. . .

end subroutine foo

is illegal, because although n is a specification expression, it is not a constant specification
expression.

SEQUENCE and mapped components of derived types The NOSEQUENCE directive may
not be specified for a component of a derived type which has the SEQUENCE attribute. Thus,
the following is regarded as non-conforming:

type, sequence :: mytype
integer :: i, j
real :: x
real, dimension(15) :: A
!hpf$ distribute(block), nosequence :: A

end type mytype
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1.1.3 Addition to the language

We have added one feature to the HPF Language: an HPF subprogram can be called from a non-
parallel main program or subprogram. For this to work correctly, the non-parallel main program or
subprogram must be compiled with the -nowsf_main switch. The details are set out in Section 6.7
of [5]; also see section 1.3.1 below (page 7).

1.2 The machine model

As far as the transformation components of the compiler are concerned, the target machine is a
distributed memory MIMD machine. The processors are numbered linearly starting from 0, and are
fully interconnected. That is, the cost of sending a message between any two distinct processors is
independent of their processor numbers.

Each processor knows its own processor number; this number is returned from a call to the function
my processor(). Processors communicate via paired SEND and RECEIVE calls.

The startup cost for a message is large compared to the incremental cost of sending each word in
the message, by a factor of at least 10,000. For this reason, a great advantage is gained by packaging
the messages between each two processors together to make the number of messages as small as
possible, and the size of each message as large as possible.

We currently also generate code that runs on a shared-memory machine. However, we do this by
treating the machine as if it were distributed-memory, so that each processor has its own private
memory. SEND and RECEIVE calls are then implemented as memory-to-memory copies.

This actually generates quite good code in many cases. It is not, however, idiomatic
code generation for a shared-memory machine, and we are in the process of changing
this model.

1.3 Programming models

There are three programming models which this compiler supports:

Data Parallel Model The source code contains aggregate data which is to be operated on in as
parallel a fashion as possible. The language contains directives which the programmer may use
to tell the compiler how data is distributed across processors. Parallelism is attained by having
processors operate simultaneously on different portions of this data. From the programmer’s
viewpoint, however, there is only a single thread of control.

The source code will not ordinarily contain SEND or RECEIVE calls. If they are present in
the source, they refer to communication with some exterior program (operating on another
set of processors).

Routines written in this fashion are referred to as “global HPF” (or simply “HPF”) routines.

Explicit SPMD Model A program is written containing explicit SENDs and RECEIVEs and
references to my processor(), and is loaded onto all processors and run in parallel. Storage
for all arrays and scalar variables in the program are replicated; that is, identical storage for
each such data object exists on each processor. The intent is that in general, the storage for
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an array A on distinct processors represents distinct slices through a global array which the
programmer is really concerned with. (Only the programmer is aware of these global arrays,
however. They have no representation in the source code.)

Thus, this is a multi-threaded programming model, where the same program runs on each
processor. Different processors will in general, however, execute different instructions, because
the program on each processor is parametrized by references to my processor(), and because
parallel data on different processors in general has different values. Since in addition the
data on each processor consists of different slices of global arrays, this programming model is
referred to as “single-program, multiple-data”, or SPMD.

Each array element really has two kinds of addresses: on one hand it has a global address, and
on the other hand, it has a two-part address which consists of a particular processor and a
local memory address in that processor. It is up to the programmer to handle the translation
between these two forms of addressing. Similarly, it is up to the programmer to insert whatever
SENDs and RECEIVEs are necessary; this involves figuring out which array elements have
to be sent/received and where they have to go or come from. Again, this involves explicit
translation between global and local addressing.

The explicit SPMD model can take two forms within the context of Digital Fortran:

vanilla explicit SPMD This is just as described above.

HPF LOCAL routines These are routines coded as above, but having available to them
inquiry library functions which enable the programmer to retrieve information about
global arrays corresponding to dummy arrays in the program.

Single Processor Model This is the conventional Fortran programming model. A program is
written to execute on one processor which has a single linear memory. Sequence and storage
association holds in this model, since it implements conventional Fortran.

In our implementation, a single processor routine may execute on any processor, with one
exceptional case: if it is the main program, it always executes on processor 0.

A subprogram written in the single processor model may additionally be declared to be EX-
TRINSIC(HPF SERIAL). This is just an indication that it may be called from a global HPF
routine, and that the compiler will ordinarily generate code in the global routine to move all
the arguments to processor 0 before the call, and back afterwards. The only place where this
does not happen is when the HPF SERIAL subprogram is called from inside an INDEPEN-
DENT DO loop and is declared to be RESIDENT. In this case, no data motion is needed,
and the call simply happens on whatever processor is executing the loop iteration.

The compiler can be invoked in several ways, corresponding to these different programming models:

1. When invoked with the -hpf switch but without an EXTRINSIC declaration, the compiler
expects a global HPF source program, and generates the correct addressing and message-
passing in the emitted object code.

Thus, the compiler will emit code containing explicit SENDs and RECEIVEs and references
to my processor(). In effect, the compiler accepts a global HPF program and emits explicit
SPMD object code.

This implements the data parallel programming model.
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2. without the -hpf switch and without an EXTRINSIC declaration, the compiler generates
addressing for a single linear memory. Such a routine can be used to implement the explicit
SPMD programming model, by containing programmer-written message passing as needed.
It can also be used to implement the single processor model. There is no way to discover
by inspecting the source code of such a routine which programming model is intended. The
programming model is entirely determined by how the routine is invoked: on one processor,
or simultaneously on many.

3. If the routine is declared as EXTRINSIC(HPF LOCAL) (note: if this routine is called from a
global HPF routine, this declaration must also be visible in an explicit interface in the calling
routine), then the routine by that fact becomes an explicit SPMD routine. The HPF LOCAL
declaration also has two other effects:

• If the calling routine is global HPF, it is a signal to the compiler when compiling the
calling routine to localize the passed parameters. That is, only the part of each passed
parameter which lives on a given processor is passed as the actual parameter to the
instance of the HPF LOCAL routine which is called on that processor.
• It makes available to the HPF LOCAL routine a library of inquiry functions (the HPF

Local Routine Library) which enable the local routine to extract information about the
global HPF data object corresponding to a given local dummy parameter. This in-
formation can then be used (explicitly, by the programmer) to set up interprocessor
communication as needed.

4. If the routine is declared as EXTRINSIC(HPF SERIAL) the compiler processes it as any
other single-processor Fortran routine. If the routine is called from a global HPF routine,
then the EXTRINSIC(HPF SERIAL) declaration must be visible to the calling routine in an
explicit interface. The compiler ordinarily1 generates code in the calling routine that moves
all arguments to the routine to processor 0 before the subroutine call, and copies them back
after the call if necessary.

An EXTRINSIC(HPF LOCAL) or an EXTRINSIC(HPF SERIAL) declaration in a routine over-
rides the -hpf switch—it is as if that switch were not invoked for the routine. This makes it possible
to have an HPF LOCAL or HPF SERIAL subroutine which is internal to a global HPF routine or
in the same file as that routine. The compiler would be invoked with the -hpf switch, but that
switch would have no effect on the compilation of the HPF LOCAL or HPF SERIAL subroutine.

The following table illustrates how the different compiler modes are invoked:

with without
-hpf -hpf
switch switch

with
EXTRINSIC(HPF SERIAL)

directive
single processor single processor

with
EXTRINSIC(HPF LOCAL)

directive
SPMD SPMD

without any
EXTRINSIC directive

data parallel single processor
or SPMD

1except, as mentioned above, for a RESIDENT routine called inside an INDEPENDENT DO loop



1.3. PROGRAMMING MODELS 7

1.3.1 Who can call whom

A single processor routine which is the main program always executes on processor 0. Other than
that, there is no restriction on where a single processor routine executes.

• A single processor routine can call

– a single processor routine.

– a global HPF routine, provided that

1. the single processor routine is executing on processor 0.
This restriction on the calling routine is made because the called routine is responsible
for distributing the data (as explained below in section 3.4.2), and therefore has to
know which processor to get that data from.

2. the single processor routine is compiled with the -nowsf_main switch.
This is so that the single processor routine can know to call a special version of the
called routine that is set up to distribute the data from processor 0, as described
above.

3. the (global HPF) called routine does not contain any assumed size dummy arguments.

The reason for the restriction on the called routine is that an assumed-shape array is
sequence-associated and cannot be explicitly mapped. Hence it will have the default
layout (see Section 3.1, page 16), which in our case is a replicated layout. But the
called routine has no way of replicating the passed array if it is assumed size, because
the routine does not know the size of the array being passed. This second restriction
can be enforced by the compiler (see Section 3.4.2, page 19).

• A global HPF routine can call

– a global HPF routine.

– an HPF LOCAL routine.

– an HPF SERIAL routine.

• An HPF LOCAL routine can call

– an explicit SPMD routine, which might be another HPF LOCAL routine.

– a single processor routine. Such a routine will run on the processor from which it is
called. An example of this could be a scalar library routine.

• An explicit SPMD routine which is not an HPF LOCAL routine can call

– another explicit SPMD routine. This routine, however, cannot be an HPF LOCAL rou-
tine.

– a single processor routine. Such a routine will run on the processor from which it is
called, as above.

With a few exceptions, explicit SPMD routines and single processor routines will not be discussed
further in this report. The programming of such routines is straightforward Fortran programming,
and the Transform phases of the compiler are not invoked for such routines.
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1.4 General parallelism issues

1.4.1 Parallel constructions

The following types of constructions are candidates for being run in parallel:

• Statements containing Fortran array expressions.

• FORALL constructs.

• INDEPENDENT DO loops.

To the extent allowed by the programmer’s specification of data layout, and by the number of proces-
sors in the target machine, iterations of these constructions will be distributed over the processors.

In this release of the compiler, the iterations of Fortran DO loops are not distributed over processors
unless the loop is marked as INDEPENDENT. The processing of non-INDEPENDENT DO loops
is described in Section 3.2.2, page 17.

1.4.2 Communication and synchronization

Since this report confines itself to global HPF programming, when we refer to communication, we
mean communication generated by the compiler. In this first release of the compiler, all communi-
cation is in the form of synchronous SEND and RECEIVE calls. Specifically,

• If processor A executes a SEND of a message to processor B, processor B must also execute a
RECEIVE for that message. Thus, SENDs and RECEIVEs always occur in pairs.

• An executed SEND call does not return until the information in the SEND buffer has been
transmitted; hence the buffer can be re-used or overwritten as soon as the SEND returns. The
fact that the SEND has returned does not mean, however, that the information has arrived
at the receiving processor.

• An executed RECEIVE call does not return until the information has arrived and been placed
in the RECEIVE buffer. Thus, as soon as the RECEIVE returns, the information can be
extracted from the RECEIVE buffer and used.

Because of the handshaking imposed by the SEND/RECEIVE protocol, no additional synchroniza-
tion of any sort is necessary. If a processor needs data in another processor’s memory it will execute
a RECEIVE for that data. The other processor will execute a SEND of that data only when the
data is ready to be sent (i.e. when the data has been updated if necessary to have the proper values).
Thus, the RECEIVE can really be executed at any time, and will not return until the correct data
has been received.

Similarly, a SEND can be executed at any time a processor is ready to send data. The data will not
be received by the receiving processor until that processor is ready to receive the data and executes
a RECEIVE to do so.

For this reason, the compiler does not generate calls to any global synchronization routines.

We plan to investigate the use of asynchronous SENDs and RECEIVEs in future releases
of this compiler.
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1.4.3 Communication costs

The cost of transmitting a message from one processor to another can be divided into two parts:

• A startup cost. This can be thought of as the cost necessary to establish the communication
path between the two processors. It is a constant cost.

• The cost of transmitting the data once the communication path has been established. This
cost is proportional to the amount of data being transmitted.

In this machine, the startup cost is huge compared to the incremental cost of data transmission.
Therefore we can only get good performance from this machine by vectorizing communication. In
other words, if one processor has a number of data elements to send to another processor, it is
important to generate one long message rather than a number of shorter ones.

This consideration has affected much of the design. In particular, it has made it necessary for the
compiler to generate code to pre-process communications where possible to package up data into
large messages. It also has meant that we raise what otherwise might have been data motion in the
interior of an expression up to the statement level, so that this packaging can be performed.

Future work along these lines will include packaging up motion contained in distinct iter-
ations of a loop nest; and also packaging motion contained in more than one statement,
where possible.

1.4.4 Data distribution

In compiling code to be run in parallel, a key issue is how the data is to be distributed across the
processors. Without the use of data optimization techniques (which enable the compiler to assist in
this determination), data distribution is determined completely and explicitly by the programmer
through the use of directives. In any case, the following considerations are important:

1. Increasing the extent of the distribution (for instance, by distributing more of the dimensions
of an array) in principle increases the parallelism in a program, which is a good thing to do.

2. On the other hand, in applications which are not completely (or “embarrasingly”) parallel,
too much distribution can lead to an unacceptable increase in interprocessor communication
costs. It may be the case that allocating one or more dimensions of an array serially (i.e. not
across processors) may drastically reduce communication costs.

3. How dimensions are allocated (serially, cyclically, block, etc.) can affect load balancing, which
we want to maximize. It can also affect the ability of the compiler to generate efficient code—a
good example of this is the processing of nearest-neighbor computations; see Chapter 15.

In the future, this project will look at the possibility of implementing automatic data
optimization techniques, as set out in the papers [2, 8, 9, 10].
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1.5 The number of processors

The number of processors will not in general be known at compile time. The user can, however,
specify the number of processors at compile time by using an optional parameter to the -hpf
switch. If the switch is not used, the compiler does not make any assumptions about the number of
processors.

The user may specify any number of processors by means of the switch. In particular, the number
of processors does not need to be a power of two.

If the number of processors is not a power of two, or at least highly composite, or if the number
of processors is not known at compile time, the efficiency of the compiled code may be noticeably
degraded.

For example, suppose that a large 2-dimensional array is to be distributed in a (BLOCK, BLOCK)
fashion over a machine which is known to contain 64 processors. The compiler might distribute
the array over an 8 × 8 grid. If on the other hand, one more processor were added to make 65
processors, then since the only factorization of 65 is 5 × 13, the compiler would have to distribute
the array over a 5×13 grid, and this might well degrade performance. And of course, if the number
of processors were a prime number, only one of the dimensions of the array could be distributed
over the processors, and all the other dimensions would have to be allocated serially (i.e. “down
memory”). Note that the compiler does not attempt to second-guess the user: if the user specifies
65 processors, the compiler will use all 65, even if it had reason for “believing” that 64 might be
better.

In addition, if the number of processors is not known at compile time, then the compiler cannot
assume that the number of processors on which the program will execute is composite. Therefore,
only one dimension of any array is distributed by the compiler in such a circumstance, and the
others are allocated serially, no matter what the programmer has specified in mapping directives.

The number of processors specified on the command line must be equal to the number of processors
specified in any non-scalar HPF PROCESSORS directive; this number must also equal the number
of processors on which the program is executed. The compiler generates code to check both these
constraints at the time the program is run.



Chapter 2

The Compiler Architecture

This short chapter gives a brief overview of the compiler architecture. A more detailed description
of the various Transform phases is given in Chapters 5–15.

2.1 Where the Transform section fits into the compiler

Figure 2.1 illustrates the high-level architecture of the compiler. The curved path is the path taken
when the -hpf switch is not used, or when the scoping unit being compiled (see Section 2.3) is
declared as EXTRINSIC(HPF LOCAL).

Front End Transform Middle End GEM

source
code cir cir cil

object
code

Figure 2.1: Where the transform component fits into the compiler.

The parts of the compiler in Figure 2.1 have the following functions:

Front End Parses the input code and produces an internal representation called the Common
Intermediate Representation (CIR). The CIR consists of an abstract syntax tree and a symbol
table. Extensive semantic checking is performed.

Transform Performs the transformation from global HPF to explicit SPMD form. To do this,
it localizes the addressing of data, inserts motion where necessary, and distributes parallel
computations over processors. Transform inputs and outputs CIR.

Middle End Translates the CIR into another form of internal representation called the Compact
Intermediate Language (CIL).

11
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GEM Performs local and global optimization, code generation, and register allocation on the CIL
representation; emits binary object code.

2.2 The Transform component is not source-to-source

Since the Transform component takes CIR as input and yields CIR as output, and since the CIR is
very close to the input source code, it may appear that Transform could really be implemented as a
source-to-source translator. This is not actually true, however. The advantage of having Transform
be part of the compiler rather than a pre-processor is that it can generate constructs which either
cannot be expressed in the source language or could be expressed only by fighting the language.
There is in principle an advantage in being able to generate these constructs, if later phases of the
compiler can recognize them and handle them efficiently.

There are indeed some cases in which the output of Transform is not equivalent to Fortran code:

• Transform generates some operators, itemized in Chapter 18, which are specific to Transform
and are never generated by the Front End. The purpose of generating these operators is to
encapsulate certain operations which should not be exposed until later in the compilation
process. (If they were exposed in Transform they would inhibit, or at least make much more
difficult, various optimizations that Transform needs to make.) These operators could not
easily be translated back into a source form; or if they were, the source would be even more
unreadable than conventional source-to-source output is at present.

• Dope vectors are created by the Middle End, based on information left around by Transform.
In order for these dope vectors to be set up properly, Transform has to “lie” a little—it has to
change the values in these data structures so that the Middle End will generate correct dope
vectors. This is in essence due to the fact that dope vectors need to contain information about
the local layout of passed arrays (which the Middle End is prepared to deal with), and also
about the global layout of passed arrays (which in principle the Middle End knows nothing
about). So while what we are doing leads to correct generated code, the data structures after
Transform might look inconsistent if viewed naively.

• Array-valued functions require still more special handling. (This is described in Section 7.3.)
A special AFUNC operator has been introduced to convey information to the Middle End
about special processing it needs to perform in this case. This operator is peculiar to the
interface between Transform and the Middle End.

2.3 Program units and scoping units

The terms program unit and scoping unit are Fortran terms. The main driver of the compiler deals
in program units: it first calls the Front End on each program unit, and then calls Transform on
that same unit.

However, Transform does not operate on program units, but on scoping units; and there may
be several scoping units within one program unit. (For instance, a module may contain several
functions; or a main program may contain several internal subroutines.) Therefore, the driver for
the Transform components walks the CIR tree for the program unit and calls Transform separately
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on each scoping unit within that tree. At the end of Transform, the CIR tree for that program unit
is reconstituted as a single tree.

There is one small inaccuracy with this notation: when Transform processes a scoping unit, it has
to be aware of any interface blocks within that unit. Such interface blocks technically constitute
separate scoping units. Nevertheless, Transform is not called separately on interface blocks. Rather
than define a new term, however, we shall merely say that Transform operates on scoping units,
and note that this is almost, but not strictly speaking, true. Internally, such an “almost scoping
unit” is represented as a dt psm node (see page 37), where “psm” stands for “program, subroutine,
or module”.

2.4 Data structures used by Transform

The main data structures used by Transform are:

The symbol table This is the symbol table created by the Front End. It is extended by the
Transform phases to include dope information for array and scalar symbols.

The dotree Although Transform accepts and emits CIR, the Transform phases themselves oper-
ate on a somewhat different data structure called the dotree. The dotree is really a fairly
straightforward image of the abstract syntax tree produced by the front end.

The dependence graph This is a graph whose nodes are expression nodes in the dotree and
whose edges represent dependence edges.

Data and iteration spaces A data space is associated with each data symbol. The data space
information describes how each data object is distributed over the processors. This information
is derived from HPF directives.

An iteration space is associated with each computational node in the dotree. The iteration
space information describes how computations are distributed over the processors. This infor-
mation is not specified in the source code, but is produced by the compiler.

2.5 The Transform phases

The Transform phase order is illustrated in Figure 2.2. The different Transform phases perform the
following tasks:

CIR2DTR Translates the CIR to the dotree.

DATA Fills in the data space information for each symbol from the HPF directives.

LOWER Does some further translating. Creates dope information for each entry in the sym-
bol table. Lowers FORALL statements. Inlines DATA statements and statement functions.
Replaces SPREAD of a scalar by the scalar.

ITER Fills in the iteration space information for each computational expression node. This deter-
mines where each computation takes place, and indicates where motion is necessary.

ARG Pulls functions in the interior of expressions up to the statement level.
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CIR2DTR DATA LOWER ITER

ARG DIVIDE STRIP DTR2CIR

Figure 2.2: The Transform Phases

DIVIDE Pulls all motion inside expressions (identified by ITER) up to the statement level.

STRIP Turns global HPF code into explicit SPMD code by localizing the addressing of all data
objects and inserting explicit SEND and RECEIVE calls to make motion explicit. In the
process, performs strip mining and loop optimizations, vectorizes data motion, and optimizes
nearest-neighbor computations.

DTR2CIR Translates the dotree back to the CIR.

There are two additional packages of routines which are not really phases but are used by the
Transform phases:

DOTREE Utility routines, including the access package for the dotree data structure, and a
dumper.

DEPEND Performs dependence analysis. The dependence analyzer is not described in this report.
The algorithmic kernel of the dependence analyzer is based on Pugh’s Omega test (see [16]),
and is described in more detail in [15]

Each component of Transform is referred to in the compiler source code by a three-character abbre-
viation, as follows:

CIR2DTR c2d
DATA dat
LOWER low
ITER itr
ARG arg
DIVIDE div
STRIP stp
DTR2CIR d2c

DOTREE dtr
DEPEND dep

These abbreviations are used in the following ways:

• They are the names of the sub-directories where the files containing the code for these com-
ponents live.
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• They are prefixes for the names of the files containing the code for these components.

• They are prefixes for the names of global functions in these components.

For instance, the function dat_make_sym_dope, which creates the dope information for an entry
in the symbol table, is contained in the file dat_sizes.c, which in turn lives in the sub-directory
dat/master.



Chapter 3

The Run-Time Model

3.1 The mapping of data

Each data element is associated with a certain memory address in a certain processor. The user
is able, by using data mapping directives, to specify the mapping of data objects over processors.
This mapping is also referred to as data layout .

Data objects include not only arrays, but also scalars, which may be thought of as 0-dimensional
arrays—this is consistent with the usage of the HPF directives. Thus, a scalar may “live on” (i.e.,
be mapped to) 1 processor, or may be totally or partially replicated over the processor array. All
these possibilities can be expressed in HPF.

When the mapping of a data object is not specified, the compiler distributes the data according to
a default layout . This default layout of data is not intended to be efficient; nor is it the intention of
the compiler development team that the default layout should be under user control. HPF already
provides in its directives a way for the programmer to completely specify data layout.

It is important that the programmer not rely on the default layout implemented in any release of
the compiler, as this layout may change without notice. Further, there is not even a long-term
guarantee that the default layout will be the same in all scoping units. While the default layout
will be capable of being described in terms of HPF directives, it will not be proper for the user
to try to describe the default layout as a way of getting the compiler to avoid data motion. The
purpose of the default layout is simply to give the compiler a consistent way of laying out data when
information is not provided to it in the source.

The default data layout implemented in this version of the compiler generally has each data element
replicated over all the processors. Thus, if A is an array which is not specified in any directives,
storage for a complete copy of A will be allocated on each processor, and the compiler will insure
that corresponding elements of A on each processor always contain the same value.

Sequential variables (see 7.1.1(5) of the HPF Language Specification) are always given the default
layout. In particular, this includes assumed-size arrays, as well as data declared to be sequential by
means of the HPF SEQUENCE directive.

There are two exceptions to the default handling of unmapped data:

16
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3.1.1 Privatized variables

Scalars which are used as loop indexes are privatized. That is to say, each processor has its own
private version of the loop index, and these private versions are not kept in step with each other.

For this reason, the user should not apply data mapping directives to scalar variables used as loop
indexes. If a loop index has such directives applied to it, the compiler will have to generate code to
make sure that that index is replicated (or actually, privatized) over all the processors before any
loop in which it is used—motion which really should be unnecessary.

Some other compiler-generated scalars are also privatized.

3.1.2 Data layout in PURE functions: the problem of callee ignorance

On page 3 we referred to an additional restriction (beyond those in the HPF report) we place on a
function in order that it may be specified as PURE. The point of the restriction is this: normally
a global HPF function is called on all processors. If the function is contained in a FORALL con-
struct, however, and the iterations of that construct are to be distributed over the processors, then
each iteration of the FORALL construct will call that function on only 1 processor (the processor
executing that iteration). The code the compiler generates for this function, however, is the same
as if it were to be invoked on all processors. Anthropomorphically, the function does not know that
it is only being invoked on only 1 processor. We refer to this as “the problem of callee ignorance”.

Calling a global function on only one processor can only work if all the data which that function
references is available locally. So our restriction on PURE functions really amounts to saying that
the compiler has the freedom to map the data accessed by the pure function so that it is all available
where it is needed; i.e. that no data motion has to take place during the execution of the PURE
function.

The precise way that the compiler remaps the data in a PURE function is specified later in this
report.

3.2 The mapping of computations

3.2.1 The owner-computes rule

The owner-computes rule is used as a general guide to determine how iterations of parallel computa-
tions are distributed1 over processors. Significant optimizations are made in the implementation of
this rule, particularly by DIVIDE (see the discussion on page 86) and in processing nearest-neighbor
computations (see Section 3.7.1).

3.2.2 Fortran DO loops

The iterations of a Fortran DO loop are distributed over processors provided the loop is marked as
!hpf$ independent. The way we do this is specified in Chapter 11.

1The correct term is really “mapped”, but “distributed” is often used as a synonym in this and other cases.
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The iterations of a non-independent loop are not distributed. (That is, such a DO loop does not
add to the dimensionality of the iteration space.) A non-independent DO loop is implemented as
follows:

• Each processor owns its own copy of the loop index, and there is no communication generated
when incrementing the loop index. That is, the loop index is a privatized variable.

• Each processor executes all iterations of the loop iteratively. In a typical case, this means that
on any iteration of the loop only a few processors are active.

In any case, there is no synchronization generated between loop iterations: different processors may
execute different iterations of the loop concurrently, subject only to whatever implicit synchroniza-
tion is imposed by the sending and receiving of data between different processors.

3.2.3 Restricting the set of active processors

There are some conditions under which the compiler can determine that one or more processors will
not participate in a computation. In such cases, the STRIP phase of Transform inserts IF guards
where necessary into the generated code. When the code is embedded in a nest of DO loops, the IF
guard is placed outside of the outermost loop. (See Section 12.3, page 129.)

In most cases, however, such IF guards will not be necessary. This is because the normal zero-trip
loop tests will be sufficient to restrict the set of processors on which the loop bodies are executed.2

3.3 Control flow

Control flow is implemented as follows: the conditional expression for each IF in the source text must
be available on all processors. In general, it is in fact available everywhere, simply because scalar
variables and expressions are typically replicated over all processors. If it is not, however, a broadcast
to all processors is generated. This then has the effect of inducing a barrier synchronization. For
instance, the code

if (scalar)
xxx(:)

would become (in the worst case, where the scalar was not already replicated)

2Using terminology to be defined below, an IF guard will be necessary around a DO loop nest only when the
iteration space contains a non-trivial completion subspace.
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processor holding scalar:
broadcast its value

each processor:
receive scalar
if (scalar)
do whatever part of xxx(:) is appropriate

3.4 Processor 0 as a distinguished processor

In general, there is no distinguished processor in the processor array. However, there are certain
circumstances under which processor 0 is treated differently from the others.

3.4.1 Special intrinsics

Fortran intrinsics such as DATE_AND_TIME which could in principle return different numbers on
different processors are executed only on processor 0, and the result is then propagated to any
processor that needs it.

3.4.2 Entry points to global HPF routines

Since single processor routines execute only on processor 0, an HPF routine which is called from a
single processor routine has to arrange to map any dummy arguments on entry. This is different from
what happens when an HPF routine is called from another HPF routine (or is the main program).

To handle this correctly, every global HPF routine will be compiled to have two entry points for
each entry in the source, and also two exits for each exit in the source. When such a routine is
called from another global HPF routine, or is started up as the main program, the normal entry
point and the normal exit will be used.

When a global HPF routine is called from a single processor routine (as could happen when the main
program is a single processor routine), the alternate entry will be used. This will cause code to be
executed that will move all passed parameters from processor 0 to their location as specified by data
directives in the global HPF routine. Then the normal code of the routine itself will be executed.
When the routine exits, an alternate exit will be taken which will cause code to be executed that
will move all passed parameters back to processor 0.

3.4.3 I/O

All I/O is performed on processor 0. Any mapped data object which has to be written, therefore,
is first moved by the compiler to processor 0, and then a write on processor 0 is generated. For
data which is to be read, the data is first copied in to processor 0, read, and then copied back out.
The copy in to processor 0 for reads is necessary because if there is an early exit from the read (e.g.
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on an error), the copy out must still take place, and we want to make sure that we don’t copy out
garbage.

There is an optimization we make in performing I/O of replicated data. Of course replicated data
which is to be output does not have to be moved to processor 0 since it is already there. Further, if
replicated data is to be read, we do not generate a temporary on processor 0 to read it into followed
by a broadcast of this temporary to the actual array. Instead, we read directly into the processor
0 copy of the array. Our data motion code then updates the rest of the array (i.e. on the other
processors) directly from the processor 0 values (see the REPLICATE entry on page 103).

NAMELIST constructions need special handling, for the following reason: When a NAMELIST
containing an array A is output, not only are the values of the individual elements of A output, the
name “A” is as well. If A were copied to a temporary on processor 0 and then the NAMELIST
processing were invoked, the name of the temporary would be output, rather than “A”.

Fortunately, the run-time write routine called from the Middle End takes three arguments:

1. the base address in memory

2. the name to be used in a NAMELIST construction

3. the bounds to be read or written

So we can manage this by holding the name of the associated NAMELIST temporary (i.e. the
temporary on processor 0) in a field in the dope for A (see Section 4.3). When I/O involves a
NAMELIST, this temporary is used for item 1, and the array name A is used for item 2.

3.4.4 Memory on processor 0

Because of the way we handle I/O, it is important that processor 0 have enough memory to hold
any arrays which we may need to move there. This will also be true (regardless of how the compiler
handles I/O) if the main program starts on processor 0 and then calls an HPF routine, passing large
arrays as parameters—those arrays will start out entirely on processor 0.

3.5 Punting

There are some constructs which this release of our compiler does not handle in a parallel manner.
These include

• Array constructors. (However, many array constructors can be rewritten as simple FORALL
constructs, which we can handle perfectly well.)

• Reduction intrinsics whose DIM argument is not known at compile time.

• The Fortran intrinsics PACK, RESHAPE, and UNPACK.

Transform handles such constructs essentially by remapping the data if necessary so that the Middle
End can handle them entirely by itself. Since any data in such constructs (in order to be handled
correctly by the Middle End) would have to be sequence associated, there are really only two layouts
that we could use for this purpose:
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• The default layout: all data is replicated.

• The layout in which all data lives only on processor 0.

With the exception of the Fortran intrinsics, we use the default layout. (There is no real reason
for the exception; it is just that way because of the history of the implementation.) Precisely, we
perform the following processing:

Any data involved in one of these constructs (e.g. the result of a reduction intrinsic whose DIM
argument is not known at compile time) is given the default layout.

Statements involving these constructs are tagged as punted statements.

This processing happens in LOWER.

STRIP ignores these statements. They are thus passed through to the Middle End for processing;
and since all the data in them has the default layout, it is sequentially allocated, and the normal
Fortran processing can handle it.

3.6 Data motion: basic techniques

By data motion we mean potential interprocessor communication. Our compiler insures that all
data motion occurs at the statement level. That is, an interior node of an expression which needs
to be moved is moved and assigned to a temporary. A fetch of that temporary is then substituted
in the expression for that node.

There are two reasons for doing this:

1. Motion inherently involves a change of context (i.e. a possible change of which processors are
active). Since context is expressed as IF guards, it must be exposed at the statement level.

2. By exposing motion at the statement level, we can minimize the communication cost by, for
instance, bundling up several sends to the same processor into one send. This second reason
is of critical importance.

The language enables the programmer to specify several kinds of data motion. We can describe
these motions in terms of source and target data elements:

1-to-1 Motion Each source element has a unique target element. Each target element comes from
a unique source element. There are several kinds of such motion from the machine’s point of
view:

A Remapping Store In this kind of motion the sending processor knows what it will be
sending and where it is sending to; and the receiving processor knows what it will be
receiving (and could calculate where from). An example is a simple array assignment:

A(:) = B(:)

A Remote Store In this kind of motion the sending processor knows what it is sending, and
where it is sending to, but the receiving processor doesn’t know anything. An example is

A(V (:)) = B(:)
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A Remote Fetch In this kind of motion the receiving processor knows what it needs to re-
ceive, and where it wants to get it from, but the sending processor doesn’t know anything.
An example is

A(:) = B(V (:))

1-to-Many Motion: A Partial Broadcast In this kind of motion the sending processor sends
the same data to a number of processors. The sending processor knows what it will be sending
and where to; and the receiving processors know what they will be receiving (and where they
will be getting it from). This kind of motion is also sometimes referred to as a multicast
operation.

Many-to-1 Motion: Reductions and Combining SCATTER functions This kind of motion
is characteristic of reduction intrinsics, such as SUM, where one processor accumulates infor-
mation contained on a number of other processors. Again, sending processors know where they
are sending, and receiving processors know what they are receiving, and where it is coming
from.

Another example of many-to-1 motion is that implied by a Combining SCATTER function
(e.g. COPY SCATTER). These routines can be handled by a variant of the way in which
remote stores are handled; this is discussed in Section 14.2.

Many-to-Many Motion A statement such as

A(:) = COPY SCATTER(B(W (:)), 0, V (:), 0)

is equivalent to the Fortran statement

A(V (:)) = B(W (:))

except that it does not have the restriction that no element of A may be assigned to twice.
This amounts to a non-deterministic store: many elements of B could be sent to a single
element of A. Since also there is a vector-valued subscript W of B, a single element of B could
be sent to a many elements of A. So this gives what could be described as many-to-many
motion.

We now describe each of these cases in more detail:

3.6.1 A remapping store

We say that two nodes in the dotree are within the same region if on each processor, both nodes
define the same number of elements, and if those elements correspond. This is the condition needed
for the two nodes to be acted on in parallel. This condition implies that any array references which
are represented by the nodes (or by children of those nodes) are aligned identically.

Actually, this definition of “same region” is not quite correct. The actual condition is that an
expression node is in the same region as that of one of its children iff every value it needs from that
child is available locally, i.e., with no interprocessor communication necessary to retrieve it.

If a parent and child in an expression tree are not in the same region, then motion will be necessary
between them. It is the job of DIVIDE to raise this motion to the statement level.
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Once the motion is exposed at the statement level, it may look like this:

A(:) = B(:),

where arrays A and B are laid out as follows:
Array A

mem[Abase + 0]
mem[Abase + 1]

...

processor
number 1 2

1
2
3
4
5
6

7
8
9
10
11
12

5 6 7 8

Array B

mem[Bbase + 0]
mem[Bbase + 1]

...

1
2
3

4
5
6
7

8
9
10
11

12

where in each diagram, processors go across, and memory within a processor goes down.

Each processor holding elements of array B will calculate the corresponding target processor, and will
generate a sequence of SEND instructions. Each such SEND will contain the following information:

1. The source processor

2. A sequence of data values.

Each receiving processor will compute which data elements are being sent from each sending proces-
sor, and will generate a sequence of RECEIVE instructions, one for each sending processor. Since
the receiving processor knows how long each message will be, it can allocate the correct buffer space
for each message. It then assigns each received data element to its proper address (which it has
computed locally).

We denote the receiving buffer in each processor by buf; it should be thought of as a 0-based array.
Note that the translation from global to local addressing has been performed in these SEND and
RECEIVE statements: this translation happens in the STRIP phase of Transform. Also note that
the base address of the array is the same on each processor, even if there is no array element stored
at that local address.

Processor 1

• RECEIVE buf[0 : 2] from processor 5 (buffer length = 3);

mem[Abase + 2 : Abase + 4]← buf[0 : 2]

• RECEIVE buf[0 : 2] from processor 6 (buffer length = 3);

mem[Abase + 5 : Abase + 7]← buf[0 : 2]
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Processor 2

• RECEIVE buf[0] from processor 6 (buffer length = 1);

mem[Abase]← buf[0]

• RECEIVE buf[0 : 3] from processor 7 (buffer length = 4);

mem[Abase + 1 : Abase + 4]← buf[0 : 3]

• RECEIVE buf[0] from processor 8 (buffer length = 1);

mem[Abase + 5]← buf[0]

Processor 5

• SEND to processor 1 (mem[Bbase + 1 : Bbase + 3]);

Processor 6

• SEND to processor 1 (mem[Bbase : Bbase + 2]);

• SEND to processor 2 (mem[Bbase + 3]);

Processor 7

• SEND to processor 2 (mem[Bbase : Bbase + 3]);

Processor 8

• SEND to processor 2 (mem[Bbase]);

The compiler does not generate a SEND from a processor to itself.

3.6.2 A remote store or combining SCATTER

There are at least four ways of implementing a remote store:

1. The source processor sends a message to the target processor. The target processor has no way
of knowing that it is expecting a message, so the message must interrupt the target processor.
This requires synchronization before the send, and also some synchronization after. The
“after” synchronization could be delayed until the stored value is actually needed, however.
The cost is O(p) messages (where p is the number of processors) in typical cases, plus the cost
of synchronization.

2. The source processor sends a message to every other processor with information about what
that particular processor is to receive—the message is empty unless the source processor is
intending to send something to that processor. Every processor receives that message and then
sets up to receive what (if anything) the source processor is going to send. The receive could
be an asynchronous receive, giving the same effect as delaying the final synchronization in the
first method. The advantage of this method is that there is no additional synchronization.
The cost, however is O(p2) messages in typical cases. It therefore appears that this method
suffers from the drawback that it will not scale well—that contention will become significant
as the number of processors grows.
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3. As a variant of method 2, the source processor broadcasts to all processors all the information
about what it will send to each one. (That is, the same message is sent to all processors.) The
receiving processors unpack this information and find out what part of it applies to them, then
set up to receive if appropriate. Again, no additional synchronization is required. The cost is
O(p log p) messages in typical cases (because the broadcast can be optimized). This method
(and method 2) can be optimized by including the data to be sent in the original message.
This does not affect the relative costs, however. A disadvantage of this method is that each
processor has to allocate p− 1 buffers to hold incoming messages, and this space can be quite
large. In addition, since p− 1 large messages will be coming in at once, there is a danger that
the operating system’s input buffers will become overloaded.

4. A fourth method is to imagine the processors as arranged in a ring, and have each processor
send the information that it would have sent in method 3 to its neighbor “on the right”.
Any message a processor receives from its neighbor “on the left” is examined to extract any
information intended for that processor, and is then passed along to the neighbor on the right,
until each message has had a chance to go around the entire ring. The advantage of this
method is that there is no contention. The cost is O(p) in time (since we have to allow time
for each message to go around the entire ring). This compares unfavorably with method 3,
which optimally would have a cost in time of O(log p). (Of course there is some contention
in method 3, so this is probably not really attainable.) On the other hand, only one buffer
needs to be allocated per processor, so memory use is not as great, and there is no danger of
the operating system’s input buffers becoming overloaded.

We are not pursuing method 1 for two reasons:

• There are no current primitives which implement interrupting sends or receives.

• Even if there were, the need to put in additional explicit synchronization would complicate
the design.

Method 2 we regard as too expensive. We are currently implementing method 4, although we do
not know how it actually would compare on this machine with method 3.

Given the actual interconnection of the different processors in our target machine, it does not seem
to be significant how we determine each processor’s neighbor on the right. Therefore, the processor
on the right of a given processor is simply implemented as that processor whose processor id is one
more than that of the given processor (with wrapping around). That is, the processor id of the
processor on the right is just

(my processor()+ 1) mod P

where P is the total number of processors.

Combining SCATTER library routines are handled as a variant of remote stores; see Section 14.2.

3.6.3 A remote fetch

Remote fetches are a little more complicated than remote stores, because the fetching processor has
to send a request to the source processor and then receive the information. Thus, the optimization
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mentioned in method 3 above cannot be used. We are implementing a method which is similar to
method 4 for remote fetches:

Each processor sends to the processor “on its right” all the information about what it wants to
receive from every other processor. Each processor examines the message it receives, finds the fields
in that message which ask for data from it, and fills in the requested data in those fields. It then
sends the complete message on to the next processor on its right. After p such steps, each message
is back at the original processor, with all the requested data filled in. Each processor then extracts
that data and stores it at the proper address.

3.6.4 A partial broadcast

Partial broadcasts are used to implement spreads, which may be explicit in the source text or
generated by the compiler. A partial broadcast for us is actually a little more general than a
Fortran SPREAD, in that we allow broadcasting into more than 1 dimension. A typical partial
broadcast might look like this:

PBRDCST(A(:, :, :, :), DIMS = {1, 3}, B(:, :))

by which we mean that B (which in general would actually be an expression) is being spread into
the first and third dimensions of A. Of course this means that the first and second dimensions of B
would conform to the second and fourth dimensions of A, respectively.

Each processor holding values of B calculates for each such value the processors to which that value
is to be sent (using information about the mapping of A) and generates the appropriate SENDs.
Each processor holding values of A similarly calculates the processors holding the corresponding
values of B which are to be sent to it, and generates the appropriate RECEIVEs. Since these
calculations happen before any SENDs or RECEIVEs are generated, the SENDs and RECEIVEs
can be packaged up together so that between each pair of processors there is at most one SEND
and one RECEIVE.

It turns out that the fundamental distinction in dealing with motion code is not between 1-1 and
1-many, but is between kinds of motion classified by what the sender and receiver each know.

As a consequence, the implementation of code for a partial broadcast is really the same as that for
a remapping store, and therefore there is no PBRDCST operator in the dotree. The operator is
simply a remapping store operator, and the broadcast behavior of the operation will be encoded in
the iteration space structures of the store operator and the expression for the right-hand side of the
statement.

There is, however, a multicast primitive in the message-passing library called by the compiler, and
at run-time, this primitive is used to optimize remapping stores where the same element is sent to
more than one destination.

3.6.5 Reductions

Let us consider the simple case

B = sum(A, dim = d)

where A is an n-dimensional array and B is an n− 1-dimensional array. Conceptually, this is what
happens:
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• If B does not align with A in all dimensions except dimension d, then the sum is computed
into an array T which has that property. Then T is remapped into B. So let us assume that
B is so aligned.

• On each processor, there will in general be several elements of B. Corresponding to each of
those elements, there will be a collection of elements of A on each processor whose sum must
be accumulated into that element of B. We could accomplish this by having each processor
accumulate those elements into a privatized scalar temporary S, and then have a partial global
reduction performed to accumulate each copy of S into the element of B.

Actually, however, we do this in parallel: We create an n-dimensional global temporary array
S, the sections of which on each processor contain one element for each element of B which the
values of A on that processor have to be accumulated into. Then each processor accumulates
all its elements of A locally into the appropriate element of S, after which a global partial
reduction is performed to accumulate S into B.

3.6.6 Many-to-many motion

Statements such as

A( : ) = COPY SCATTER(B(W ( : )), 0, V ( : ), 0)

are implemented by breaking them apart, effectively into the pair of statements

T ( :) = B(W ( : ))
A( : ) = COPY SCATTER(T ( :), 0, V ( :), 0)

3.6.7 An example: vector-valued subscripts

As an example, let us consider the problem of generating code for vector-valued subscripts. This
problem will be taken up again later in this report in more detail.

Expressions with vector-valued subscripts can of course be arbitrarily complicated. We consider the
following example, which contains the essential kernel of what we have to do:

A(V (:), W (:)) = B(:, :)

The right-hand side of this statement is computed into what might be described as an anonymous
2-dimensional array C. (In this simple case, C would be laid out just as B is, but in general, the
right-hand side would be more complex.)

A one dimensional example would be even simpler:

A(V (:)) = B(:)

Here is what the compiler does with these two cases:

1. In the one-dimensional example, it makes sure that V is aligned with C, and moves it if it
is not. In the two-dimensional example, it performs a partial broadcast of V to both align
it with the first dimension of C and spread it parallel to the second dimension of C. The
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processors receiving this partial broadcast can compute the fact that they are due to receive
a value of V and generate the appropriate receive.

2. In the two-dimensional example, similarly, it performs a partial broadcast of the values of W
to both align it with the second dimension of C and spread it parallel to the first dimension
of C.

3. Thus, each processor “holding a value of C” receives its appropriate value of V (and of W in the
two-dimensional example). These values are used (together with the addressing information—
known as data space information—of the array A) to generate an address to which the value of
C is sent. This information is packaged up and sent around the ring of processors as outlined
in the section on remote stores. Each receiving processor is able to retrieve the information
intended for it from each subsequent message, and store it at the proper location.

3.6.8 Scalars

Motion for scalars will be driven by the same machinery (i.e. the data and iteration space structure)
as motion for arrays, and similar SEND and RECEIVE operators will be generated.

3.7 Data motion: additional optimizations

3.7.1 Nearest-neighbor computations

A nearest-neighbor computation is a vector assignment statement which is almost parallel in that
the individual array references contain subscripts which differ by very little so that only a small
amount of communication is necessary. An example is the usual 4-point average computation:

A(2 :N−1, 2:N−1) = 0.25 ∗ (A(1 :N−2, 2:N−1)

+ A(3 :N, 2:N−1)

+ A(2 :N−1, 1:N−2)

+ A(2 :N−1, 3:N))

A naive implementation (using the owner-computes rule) would create four temporaries for the
array sections on the right-hand side. Motion would be generated to move the proper values of
these arrays into these temporaries. While in this case, only those elements which need to be moved
between processors would be so moved, a large and unnecessary amount of memory would be used in
creating these temporaries, and there would also be a large and unnecessary amount of local motion
involved in moving most of the array sections on the right locally into the appropriate temporaries.

A more complicated, but still realistic example, would contain even more slices of A on the right
hand side. Again, a naive implementation would generate a motion statement and a temporary for
each of these slices. But in general, there is high degree of overlap between these slices, and much
less motion really needs to be generated. We can do much better than the naive implementation.

We have two goals in generating code for such computations:
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1. Move only the data that has to be moved, and move it only once.

2. Bundle up the motion so that between each pair of processors there is only one SEND and
only one RECEIVE.

How we do this is explained in detail in Chapter 15. The general idea is this:

1. We recognize certain statements as nearest-neighbor computations. (The programmer does not
have to identify these statements in any way—the compiler will recognize them automatically.)
The same-region check is suppressed for such statements.

2. We compute exactly what data has to be moved. The data that has to be moved corresponds to
what we call “shadow edges” around the sections of the left-hand array reference. We allocate
additional space locally around the left-hand side array in which to store these shadow edges.
This changes the addressing calculations for the left-hand array.

3. We generate motion to load the shadow edges into place.

4. Once the shadow edges are loaded into place, all computations are local, and we generate code
to express them.

3.7.2 Irregular data accesses

An irregular data access always amounts to a remote fetch or a remote store. We can further
optimize such data accesses when the following two conditions hold:

• The access occurs more than once in a scoping unit. Typically this means the access occurs
inside a loop.

• The pattern of communication is the same for all these instances of the data access. For
instance, this happens when the data access is through a vector-valued subscript, and when
the indirection vector is unchanged between successive accesses.

An example is shown in Figure 3.1.

call setup(U, V, W )
do i = 1, n time steps, 1

A = sum scatter(B(W (1 :n)), A, V (1 :n), mask = .true.)
C = sum scatter(D(W (1 :n)), C, V (1 :n), mask = .true.)
E = sum scatter(F (W (1 :n)), E, V (1 :n), mask = .true.)

end do

Figure 3.1: Code with Reusable Indirect Accesses

In this case, we do not have to use the whole machinery of remote fetches or stores each time through
the loop: instead, we can generate code to precompute the data paths once, at the top of the loop.
Then each irregular data access inside the loop can use this precomputed information to generate
at most one send and one receive between each pair of processors. Thus, in effect, we pay the price
of the indirection once, and then each data access becomes equivalent to a simple remapping store.

The details of this are laid out in Section 13.4.
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3.8 HPF intrinsic and library functions

The implementation of these functions is as follows:

Elemental Intrinsic Functions. These include the usual elemental intrinsics such as SIN; and
also the HPF elemental bit manipulation funcions ILEN, POPCNT, POPPAR, and LEADZ.
These functions appear in the dotree as operators and are handled no differently from ordinary
vector operators such as vUMINUS, for example. They are stripped and ultimately reduced
to scalar operators which will be turned into local function calls or inlined code on each node
by the code generator. (Actually, the stripped operators may not actually be scalar, but they
will refer to operations on only one processor. This is entirely analogous to generating a vector
PLUS operation on local data, which we may do in a future release.)

System Inquiry Intrinsic Functions

NUMBER OF PROCESSORS
At the beginning of the generated code, an internal numnodes variable is created and the
number of processors on which the program is executing is stored into this variable. Of
course if the program is compiled for a specific number of processors, the compiler knows
this and makes use of this information.
NUMBER OF PROCESSORS() is turned into a FETCH of this variable (or a constant
if the compiler knows its value).

PROCESSORS SHAPE
This turns into a reference to a 1-dimensional array of size 1 whose only element holds
a FETCH of the numnodes variable mentioned above, or a contstant if the number of
processors is known at compile time.

Mapping Inquiry Subroutines

HPF ALIGNMENT

HPF DISTRIBUTION

HPF TEMPLATE
These three intrinsics are passed as operators to the Middle End, which turns them into
calls to routines in the HPF run-time library.

Array Reduction Functions

ALL

ANY

COUNT

IALL

IANY

IPARITY

PARITY

MAXLOC

MAXVAL
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MINLOC

MINVAL

PRODUCT

SUM
These functions are inlined by the compiler.

Array Combining Scatter Functions

XXX SCATTER
Here XXX can be replaced by the name of any of the reduction intrinsics. The XXX SCATTER
functions are inlined by the compiler.

Array Prefix and Suffix Functions

XXX PREFIX

XXX SUFFIX
Here XXX can be replaced by the name of any of the reduction intrinsics. These functions
are turned into library calls.

Array Sort Functions

GRADE UP

GRADE DOWN

SORT UP

SORT DOWN
These functions are turned into library calls.

Computational Intrinsics

DOT PRODUCT

MATMUL

RANDOM NUMBER
These functions are inlined by the compiler.

Routines that move data

CSHIFT

EOSHIFT

SPREAD

TRANSPOSE
These functions are inlined by the compiler.

PACK

RESHAPE

UNPACK
These functions are implemented as follows: all their arguments are replicated, and the
intrinsic Fortran routine is called on each processor. The result is then remapped over
the processor array. This is an example of punting (see Section 3.5, page 20).
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There is one exception to this specification: intrinsic functions are automatically PURE in HPF. If
such a function is called within a FORALL construct it is treated as any other PURE function. In
particular, it generally becomes transformed by the compiler to a library call on a single processor.
See page 97 for an example of this.

3.9 Storage allocation

3.9.1 Implicit allocation

Fortran traditionally has used static data allocation. This has the advantage of allowing fast ad-
dressing, but cannot be used for data that is local to recursive subroutines. Since Fortran includes
such subroutines, the compiler allocates data statically or on a stack as appropriate.

This data allocation is handled completely by the Middle End and GEM; Transform sees no difference
in the representation of references to statically or dynamically allocated arrays.

3.9.2 Explicit allocation

In addition, the language includes ALLOCATE and DEALLOCATE statements, which have the
semantics of heap allocation. These are represented in the CIR by opALLOC and opDEALLOC
operators.

Further, Transform itself creates short-lived temporaries. These are always stack temporaries. The
dotree operators vaNEWSCOPE, vaSALLOCATE, and vaENDSCOPE manage stack allocation of
these temporaries. For more details, see Section 4.2.3.

3.10 Argument passing: dope information

Here we describe generally how and where dope vectors are created. Transform does not actually
create these dope vectors; the Middle End, which runs after Transform, will create them. But
Transform has to leave enough information around so that the Middle End will be able to do this.

The contents of a dope vector are detailed below, in Chapter 4, Section 4.6.

3.10.1 Calls from global routines

At each call site of a global subroutine, each processor computes a dope vector for each actual
argument passed assumed-shape. All other actual arguments are passed by reference.

If the called routine is also a global routine, an identical copy of this dope lives on each processor.
(That is, the dope is replicated across all the processors.)

If the called routine is an HPF LOCAL routine, then each actual argument corresponding to a
dummy array argument must be passed assumed-shape. This entails passing a dope vector on each
processor. The dope information is in general different on different processors. Here is an example
which shows the kind of phenomenon which can occur:
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Suppose we have an array of 16 processors, and an array A(50, 50) which is distributed (BLOCK,BLOCK)
in such a way that the strip length of each dimension is 4. The array will be mapped over the pro-
cessors as shown in Figure 3.2.

A(1 :13, 1)
A(1 :13, 2)

.

.

.
A(1 :13, 13)

A(14 :26, 1)
A(14 :26, 2)

.

.

.
A(14 :26, 13)

A(27 :39, 1)
A(27 :39, 2)

.

.

.
A(27 :39, 13)

A(40 :50, 1)
A(40 :50, 2)

.

.

.
A(40 :50, 13)

A(1 :13, 14)
A(1 :13, 15)

.

.

.
A(1 :13, 26)

A(14 :26, 14)
A(14 :26, 15)

.

.

.
A(14 :26, 26)

A(27 :39, 14)
A(27 :39, 15)

.

.

.
A(27 :39, 26)

A(40 :50, 14)
A(40 :50, 15)

.

.

.
A(40 :50, 26)
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A(1 :13, 28)

.

.

.
A(1 :13, 39)

A(14 :26, 27)
A(14 :26, 28)

.

.

.
A(14 :26, 39)

A(27 :39, 27)
A(27 :39, 28)

.

.

.
A(27 :39, 39)

A(40 :50, 27)
A(40 :50, 28)

.

.

.
A(40 :50, 39)

A(1 :13, 40)
A(1 :13, 41)

.

.

.
A(1 :13, 50)

A(14 :26, 40)
A(14 :26, 41)

.

.

.
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A(27 :39, 41)

.

.

.
A(27 :39, 50)

A(40 :50, 40)
A(40 :50, 41)

.

.

.
A(40 :50, 50)

Figure 3.2: A 50× 50 array distributed (BLOCK,BLOCK) over 16 processors.

Now the processor “at the upper left” contains an array which looks like a 13× 13 array, and this
array is laid out sequentially in that processor’s memory. The processor “at the lower left”, however,
contains what should be an 11 × 13 array, except that there are gaps in the processor’s memory.
For this reason, the dope vector that is passed to an HPF LOCAL subroutine includes an access
function, the coefficients of which reflect the actual mapping of the array in the local processor’s
memory.

In this case, the local dope vector for the processor at the lower left contains the following information
(all contained in the F90 ARRAY SECTION of the dope vector; see Section 4.6):

addr a0 = base

dimension 1

lower bound = 1

upper bound = 11

inter element spacing = 1

dimension 2
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lower bound = 1

upper bound = 13

inter element spacing = 13

Thus, that processor would compute the local memory address of the local array element which it
knows as A(i, j) to be

addr a0+ inter element spacing1 ∗ (i− lower bound1)

+ inter element spacing2 ∗ (j − lower bound2)

= base + (i− 1) + 13 ∗ (j − 1)

(Just to be absolutely clear, note that the local array element A(1, 1) on this processor is really the
global array element A(40, 1).)

Passing this dope vector enables the HPF LOCAL subroutine to generate correct addressing for
each local array section, and saves us from generating code in the global HPF caller to perform a
local remapping prior to calling the HPF LOCAL subroutine.

Arrays which are distributed CYCLIC(n) in any dimension cannot be passed assumed shape to an
HPF LOCAL subroutine. (See for instance the picture on page 134 for an example of what can
happen. The part of that array on each processor has no simple description even in terms of our
extended dope structure.) Therefore, if such an array is to be used in a HPF LOCAL function, it
either has to be remapped first by the calling function, or the user will have to write a loop of calls,
one call for each partial BLOCK of the array. In effect, this passes a BLOCK distributed array
section on each iteration of the loop.

Dope information is the only way we have of passing information about mapped actuals to the called
routine.

3.10.2 Calls from HPF LOCAL routines

At each call site of an HPF LOCAL subroutine, each processor computes a dope vector for each
actual argument which needs it. The information in such a dope vector will differ from processor to
processor.



Chapter 4

The Transform Data Structures

With the exception of the Common IR, the main data structures in Transform are constructed using
tools originally developed at Massachusetts Computer Associates (Compass, Inc.). In particular,
these include

ldo A specification language used for describing recursive data structures such as parse trees or more
general graph structures. The structures are composed of nodes. Each node has components
(which can be thought of as the children of the node if the structure is a tree) and attributes.
The language is described in [13].

dtb A source code generator that builds an access package for a data structure specified in ldo.
The nature of this package is described in [12]. Since dtb is used to create the access package,
the data structure is often referred to as a “dtb data structure”, even though its specification
is written in the ldo language.

4.1 The Common IR and the symbol table

Unlike the other main data structures in Transform, the Common IR is not a dtb data structure. It
is a family of ordinary data structures in C, with a hand-written access package. The data structure
itself is defined in the file cir/cir_tables.h. The CIR operator names themselves (e.g., opPLUS)
are enumerated in the file cir/cir_op.h.

The general Common IR node is called a pIlNode (“pointer to an intermediate language node”).
Terminal pIlNodes are known as tokens . Each token is one of the following types:

SYMTOK A symbol.

TMPTOK A compiler-generated temporary. Actually, these are only generated by the Front End.
TRANSFORM generates SYMTOKs when it needs to create temporaries.

CONTOK A constant occurring in the source text.

VALTOK An immediate constant generated by the Front End.

LABTOK A label from the source text.

35
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EDTTOK An edit descriptor, from a FORMAT statement.

NAMTOK A name which is in the source text but is not inserted in the symbol table because its
scope is so small; used for instance for dummies in ALIGN directives.

KEYTOK Used for keywords for optional parameters in OPEN and INQUIRE statements.

A SYMTOK is actually a pIlNode with the operator opSYMTOK, and so on.

The CIR is built mainly as a binary tree. This is for historical reasons: the first implementation of
the CIR was on a machine where memory was limited, and keeping the size of a general CIR node
small was important. Since most CIR nodes in fact had 1 or 2 children, this was a reasonable design
decision. It does mean, however, that the representation of ternary or list structures is somewhat
convoluted. There are some exceptions to this: some nodes (such as opFAINDEX) which have been
added more recently are ternary nodes.

There are actually a number of tables which collectively are referred to as the Symbol Table:

Table Entry
Corresponding

CIR
node

Use

Symbol Table pSymNode SYMTOK symbols

Temp Table pTmpNode TMPTOK temporaries

Constant Table pConNode CONTOK literal constants

Label Table pLabNode LABTOK labels (i.e. targets of jumps)

Edit Descriptor Table pEdtNode EDTTOK edit descriptors

Name Table pNamNode NAMTOK e.g. ALIGN dummies

Keyword Table pKeyNode KEYTOK a few keywords

Type Table pAtyNode — types (real, complex, etc.)

In this report, the phrase symbol table entry generally refers to a pSymNode.

Each symbol table entry of course has many fields. One which is used often in transform is a table
of “handy bits”. Each handy bit specifies whether the symbol has a particular attribute. Some
common handy bits are

btALLOCATABLE An allocatable array.

btASHARY An assumed shape array.

btAUTOMATIC An automatic data object.

btESHARY An explicit shape array.

btNEAR NEIGHBOR Array is a nearest-neighbor array (see Chapter 15); in particular, it has
shadow edges.

btNOSEQUENCE Array has the NOSEQUENCE attribute.

btNUMA STACK Array is allocated on the numa stack (see Section 16.9.1).
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btPOINTER90 Symbol has the POINTER attribute.

btSAVE Symbol has the SAVE attribute.

btTARGET Symbol has the TARGET attribute.

There are currently several hundred handy bits. They are defined and documented in the file
cir/cir_handy.h.

There are no CIR nodes corresponding to entries in the type table—these entries are attributes of
CIR nodes. There is no table to manage VALTOKs, since these represent immediate data which is
completely represented in inlined executable code.

Attached to each pSymNode are a large number of fields. Among these is a field containing dimension
information. This field, used for arrays, contains CIR expressions which represent the lower bound
and the extent of the array in each of its dimensions.

4.2 The dotree

The dotree is specified as a recursive data structure by an ldo description (dtb/master/dotree.ldo)
and accessed by a package of routines produced from this description by dtb. In the following
description, the terms child and attribute refer to dtb usage. Dotree nodes may be structural nodes
or expression nodes. Expression nodes cannot be children (in the sense that they would be dtb
components) of structural nodes—they can only be dtb attributes of such nodes. However, they
may be thought of as children, and for the purposes of this discussion are referred to as such. That
is to say, no real distinction is made between dtb components and attributes in this discussion.

In the ldo specification, a structural node is a do_tree_node and an expression node is an acomp (i.e.,
abstract computation). acomp is actually a disjunction of two node classes: VC (value computation)
and FL (flow computation). These in turn are disjunctions of actual node types, which are described
below.

4.2.1 Structural nodes

The structural nodes form a tree whose root is a dt psm node and whose leaves are dt astmt nodes.
The different kinds of structural nodes are:

dt psm A node representing a program, subroutine, or module. This corresponds to the Fortran
notion of a “scoping unit”, except for the modification noted previously in section 2.3 (page 12).

The root of the dotree is a dt psm node, but these nodes can also occur elsewhere in the dotree.

This node has one child:

tree A structural node which represents the executable code in the dotree. This node must
be a dt seq node.

In addition, this node has four specific attributes:

name A pSymNode holding the declared name of this program, subroutine, or module.

cir The pIlNode that is the root of the CIR tree of which this is the dotree translation.
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entries A list of structural nodes that specifies all the entries to the psm.

exits A list of structural nodes that specifies all the exit nodes of the psm.

dt seq Has one child which is a list of structural nodes. The flow of control is from one node to
the next. Thus, there can be no jumps out of a dt_seq node except from the last node in the
list, and no jumps into a dt_seq node except to the initial node of the list.

dt astmt An “abstract statement”. This node has no children per se. However, it has an attribute
which is a statement root; for instance, a STORE operator. Every node below a dt astmt
node is an expression node.

Each dt_astmt also has a stmt_kind attribute describing the kind of statement it is. This
attribute triggers different kinds of processing by different phases of TRANSFORM. The
complete list of values for this attribute is given on page 102.

dt simple if Has three children:

cond An expression node, which must evaluate to TRUE or FALSE.

then node A dt_seq, representing the code executed if cond is TRUE.

else node A dt_seq, representing the code executed if cond is FALSE.

dt dowhile Has four children:

cond An expression node, which must evaluate to TRUE or FALSE. This node represents the
test at the head of the loop.

prolog A structural node. Initially empty. This is a place where loop-invariant code can be
moved to before the first iteration of the loop.

body A dt_seq, representing the body of the loop.

epilog A structural node. Initially empty. This is a place where loop-invariant code can be
moved to after the last iteration of the loop.

dt case Has three children:

expression An expression node, the value of which is the value switched on.

selectors A table of expression nodes, representing the possible values of expression.

blocks A parallel table of structural nodes, representing the corresponding code.

dt tangle Has one child, which is a list of structural nodes. Unless there is explicit flow of control
in these nodes, control passes from one node to the next in the list. Thus, this node is a weak
form of a dt_seq, but can be used in its full generality to represent any otherwise unclassifiable
structure.

dt do loop Has three children:

prolog A structural node. Initially empty. This is a place where loop-invariant code can be
moved to before the first iteration of the loop.

body A dt_seq representing the body of the loop.

epilog A structural node. Initially empty. This is a place where loop-invariant code can be
moved to after the last iteration of the loop.
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When code is generated for a dt do loop, a zero-trip test is inserted at the top of the loop.
This is just a bounds check to see if there are any valid iterations of the loop to perform. The
prolog represents code which is executed once, before the first iteration of the loop body, if
the zero-trip test is true (i.e. if the loop is actually entered). The epilog represents code
which is executed once, after the last iteration of the loop body, if the zero-trip test was true.
If the zero-trip test is false, none of the code in the prolog, epilog, or body is executed.

A dt_do_loop is guaranteed to have no explicit (via GOTO statements) or implicit (via error
exits of I/O statements) exits from the body other than by the test at the bottom of the loop.

In addition, a dt_do_loop has the following attributes, all of which are expression nodes:

do variable The name of the do loop index.

initial bd Expression for the initial bound of the loop.

terminal bd Expression for the terminal bound of the loop.

increment Expression for the increment of the loop.

The initial assignment of the initial bd to the do variable, and the test and increment of
the do variable using the terminal bd and the increment are not represented in the dotree.
(They are made explicit after the Transform component of the compiler, in the Middle End.)

There are many other attributes as well; in fact, the attributes of do loops are the most rapidly
changing part of the data structures of TRANSFORM.

dt loop A dt_loop node is structurally the same as a dt_do_loop node, with the exception that it
cannot be guaranteed that there are no additional exits from the body. Both nodes (as they
come into Transform) come from DO loop constructions in the source code. Transform creates
additional dt_do_loop nodes in the process of strip mining, but no more dt_loop nodes.

dt where Has three children:

mask expr An expression node representing a mask (i.e. boolean parallel data).

true stmts A dt_seq node representing a sequence of parallel assignment statements, each
conformant with the expression node.

false stmts A dt_seq node, similar to true stmts, representing the parallel assignments
under the ELSEWHERE clause.

dt forall block Comes from a FORALL construct in the source. Has two children:

forindx An expression node whose operator is vaFORINDXS, having two children. Its first
child is a list representing the list of FORALL indexes and their bounds in the FORALL
header. Its second child represents the mask expression in the FORALL header.

stmts A dt_seq node representing the executable code.

dt group forall Comes from a FORALL construct in the source where the body of the FORALL
contains an array-valued PURE function. It has one child, which is a list of structural nodes,
each of which is a dt astmt. This node is created where necessary by ARG, and is deleted by
STRIP.

dt io Represents an I/O operation. This is the top node of such an operation. It has two attributes:

op The operator name. For example, this could be vaSFREAD.
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cond An expression node representing a Boolean guard condition. This typically represents
the condition “if my processor() = 0”.

It has four children:

pre stmts A dt_seq node. This node is empty unless error exits are specified in the source
code, in which case generated code is inserted here to manage that exception handling.
See Section 9.2.

specs A dt_seq node containing a list of dt_io_item nodes (see below). Each of these nodes
is either NULL or represents a specification (e.g., UNIT number, label of FORMAT
statement, IOSTAT variable, etc.).

items A dt_seq node containing a list of actual arguments (e.g., to be read or written). Each
of these arguments is represented as a dt_io_item or a dt_io_loop, both of which are
described below.

post stmts Either a dt_seq or a dt_tangle. It is normally empty unless error exits are
specified in the source code. See Section 9.2.

dt io loop This node is used to describe an implied do loop in an I/O statement. It is one of the
items of a dt_io node. It has some attributes, of which the most important ones are the four
obvious ones needed for any loop:

do variable An expression node representing a pSymNode or pTmpNode naming the loop vari-
able of the implied do loop.

initial bd An expression node representing the initial bound of the implied do loop.

terminal bd An expression node representing the terminal bound of the implied do loop.

increment An expression node representing the increment of the implied do loop.

It has three children, which are entirely similar to the children of the same name of a dt_io
node. Each is a dt_seq node:

pre stmts Copy-in code (if any) for the loop bounds.

items A list of dt_io_item nodes specifying the values being written or read.

post stmts Copy-out code (if any) for the loop bounds.

dt io item This node is used in the two previous I/O nodes to hold the actual values being written
or read. As above, it has two children to manage any temporaries that may be necessary:

pre stmts Copy-in code (if any) needed for the value being read or written.

post stmts Copy-out code (if any) needed for the value being read or written.

And finally, there is an attribute:

item The value being written or read. Since this is an expression node, it cannot be a child,
so it is an attribute.

dt entry Represents an entry node of the scoping unit. Has two children;

preamble A dt_seq which contains initialization code inserted by the Front End, and which
may be added to by Transform.
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comp An expression node holding the entry statement itself. (If there is no ENTRY state-
ment in the source, this would be the PROGRAM or SUBROUTINE statement, or the
equivalent.)

dt exit Represents an exit node of the scoping unit. Has two children:

preexit A dt_seq, currently empty, but reserved for possible use to hold exit code.

comp An expression node, holding the EXIT, RETURN, or STOP statement.

dt hpf on Represents an HPF ON directive. It has one child, statements, which is a dt_seq node
containing a list of statements governed by this directive. In addition, it has four attributes:

home expr An expression node representing a variable, template element, or processors ele-
ment.

has resident A Boolean attribute specifying whether or not a RESIDENT clause is part of
this ON directive.

resident vars A (possibly empty) list of expression nodes representing the variables defined
to be resident in the RESIDENT clause, if it is present.

new vars A (possibly empty) list of expression nodes specifying any variables declared to be
NEW (i.e., privatized) in the ON directive.

dt hpf resident Represents a stand-alone RESIDENT directive. It has one child, statements,
which is a dt_seq node containing a list of statements governed by this directive. In addition,
it has one attribute, vars, which is a list of expression nodes specifying the variables (if any)
that are declared to be resident by this directive.

dt region Represents an Open MP region. It has one child:

stmts This is a dt seq node that contains the statements and other dotree nodes inside this
region.

It also has three attributes:

op This is a dotree op that names the kind of region. A few of the many possible operators
that can occur here are:

• vaOMP DIR PARALLEL

• vaOMP DIR PARALLELDO

• vaOMP DIR PARALLEL SECTIONS

• vaOMP DIR SECTIONS

• vaOMP DIR SECTION

modifiers This a list or table of modifiers—typically, the options of the region directive.
Some typical options are:

• vaOMP OPTION FIRSTPRIVATE This is an expression node with 1 child. The child is
a list of names of the variables being declared as FIRSTPRIVATE.
• vaOMP OPTION LASTPRIVATE Same for LASTPRIVATE.
• vaOMP OPTION PRIVATE Same for PRIVATE.
• vaOMP OPTION COPYIN This is an expression node with 1 child. The child is a list of

THREADPRIVATE variables to be copied from the master thread to each thread in
the team of the region.
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• vaOMP OPTION IF This is an expression node with 1 child. The child is the logical
expression for the IF clause.

closers This is a list or table of options that can appear at the end of the region. An example
is

vaOMP NOWAIT

A region whose operator is vaOMP PARALLELDO and one of whose options is vaOMP OPTION NUMA
is referred to as a numa region. The closers attribute of a numa region consists of a list of two
elements:

• If there is an associated LASTPRIVATE list, TRANSFORM creates a private Boolean
variable which is initialized (inside the region just before entry to the loop) to FALSE.
Inside the loop, it is set to an expression that evaluates to TRUE precisely for that thread
that executes the logically “last” iteration of the loop. The name of that variable is the
first element of the closers list.
If there is no LASTPRIVATE clause, this element is vaNULL.

• The second element of the closers list is the (address of) the numa_config descriptor
that describes the team of threads that is started up on entry to the HPF NUMA loop.

4.2.2 Expression nodes

Expression nodes in the dotree fall into two classes: value computations (the dtb disjunction is VC)
and flow computations (FL).

Every VC node has at least the following three attributes:

Op The operator name (e.g. vaPLUS). The complete list of operator names is defined in the file
dtr/master/dtr_op.h It also occurs in the generated file dtr/master/dtr_opdef.h.

Aty The type; this is an entry in the type table, referred to as a pAtyNode.

Cir A corresponding CIR node (referred to as a pIlNode). This attribute will of course in general
be nil for new VC nodes created by Transform.

Every VC node is one of the following:

VC0 Has no children. vaNEWSCOPE is an example.

VC1 Has 1 child. vaFETCH is an example.

VC2 Has 2 children. vaPLUS and vavFETCH are examples.

VC3 Has 3 children. vavPLUS is an example.

VCN Has one child which is a table; this is used for any operator having more than 3 children. An
example would be vaBLOCK FAST SIMPLE BD.

VCarrayref Represents an array reference. The operator is always vaARRAY or vavARRAY. The
children are

Base A VC which is a symbol holding the array name.



4.2. THE DOTREE 43

Subs A table of VC nodes holding the successive subscripts of the array reference.

VClist Has 1 child which is a list of VC nodes.1 The operator is always vaLIST. This node is really
“structural sugar”; by itself it performs no computation.

VCcon A terminal node representing a constant. The operator is always vaCONTOK. Has a pConN-
ode as an attribute.

VCsym A terminal node representing a symbol. The operator is always vaSYMTOK. Has a pSymNode
as an attribute.

VCtmp A terminal node representing a scalar temporary generated by the Front End. The operator
is always vaTMPTOK. Has a pTmpNode as an attribute. This node is mainly vestigial, but
must be included as long as the Front End keeps generating pTmpNodes. Transform uses
pSymNodes for the temporaries it creates.

VCterm A catch-all terminal representing either a vaLABTOK, vaNAMTOK, or vaEDTTOK op-
erator. Such a node always comes from the Front End: it is never created by Transform and
always has a corresponding CIR operator, so the Cir attribute is enough to characterize it
completely.

Every flow computation has the following attribute:

flop (“flow operator”) The operator name. While operator names corresponding to value com-
putations begin with “va”, those corresponding to flow computations begin with “fl”. These
operator names are also included in the file dtr opdef.h.

The flow computations are the following:

FLugoto An unconditional GOTO. The possible operators are flGOTO, flCYCLE, and flEXIT. Has
one child, the target, whose value is a pLabNode (i.e. the label which is the target of the
unconditional GOTO).

FLagoto An assigned GOTO. The operator is flAGOTO. Has two children:

symbol A VCsym representing the symbol which has been assigned a label which will be the
target of the node.

labs A VClist consisting of all the labels which are somewhere in the scoping unit assigned
to the symbol.

FLstop The operator is flSTOP. Has one child, (StopMark), which is the optional constant value
specified in the STOP statement.

FLcgoto The operator is flCGOTO. Has two children:

expr An expression node whose value is used to determine the label to jump to.

1There is a technical dtb wrinkle here. A dtb object can be used to form tables or lists, but not both; this is
determined in the ldo specification file dtb/master/dotree.ldo. VC nodes can only form tables. Hence actually the
child of a VClist node is a list of acomp nodes—an acomp node is defined to form lists, rather than tables, and each
VC node is automatically an acomp node.
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lablist A list of labels. The value of the expression is used as a 1-based index into this list
to find the target of the node.

FLreturn The operator is flRETURN. Has one child, the optional parameter from the source text.

FLarif An arithmetic IF. The operator is flARIF. Has four children:

expr The expression to be evaluated.

lt0 lab The target label if the expression is < 0.

eq0 lab The target label if the expression = 0.

gt0 lab The target label if the expression is > 0.

4.2.3 Some common operators

TRIPLE and vINDEX nodes

Triples such as LB :UB :S (i.e., “lower bound”:“upper bound”:“stride”) are represented as VC3
nodes whose operator is a vaTRIPLE:

TRIPLE

〈LB〉 〈UB〉 〈S〉

TRIPLE nodes in an expression are conformant : each term in the expression must have an equivalent
set of triples in the same order. That is, triples in corresponding dimensions must represent the
same number of elements.

A FORALL index can be thought of as a triple where the conformance restriction is relaxed. Instead,
the triple itself is given a name. This allows the user to identify triples which are “out of order”, as
in

forall (I = 1:100, J = 1:100)
A(I, J) = B(J, I)

Such nodes are represented as vavINDEX nodes:

vINDEX

〈index〉 TRIPLE

〈LB〉 〈UB〉 〈S〉

where the index child is the position of the index in the FORALL header—in effect, the name of
the triple. A vINDEX node can thus be thought of as a named triple. In general, FORALL indexes
are said to represent named dimensions , while triples represent unnamed dimensions .
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Whole arrays

The term “whole array” in Fortran has a special, somewhat unintuitive significance. If an array A
is declared as

dimension A(2 :10)

then any reference to A in the program counts as a whole array, while a reference to A(2 :10) counts as
an array section, even though it includes all the elements of the array. This has semantic significance
in Fortran: LBOUND(A) evaluates to 2, while LBOUND(A(2 :20)) evaluates to 1. Therefore, it is
important to know in the compiler which array references denote whole arrays in this sense.

In order to manage this, a VCarrayref node is tagged with a boolean attribute whole array which
is TRUE iff the node comes from a whole array reference in the source program. In addition, all
temporary arrays created by the compiler are tagged as being whole arrays.

Stack temporaries

The Transform phase generates stack temporaries by first declaring the start of a new scope with a
statement-level vaNEWSCOPE operator. Within this scope, any number of stack temporaries can
be allocated, using statement-level vaSALLOCATE operators. The end of the scope is indicated
by a statement-level vaENDSCOPE operator. Ending a scope has the effect of popping all temps
allocated within that scope.

vaNEWSCOPE and vaENDSCOPE take no children. vaSALLOCATE has one child, which is a
vaSYMTOK representing the name of the array being allocated.

NEWSCOPE/ENDSCOPE pairs are always placed in the dotree so that they are both children of
the same dt seq or dt tangle node. (Of course, the vaENDSCOPE follows the vaNEWSCOPE
node, with other nodes in between. They do not have to be the first and last nodes of the list of
children of the dt seq or dt tangle node, however.) The reason for allowing dt tangle nodes here
is that it is actually possible for an early exit to take place out of a scope: the GEM component of
the compiler will handle any necessary cleanup correctly.

Array-valued function calls

An array-valued function call is represented by means of a vaAFUNC operator. This operator has
two children:

• A SYMTOK holding the name of an array temporary into which the result of the function is
to be computed.

• A representation of the actual function call.

Array-valued functions are implemented by the Middle End to take a hidden argument, passed
assumed-shape, which is a temporary holding the return value of the function. The AFUNC operator
tells the Middle End that its first child is to be used as that hidden argument.
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4.3 Dope information

The term dope is used in two contexts in our compiler:

dope information or symbol table dope This is declarative information about data objects
containing, for instance, the rank of an array. It is really part of the symbol table. Ordinary
arrays have declarative information that never changes as a routine executes. However, the
declarative information for allocatable arrays and pointers can be modified in the course of
execution, and for pointers, this can happen in two very different ways—allocation and pointer
assignment. To handle these two ways correctly, we maintain two versions of dope information
for pointers:

regular dope information This is usually just called “dope”. It exists for every array,
whether or not it is a pointer.

alternative dope information This is called alt dope in our compiler. It is used only in
situations in which an object needs to be allocated, but there is not enough information
available at the point of allocation to fully describe the object. Currently, alternative
dope information is maintained for two kinds of objects:

• pointers
• allocatable dummies with the INHERIT attribute.

dope vector Dope vectors are used in several situations:

When an argument is passed assumed-shape to a subroutine, the calling routine needs to pass
quite a lot of information about the actual argument—in particular, more than just its base
address. So what happens is that all of this information is packaged up into a vector and
the vector itself is passed, rather than the base address. This is called a dope vector, and in
our compiler, it is extended to include information about the distribution of the array. This
is dynamic information that may change as the code executes. (A subroutine may be called
twice, for instance, with two different actuals corresponding to a specific dummy.)

Dope vectors are also used to manage pointers and allocatable arrays, as explained below.

The way these versions of dope interact is this:

An ordinary array (i.e., not a pointer, allocatable array, or assumed-shape dummy argument) has its
regular dope information filled in from the declarative information in the program. This information
may consist of expressions. For instance, an explicit-shape dummy may have its size specified in
terms of another dummy argument. This would be reflected in the regular dope information.

Pointers, allocatable arrays, and assumed-shape dummy arguments have dope vectors associated
with them. On allocation, pointer assignment, or subroutine entry, these dope vectors are filled in.
The regular dope information of such objects consists largely of pointers to fields in the dope vector;
it is the dope vector fields that actually change on execution.

When a pointer is used as the left-hand side of a pointer assignment, its dope vector is modified
to reflect the information of the target of the assignment. When a pointer is used for allocation,
however, there is no right-hand side to take information from. In this case, the compiler will in
general need to make some decisions. For instance, if a rank 2 pointer was declared simply as
having a (BLOCK, BLOCK) distribution, the DATA phase of Transform will by default allocate
cell places to the two dimensions of the pointer. These cell places can be overriden by a pointer
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assignment, but will be used if the pointer is allocated. These cell places are stored in the alt dope.
On pointer allocation, this information is copied into the dope vector for the pointer. In this way,
the alt dope stores information created by the DATA phase of Transform that is used only for
allocation of pointer arrays.

The only reason this is necessary is that pointers are used both for pointing (i.e., aliasing) and for
allocation. Allocatable arrays, which cannot be pointer assigned, generally do not have this problem.
Their dope vectors are largely filled in by DATA in the normal fashion, and those fields are never
changed. The one exception to this (as mentioned above) concerns allocatable dummies with the
INHERIT attribute. When such a dummy is allocated, its mapping is taken from a compiler default,
which is stored in the alt dope structure2.

In this compiler, the Middle End handles the actual procedure calling mechanism, and therefore
is responsible for creating dope vectors. The responsibility of Transform is simply to leave enough
information around so that the Middle End can do this consistently. The information contained in
dope vectors is outlined below in Section 4.6.

When we refer to dope, or dope information, in this report, we always mean symbol table dope.
Dope vectors are always referred to as such.

A dope structure holding symbol table dope information is attached to every pSymNode by LOWER.
This dope structure is the repository for all declarative information about array symbols. It
is the place from which all such information is retrieved by Transform code. The access func-
tions for the dope information are generated by dtb from an ldo description given in the file
dtb/master/dope.ldo.

The fields of a dope structure are:

irank The rank; 0 for a scalar.

addr A VC holding the base address of the array. This provides a way to get back from the dope
structure to the name of the data object it describes. Actually, it would be clearer if this field
were a symbol table entry instead of being a VC. But such an entry might be a pSymNode or
a pTmpNode, and using a VC avoids the need to make a disjunction of non-dtb types.

charlen a VC holding the length of a character type symbol.

lbound An array from [1..irank] of declared lower bounds.

ubound Same for upper bounds.

pntsym A pSymNode holding the name of the replicated temporary used to copy the array into when
it is used in a punted construction.

nmltmp A pSymNode holding the name of the processor 0 temporary into which the array is copied
for I/O purposes if the array is part of a NAMELIST; otherwise this field is NULL.

base Holds the local stack base of the array in the NUMA compiler (see page 228) if this array is
allocated on the numa stack.

extent Holds the extent field for this array in the NUMA compiler (see page 228) if this array is
allocated on the numa stack.

2This is not the only way such an allocation could be handled. But the language seems to be silent on this issue,
and what is described here is the choice we have made in our implementation.
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The file dtb/master/occurrence.ldo contains an extension to this dope structure, adding the
following four fields:

subspaces A table of data subspaces (see page 51).

complete The completion structure (see page 52).

replicated The replication structure (see page 52).

cells The cell structure. This field exists only if the dope describes a symbol naming a template
(see Section 4.5.7, page 53).

The fields lbound and ubound are sometimes referred to as global dope. The num folds field of a
subspace entry (see page 50) is referred to as local dope; it represents the local extent of a global
array.

4.3.1 Symbol table dope processing

Here we give a synopsis of the way in which (symbol table) dope information is processed. All this
information is also repeated in the appropriate sections of this report which deal with individual
Transform components.

Dope information for an array is managed in several different ways, depending on the attributes of
the array. There are three different cases to consider:

arrays in the source code that are not assumed-shape

assumed-shape arrays These are by definition dummy arguments.

compiler-generated stack allocatable arrays Compiler generated temporary arrays are all stack
allocatable. They are used in supporting array-valued functions (see Section 7.3), in removing
strip mining obstacles, in handling copy-in/copy-out of arguments at subroutine calls, as well
as in many other places.

For all arrays, the Front End fills in dimension information attached to the symbol table entry for
that array. (For assumed-shape arrays, the extent field is made NULL; subsequent compiler phases
retrieve information from the corresponding dope vector.)

For arrays in the source code that are not assumed-shape, LOWER converts the dimension infor-
mation into global dope. For all assumed-shape arrays, LOWER inserts into the global dope fields
expressions referring to fields in the dope vector. (See Section 7.5.8, page 84.)

For compiler-generated stack allocatable arrays, global dope is filled in by Transform at the point
of allocation.

For all arrays, DATA uses global dope together with distribution information about arrays to com-
pute local dope, and fills in those local dope fields. (See Section 6.3, item 2, page 72.)

For all arrays, DTR2CIR changes the dimension information attached to their symbol table entries
to reflect the local dope. This is because after Transform, all arrays in the compiler are really local,
and need to be seen in terms of their local size. (see Section 5.2, page 60.)
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4.4 The dependence graph

The dependence graph consists of (directed) arcs between dotree nodes. Each arc is characterized
as a true, anti, input, or output dependence, and each arc has associated with it a direction vector
and a distance vector. Only plausible dependences (that is, dependences whose direction vectors
are lexicographically non-negative) are represented as arcs.

4.5 Data and iteration spaces

Data and iteration spaces are the data structures which enable Transform to manage parallel data
and parallel computations. A general introduction to these data structures can be found in the
paper [14]. Some more details are given here; but most of the details in the paper are not repeated.

The access functions for the data structures described here are generated by dtb from an ldo de-
scription in the file dtb/master/occurrence.ldo.

4.5.1 Cells

Cells give a representation of the coordinates of a virtual processor space. The cells representing a
particular virtual processor space are given some numbering, say from j = 1 to j = n, where n is
the dimension of the virtual processor space. (This would be the dimension of the template if the
virtual processor space was defined by a TEMPLATE directive.)

Every cell has the following attributes:

dist The name of the distribution map from that cell to a dimension of the logical processor space.
Possible values for dist are:

dist block

dist cyclic

dist serial

dist block and dist cyclic in turn have a size attribute corresponding to the parameter
n in a block(n) or cyclic(n) directive.

strip len The strip length of the cell. Referred to in this report as strip lengthj .

multiplier The multiplier of the cell. Referred to in this report as multiplierj . The strip length
and multiplier together constitute what is referred to in [14] as the cell place.

v bar A privatized variable holding the coordinate in the jth dimension of the logical processor
space of the processor returned by my processor(). Thus, this field is an expression involving
my processor(). This is what is denoted in this report by v̄j .

(Note that the subscript j used in this report is not explicitly represented in these elements of the
data structure, because j is just a way of distinguishing between different dimensions of the virtual
processor space, which are here distinguished by the different cells.)
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The value returned by my processor() (that is, the address of the processor itself) is denoted by v̄.
Except for the distribution map, these attributes are related as follows:

1. The product of the strip lengths of the cells in each logical processor space must equal the
number of processors.

2. Strip lengths and multipliers are related by

multipliern =
n−1∏
j=1

strip lengthj .

In particular, multiplier1 = 1. Equivalently, of course, multiplier can be computed recursively
by first setting multiplier1 = 1, and then successively calculating

multipliern = strip lengthn−1 ∗multipliern−1.

3.

v̄ =
∑

v̄j ∗multiplierj

where the sum is taken over all the cells in the logical processor space. To go the other way,
we have

v̄j =
⌊

v̄

multiplierj

⌋
mod strip lengthj

(All numbers involved are non-negative.) Note that v̄j is 0-based.

4.5.2 Subspaces

Data and iteration spaces are products of subspaces. Each subspace has the following attributes:

alloc stride The allocation stride. alloc stride in this report.

alloc offset The allocation offset. alloc offset in this report.

The alloc stride and alloc offset together constitute the data allocation function or iteration
allocation function mapping a dimension of the data space to a corresponding dimension of
the virtual processor space.

cell The cell representing the subspace of the virtual processor space which the data or iteration
space is mapped to by its allocation function.

num folds This represents the number of foldings (or the “multiplicity”) of this cell when it is
folded onto a dimension of the logical processor space by the distribution map.
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4.5.3 Data spaces and maps

A data space is associated with each data object. Since the data space is declarative, it is attached
(as a dtb attribute) to the dope for that object. Specifically, there is an attribute subspaces on the
dope for each object which represents the table of data subspaces for that object.

The subspaces may be used in different ways, however, and this will vary from occurrence to occur-
rence in the source text. (The use of a data subspace refers to the kind of subscript that occurs in
that place in the array reference.) Hence attached to each VCarrayref in the dotree is a table of
subspace uses (a subspace use is represented in the ldo description as SSp_use) which is parallel to
the table of data subspaces for the array. The different kinds of data subspace uses are:

primary The subscript is either

• A Fortran TRIPLE, or
• An affine function of a single iteration space index, with the additional restriction that

(calling the iteration space index i), this is the first subscript (going left to right through
the subscript list of the array reference) which is an affine function of i.
Thus, in the example

forall (i = 1:N)
A(2∗i−3, 3∗i+2) = . . .

the subspace corresponding to the first subscript (2∗i−3) is primary,while that corresponding to the
second subscript (3∗i+2) is complex (see below).

Each primary use in turn has two integer-valued attributes:

index The number of the associated iteration space index.
correspond For data space uses, this is the index into the iteration subspace table (see below)

of the corresponding iteration subspace (i.e. the iteration subspace coming from the same
iteration space index). For iteration space uses, this is the inverse map, i.e., the index in
the data subspace table of the corresponding data subspace.

scalar The subscript involves neither TRIPLEs nor iteration space indexes, and is therefore con-
stant over the iteration space. There are actually two kinds of scalar uses:

local scalar The subscript must be computable locally on each processor. If the subscript is
a constant, or if it is a replicated or privatized variable which is not an iteration space
index, then the use is local scalar. In particular, a subscript which is a function of a DO
loop index creates a local scalar use.

complex scalar The subscript is constant over the iteration space but is not a priori com-
putable locally.

For example, in the array reference A(M, V (N)), where M and N are not indexes of the
iteration space, the subscript M is a local scalar subscript, while V (N) is a complex scalar
subscript.

complex The subscript is of any other form. For example, the subspace for A(V (:)) has a complex
use, as does the subspace for A(i + j) where i and j are both FORALL indexes.

The purpose of characterizing subspaces by their uses is to help in determining where data motion
may be required.
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4.5.4 Mapping data space to virtual processor space

The data allocation functions determine how data space is mapped to virtual processor space with
the exception of two pieces of information:

1. The map may not be onto.

2. The map may be 1-to-many.

To handle the fact that the map may not be onto, a completion structure, denoted by complete,
is attached to the dope for each data object. This structure consists of two parallel tables, one of
which is a table of subspaces and the other one of which is a corresponding table of values.

Let us refer to the subspaces described in the previous section of this report as regular subspaces.

A completion subspace of an array A is not a regular data subspace of A (although it always comes
from a template or another array with which A is aligned). But one can think of it as an “invisible”
extension to the data space for A with scalar subscript given by the corresponding entry in the value
table mentioned above. This value is mapped by the data allocation function of the completion
subspace to the cell (called a completion cell) (also determined by that subspace) representing a
dimension of the virtual processor space which is not mapped into. In this way, a constant value for
the address in that virtual processor space dimension is arrived at. (Typically, the constant value
is 0.)

To handle the fact that the map from data space to virtual processor space may be 1-to-many, a
replicated attribute is also associated with the dope for each data object. This attribute specifies
a table of cells (called replicated cells).. Each replicated cell represents a dimension of the virtual
processor space over which the data object is replicated.

For such cells, the dist (i.e. distribution) attribute is ignored.

As a matter of nomenclature, the complete set of data subspaces, completion structure, and repli-
cated structure is sometimes called the data space structure or data space information. When we
are using the data space information that refers specifically to the data virtual processor space, we
sometimes call it the data VP space. Similar terms apply to iteration space data structures.

4.5.5 Mapping virtual processor space to logical processor space

The coordinatewise mapping of dimensions of the virtual processor space to corresponding dimen-
sions of the logical processor space is determined by the distribution associated with each dimension.
Since each virtual processor dimension (with the exception of those which are replicated dimensions)
is associated with a data subspace, for which the distribution is given, we have all the information
at hand to compute these maps, with one exception: for BLOCK distributions, we need to know
the block size. This may be specified in the directive (via the BLOCK(n) syntax), or it may be
computed (as will be explained below in Section 6.4, page 73). The value is stored in the attribute
num folds of each data subspace.

4.5.6 Iteration spaces and maps

With the exception of the subspace uses, the data spaces and maps are all declarative and therefore
can be attached to the symbol table dope information for each data object. The iteration spaces



4.5. DATA AND ITERATION SPACES 53

and maps, however, may differ at each computational node in the program.

Therefore, to each VC in the dotree is attached an attribute ispace of dtb type iter space. An
iter space in turn has four attributes:

spaces The table of iteration subspaces. Each iteration subspace has all the attributes of a data
subspace enumerated above (i.e. dist, strip length, multiplier, and v bar), and in addi-
tion has the following attributes:

lower The iteration lower bound.

upper The iteration upper bound.

stride The iteration stride.

These three attributes are derived from the TRIPLE or the FORALL bounds for the corre-
sponding iteration indexes. (Note that the corresponding data bounds are simply the declared
lower and upper bounds, and are already present in the dope for the data object, so these
attributes are not needed for data subspaces.)

complete The completion structure.

replicated The table of replicated cells in the virtual processor space.

uses A table of subspace uses, parallel to the subspace table given by the spaces attribute. Actu-
ally, all iteration subspaces in this list by definition have primary uses. The uses are included
because the primary use is tagged with the index and correspond attributes (see above).

In addition, each VCarrayref has an attribute refspace, also of dtb type iter space. For any array
reference not of a derived type, the refspace is the same as the ispace. The refspace attached
to an array reference that is a structure-component reflects only the mapping of that component
and not of any other components of the structure. For instance, the reference A(i)%B(j) has three
iteration spaces associated with it:

• The ispace of the expression A(i)%B(j).

• The refspace of A(i).

• The refspace of B(j).

4.5.7 Templates

Template names are entered into the symbol table. Like declared arrays, they have dope attached
to them which specifies their declared bounds. Attached to this dope (only in the case of templates)
is also an attribute cells representing a table of cells which make up the virtual processor space
named by the template.



54 CHAPTER 4. THE TRANSFORM DATA STRUCTURES

4.6 Dope vectors

Dope vectors are not really part of the Transform data structures, but we include their description
here, both for completeness, and also because Transform has to make sure that it leaves information
in the internal representation of the program in such a form that the Middle End can create dope
vectors correctly.

Dope vectors can be thought of as having four sections:

F90 ARRAY SECTION This section contains “normal” dope vector information, which would
need to be included even without the HPF extensions to the language. The size information
included in this section is all local size information, suitable for use by a scalar Fortran compiler
back end. This section includes the following fields (among others):

rank The number of dimensions of the dummy array.

dtype A data type code.

length Maximum length of a single dummy array element.

arrsize The number of elements in the dummy.

pointer The base address of the dummy.

info This is a table, with successive elements corresponding to successive dimensions of the
dummy. Each element contains the following fields, which are used in generating a single
address in a processor’s linear memory from the collection of the dummy’s subscripts.

inter element spacing See the example on page 33 for the use of this field.
upper bound

lower bound

In a single-processor or explicit SPMD routine (e.g. an HPF LOCAL routine), the
upper_bound and lower_bound fields hold the values returned by the UBOUND and
LBOUND intrinsics.

HPF ARRAY SECTION This section contains global information about arrays. For each di-
mension of the dummy, it contains the following fields:

lower bound The lower bound of the global HPF actual array argument associated with the
dummy.

upper bound The upper bound of the global HPF actual array argument associated with the
dummy.

In a global routine, the regular dope lbound and ubound arrays (for an array with a dope
vector) contain fetches of the elements in these arrays. The values in these fields are what are
ultimately retrieved (after some semantic checking) by the LBOUND and UBOUND intrinsics.

In an HPF LOCAL routine, these arrays contain the values returned by the GLOBAL BOUNDS
inquiry subroutine.

ALIGN SECTION This section contains information about the alignment of the global HPF
actual array argument associated with the dummy. For each dimension of the dummy, it
contains the following fields:

alloc offset The alloc offset.
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alloc stride The alloc stride.
templ index The corresponding template dimension. 0 for collapsed dimensions.

TEMPLATE SECTION This section contains information about the distribution of the global
HPF actual array argument associated with the dummy. It contains a field

rank The template rank; not always the same as the dummy’s rank.

and for each dimension of the template, it contains the following fields:

templ lo bound Declared lower bound of template with which the global actual argument is
aligned.

templ hi bound Declared upper bound of that template.
strip length The extent of the logical processor array in this dimension. Comes from the

PROCESSORS directive.
num folds The size of this dimension in the logical memory space. Computed as in Section 6.4.
dist Block, cyclic, or replicated.
axis kind Normal (primary use), single (scalar use), or replicated.
align index Corresponding dimension in the ALIGN SECTION. 0 if axis kind is single or

replicated.
cyclic size n if the distribution of this dimension is CYCLIC(n); else 0.
scal exp Scalar value if axis kind is single; else garbage.

Accesses to symbol table dope information and alignment and distribution information for dummies
which inherit this information via dope vectors are turned transparently in the compiler into accesses
to the appropriate fields of the dope vector for that dummy. This happens in LOWER (Section 7.5.8,
page 84.)

4.6.1 Dope vector processing

Dope vectors are needed to support the following constructions:

• to support parameters passed assumed-shape. Such dope vectors are filled in by the caller at
the call site.

• to support compiler generated stack allocatable temporary arrays. Such dope vectors are filled
in on allocation of these temporaries.

• to support allocatable arrays and pointers. Such dope vectors are filled in as arrays are
allocated, and whenever a pointer assignment takes place.

Dope vectors are filled in as follows:

In the first two cases, the Middle End fills in the dope vector. It fills in the F90 section from
symbol table information. For mapped actuals, this symbol table information has been modi-
fied by DTR2CIR to reflect localized sizes (see pages 48 and 60). The rest of the dope vector is
filled in by the use of functions that the Middle End calls which use Transform utilities to access
the symbol table dope information to get global dope. These utilities are contained in the file
dtr/master/dtr_hpf_dv.c.

In the third case, Transform fills in the entire dope vector.
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Conversion Between CIR and
Dotree Formats

We now describe the separate phases of Transform. This chapter describes the two filters at the
beginning and end of Transform.

5.1 CIR2DTR

Most of the processing here is straightforward data structure translation. Some points should be
noted:

• Sometimes in the CIR small compiler-generated integers are represented as VALTOK nodes.
CIR2DTR converts these nodes to CONTOK nodes for uniformity and ease of handling by
later phases of Transform.

• Non-structured DO loops are identified by scanning for explicit flow of control statements and
computing for each statement in the program its list of predecessors and successors. DO loops
which are identified as having abnormal exits become dt_loop nodes in the dotree; all other
DO loops become dt_do_loop nodes.

• Entry and exit nodes are identified. Entry nodes are nodes at the statement level coming from
the ENTRY keyword. Exit nodes are nodes at the statement level representing RETURN,
STOP, or END.

Entry nodes become dt_entry nodes in the dotree, and exit nodes become dt_exit nodes in
the dotree. The collection of entries and exits is also placed under the dt_root node.

Between each ENTRY statement in the CIR and the next following opLINE operator may be
a sequence of “preamble” statements. CIR2DTR collects these statements and moves them
to the preamble child of the corresponding dt_entry node.

• Intrinsic functions in the CIR are represented as binary opIFUNC nodes (or opIFUNCEL,
if the function is an elemental intrinsic). The first child of such a node is an opSYMTOK
representing the name of the function. The second child is an opLIST holding the list of
actual arguments to the function.

56
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opIFUNC

opSYMTOK opLIST

CIR2DTR eliminates the opIFUNC or opIFUNCEL node and replaces it by the dotree node
corresponding to the actual intrinsic function. For example, if the opSYMTOK represented
the intrinsic function SUM, then the CIR structure would be replaced by a vaSUM node whose
children are the (dotree equivalents of the) arguments in the argument list of the opIFUNC
node.

• OMP directives are turned into dt_region nodes in the dotree.

5.1.1 Translation of array expressions

Consider the following program fragment:

dimension A(20, 20)

A( : , : ) = . . .

The CIR for this statement is shown in Figure 5.1. In this figure, the nodes are identified by their
operator names. Each operator name is really prefixed by “op”, so the actual operator names are
the CIR operator names opARCS, opVARRAY, etc. The node “A” is really an opSYMTOK whose
symbol table entry is that of the array A; and the literal numbers are opCONTOK nodes.

STORE

. . .ARCS

VARRAY

“A” LIST

COLON

COLON

1 20

1

LIST

COLON

COLON

1 20

1

(NULL)

SZLCON

LIST

20 20

Figure 5.1: CIR for A( : , : ) = . . .

Note the way the ternary triple expressions 1 :20 :1 are represented in terms of binary opCOLON
operators; and similarly, lists are represented in terms of binary opLIST operators. opARCS refers
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to an array cross section, and opSZLCON refers to a constant size list. The SZLCON nodes are
attached to nodes representing array expressions where appropriate to aid semantic analysis in
verifying argument compatibility and shape conformance in expressions.

After CIR2DTR, the statement looks like Figure 5.2. In such figures, a table of subscripts with
more than one element is enclosed in a dotted box for clarity.

vSTORE

. . .ARCS

vARRAY

“A” TRIPLE

1 20 1

TRIPLE

1 20 1

Figure 5.2: A( : , : ) = . . . after CIR2DTR

Again, the nodes are identified by their operator names, but here the names in the figure are prefixed
by “va”, so the real names are vavSTORE, vaARCS, vavARRAY, etc. The convention for these
value computations is that a small initial “v” (after the initial “va”) denotes a vector operator; thus
vavPLUS refers to the addition of two vector expressions, whereas vaPLUS would refer to a scalar
addition. In this figure, vavSTORE and vavARRAY have this form.

The second child of a vARRAY node is now a table whose two elements are the two triples.

In addition, the SZLCON nodes are thrown away, and ARCS nodes now have one operand, rather
than two.

The CIR for the right-hand side of the following expression

dimension B(20, 20, 20), C(20)

· · · = B(3, : , 1) + C

is shown in Figure 5.3. AREX is a node which is used in the CIR to cover an array expression.

The dotree for this expression after CIR2DTR is shown in Figure 5.4. The (NIL) nodes in this figure
are intended to be place holders for context or mask nodes which will later be added in these places,
based on any enclosing WHERE statement. (In particular, they are not the residues of SZLCON
nodes.)

5.1.2 Translation of FORALL statements

The CIR for a typical FORALL statement
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AREX

PLUS

VFETCH

ARCS

VARRAY

“B” LIST

3 LIST

COLON

COLON

1 20

1

LIST

1 (NULL)

SZLCON

20

SZLCON

20

VFETCH

ARCS

“C” SZLCON

20

SZLCON

20

SZLCON

20

Figure 5.3: CIR for B(3, : , 1) + C

dimension A(20, 20), C(20)

forall (I = 1:10, J = 3:17) A(I, J) = C(I+J)

is shown in Figure 5.5. The first child of the FORALL node is the FORINDXS node. This node has
two children. The first is a list of forall indexes and their bounds, and the second is the optional
mask. In this case, there is no mask in the source, so that child is NULL. The second child of the
FORALL node is the assignment statement. Within this statement, each forall index is represented
by an FAINDEX node. The first child of each FAINDEX node is the SYMTOK holding the name of
the forall index, the second child is the order in which that index appears in the FORALL header,
and the third child is the triple, also derived from the FORALL header. In this figure, the third
children are indicated as being dagged nodes—〈1〉 refers to the COLON〈1〉 node, and so on.

Figure 5.6 shows the same FORALL statement after it has been processed by CIR2DTR. The left
and right-hand sides of the assignment statement are now the second and third children of the
vaFORALL node. None of the nodes are dagged. The subscripts of the array A now form a table
consisting of two FAINDEX nodes. The subscript of the array C is a table consisting of one PLUS
node.

5.1.3 Function return values

We will use the program in Figure 5.7 as a running example that will be referred to later in
this document. After semantic analysis—and this is not changed in any significant respect by



60 CHAPTER 5. CONVERSION BETWEEN CIR AND DOTREE FORMATS

AREX

vPLUS

vFETCH

ARCS

vARRAY

“B” 3

TRIPLE

1 20 1

1

(NIL)

vFETCH

ARCS

“C” (NIL)

(NIL)

(NIL)

(NIL)

Figure 5.4: B(3, : , 1) + C after CIR2DTR

CIR2DTR—the essential parts of the representation of this program in the dump is shown in
Figure 5.8. If no result variable was declared in the program, the front end would create a result
variable named array_func_0, and this is the variable that would appear in the symbol table, and
which would be assigned to in the executable code.

One thing to keep in mind about this example is that the actual a is mapped differently than the
dummy d. This is not reflected in the processing after CIR2DTR, but it will be taken account of
later, in ARG.

5.2 DTR2CIR

Again, this is fairly straightforward translation. The following is worth noting:

• If the programmer has redefined an intrinsic function which Transform has used (such as
ABS, for instance), then the single name “ABS” will stand for two separate notions after
Transform. To handle this correctly, the name entry “ABS” in the symbol table will have
a chain of symbol table entries attached to it, each entry with a different kind field (user
function, intrinsic function, etc.). This chain of entries is set up by DTR2CIR and suffices to
disambiguate the references to ABS.

• Localized size information from the dope attached to each symbol is used to reset the dimension
information in each symbol table entry. This is done in a way such that all arrays now appear
as being 0-based in each dimension.
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program af
integer s
integer, dimension(5) :: a
!hpf$ distribute(cyclic) :: a

. . .

s = sum(array func(a, scalar func(3)))

. . .

contains
function array func(d, n) result(array func result)

integer n
integer, dimension(:) :: d
integer array func(d(n))

. . .

array func result = d(1 :n)

. . .

end function array func

function scalar func(k)
integer k

integer scalar func

. . .

end function scalar func

end program af

Figure 5.7: A function (array func) with a return value specified.

This information is used by later phases of the compiler to generate array addressing and dope
vectors. (See Section 4.3.1, page 48.)

This is the one operation in Transform which is not done on an individual scoping unit basis.
This is because the Transform phases expect global dimension information as input. So if
DTR2CIR changed this information on a symbol in one scoping unit which was then used
in another, that use would receive inaccurate global information. Therefore, this processing
occurs once for each program unit, after all its contained scoping units have been processed
by Transform.

This operation is suppressed for symbols which have the PUNT attribute. (See Section 3.5,
page 20.)

• vaNEWSCOPE/vaENDSCOPE pairs are replaced by the construct
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program af:

s = sum(LFUNC(array_func,
(argpos(1, a),
argpos(2, LFUNC(scalar_func,

(argpos(1, 3))
)

)
)
)

)

function array_func:

DT_ENTRY
PREAMBLE
@1 = n
@2 = d(@1)

array_func_result = d(1:n)

symbol table entries:

."ARRAY_FUNC_RESULT"
...
Dimen: [

FETCH-i4#8(t-*i4#30:"@2")]
...

Figure 5.8: Significant parts of the dump after CIR2DTR for the program in Figure 5.7. Symbols
beginning with @ are compiler-generated temporaries.

opNEWSCOPE

opLIST

. . .

where the children of the opLIST node are the CIR translations of the dotree nodes between
the vaNEWSCOPE and vaENDSCOPE nodes.
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DATA

The DATA phase does not modify the dotree. It walks the symbol table and creates a dope structure
for each data object, based on information contained in the HPF data distrubution directives. It
fills in the size fields in the dope structure from the symbol table size information created by the
front end. This chapter describes some of the details of this processing.

6.1 Processing HPF directives

DATA walks through all the HPF directives in a scoping unit and processes all the information
in them, attaching that information to symbols in the program. Any symbol for which mapping
information is not available, or is only partially available, is given default mapping information at
this point as well.

The data structures filled in by this processing are mostly specified in the file dtb/master/directive.ldo,
and are attached to the symbol table entries as specified in cir/master/cir_tables.h.

This is what happens for each kind of directive:

PROCESSORS The symbol table entry for the name specified in this directive has an associated
processors_dir structure. This structure is composed of two parallel tables:

slen This table is filled in with the expressions representing the extents specified in the
directive. These correspond to what this report refers to as strip lengths.

mults This table is left empty by DATA, but is later filled in with the multipliers corresponding
to the successive dimensions of the processor array.

TEMPLATE A template is treated as a named array in that it has dope associated with its symbol
table entry; the dope contains the specified bounds.

ALIGN The symbol table entry for the array being aligned has an associated align_dir structure.
This structure has the following fields:

template name The pSymNode representing the template with which the array is aligned.

alignee dims A table having one entry for each dimension of the array.

65
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template dims A table having one entry for each left-over dimension of the template.

For instance, the directives

!hpf$ template t(n, n, n)
real a(n, n)

!hpf$ align a(l, ∗) with t(l, 5, ∗)
lead to an alignee dims table having two entries (one for l and one for ∗) and a template dims

table having two entries (one for each of the two template dimensions not corresponding to
an array dimension).

The alignee dims table consists of alignee dim entries. Each such entry has three fields:

stride The stride from the ALIGN directive.

offset The offset from the ALIGN directive.

index The index into the table of template dimensions. This field maps array dimensions to
template (i.e., virtual processor array) dimensions. 0 in this field represents a serially
aligned array dimension (as in the second dimension of a in the example above).

The default mapping for an array makes the stride 1 and adjusts the offset so that the first
element of the array is at virtual processor 0 (i.e., template position 0).

The template dims table consists of template dim entries. Each such entry has two fields:

index The index into the table of template dimensions.

scalar expr The expression in the template for that dimension, if the expression is other
than “∗”. In the example above, this field would hold the constant 5 for the template
dimension of index 2, and would hold 〈nil〉 for the template dimension of index 3.

DISTRIBUTE Each template has associated with its symbol table entry a distribute dir struc-
ture, containing the following fields:

onto Holds the pSymNode for the processor array onto which the template is being distributed.

kinds A table of dist kind entries. Each such entry is one of the following:

dist block

dist cyclic

dist serial

dist unspec

Each dist kind has an extent attribute, which gives the extent of the associated tem-
plate dimension.

dist block and dist cyclic also have a size attribute which specifies the optional
parameter given in the source BLOCK(n) or CYCLIC(n) directive.
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6.2 Creating data subspaces

1. For each PROCESSORS directive, fill in the mults table (see page 65) under the processors dir
structure recursively, by setting

multiplier1 = 1

and then successively calculating

multipliern = strip lengthn−1 ∗multipliern−1.

2. If the number of processors is a compile-time constant, factor it into primes. Use the list of
sorted primes to create a triangular table of striplengths for use when a template has not been
distributed over a processor array. If, for instance, the number of processors is 60 = 2∗2∗3∗5,
the triangular table will look like the table in Figure 6.1. The nth row in the table specifies
the default strip lengths for a template of dimension n.

60

6 10

4 3 5

2

2

2

2

2

2

2

2

3

3

3

3

5

5

5

5

1

1

1

1

1 1

Figure 6.1: Table of Default Strip Lengths for 60 Processors

The following algorithm can be used to construct this table. The algorithm is entered at
MAIN, and it fills in the array which could be declared as

table: array[1..7, 1..7] of integer;

The algorithm tries to find the factors of the number of processors which are most nearly
equal in each row. (Of course, there is no guarantee that this will be the optimal choice for
the algorithm. The programmer should really specify this choice by a PROCESSORS directive
to be sure of getting the best performance.) The only way to get the best such set of factors
would be to perform an exhaustive search; this algorithm provides a somewhat greedy but
reasonable approximation. In particular, if there is a solution with all the factors equal, this
algorithm will find it.

The global variables used in this algorithm have the following significance:

P The number of processors.



68 CHAPTER 6. DATA

n The number of prime factors of P . n is made to be at least as large as 7 by adding additional
“factors” if necessary. Each such additional “factor” has the value P +1. The value P +1
is chosen just large enough so that the tests in the algorithm will prevent it from being
included as an actual factor. These additional large phony factors, which allow us to
make n ≥ 7, trick the algorithm into allowing additional factors of 1 to be included as
entries in the table in case there are not enough prime factors of P , as in the last three
lines of the table in the example above.

GOAL What each strip length in a given row would be if they were all equal. GOAL is a real
number; all the other variables in this algorithm are integers.

A An array of booleans indicating which of the prime factors of P have already been used in
processing previous entries of the current row of the table.

TOTAL The number of prime factors of P which have already been used by previous entries
in this row of the table. Equals the number of TRUE elements of A.

M The current best guess for the table entry we are looking for. (See below for how M is
used.)

In this algorithm, i runs over the rows of table[ ], and j runs over the elements in each row.
Since we only fill in the lower diagonal elements of the table, j runs from 1 to i.

For each row of the table,

• The variable GOAL is recalculated.

• The variable TOTAL is reset to 0.

• Each entry of the array A is reset to FALSE.

For each element of each row,

• The array B of booleans is initialized to FALSE. B will be used to specify a subset of
available prime factors which have not been used (i.e. which are not represented as TRUE
in A). The number of primes represented in B is maintained in the local variable kk.

• The array C of booleans is initialized to FALSE, and the integer M is initialized to 1. For
each subset of available primes, represented by B, the product of those primes (denoted
by factor) is computed. The factor which is closest to GOAL is stored in M , and the set
B which corresponds to it is stored in C.

• When this processing is done, M is inserted into the table in position [i, j], and the primes
represented in C are added to those represented in A.

In principle, every subset of the n primes is processed. However, the processing breaks off as
soon as the product of those primes is found to be greater than or equal to GOAL. (That is,
no larger subsets are processed.)
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procedure SAVE(B, factor, kk)

begin
if (TOTAL + kk ≥ n− i + j) then

return;
-- The purpose of this test is to insure that there is at least one prime factor available

for each dimension. For instance, if there are 68 = 2 ∗ 2 ∗ 17 processors, then with
this test, the third row of the table becomes (2, 2, 17); without the test it becomes
(4, 17, 1).

if (|factor−GOAL| < |M −GOAL|) or
(M = 1 and factor ≤ P ) then begin

M ← factor;
C ← B;

end if
-- Without the second part of this if test, the factor 17 in the example in the comment

above would never get included.
end

procedure SEARCH(B: array[1..n] of integer; k, kk, factor: integer)
-- k holds a position in the list of possible primes
-- kk holds the number of primes used so far for this (i,j) entry

begin
if k > n then return;
while (A(k) and (k < n)) do

k← k + 1;
call SEARCH(B, k + 1, kk, factor);
nextfactor← factor ∗ pk;
if nextfactor ≥ GOAL then

begin
call SAVE(B, factor, kk);
B(k)← TRUE;
kk← kk + 1;
call SAVE(B, nextfactor, kk);
end

else
begin
B(k)← TRUE;
kk← kk + 1;
call SEARCH(B, k + 1, kk, nextfactor);
end

end
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procedure PRE-ANALYZE

begin
Denote the number of processors by P . Sort the prime factors of P into an increasing

sequence p1p2 . . . pn. Insure that n ≥ 7 by appending additional “prime” factors of
P + 1 as needed.

Allocate the following global variables:
GOAL: real;
TOTAL, M , i, j, l: integer;
A, B, C: array[1..n] of boolean;

end
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procedure MAIN

begin
call PRE-ANALYZE;
for i = 1 to 7 do begin

-- do row i
GOAL← P 1/i;
TOTAL← 0;
A[1..n]← FALSE;
for j = 1 to i do begin

-- do j’th entry in row i
B[1..n]← FALSE;
C[1..n]← FALSE;
M ← 1;
call SEARCH(B, 1, 0, 1);
-- Merge C into A:
for l = 1 to n do begin

if C[i] then begin
A[i]← TRUE;
TOTAL← TOTAL + 1;

end if
end for
table[i, j]←M ;

end for
end for

end

3. For each TEMPLATE directive, fill in the fields of the cells entries (see page 53) of the dope
attached to the symbol table entry for the template name, as follows:
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begin
if there is a DISTRIBUTION directive for this template then

Fill in the dist field from the DISTRIBUTION directive.
if the DISTRIBUTION directive specifies a processors array then

Fill in the strip len and multiplier fields from the slen and mults fields of the
processors dir.

else If the number of processors is a compile-time constant, fill in the strip len fields
from the default strip length table constructed above, and compute the multipliers
in the same way as they were computed for processor arrays above. If the number
of processors is not a compile-time constant, give the first dimension of the template
all the processors, and give all the other template dimensions a strip length of 1.

end if
else Give the template the default distribution. If the number of processors is a compile-time

constant, fill in the strip len fields from the default strip length table, and compute
the multipliers as above. If the number of processors is not a compile-time constant, give
the first dimension of the template all the processors, and give all the other template
dimensions a strip length of 1.

end if
end

4. For each symbol

begin
if there is an ALIGN directive for this symbol (i.e., if the associated align dir is not empty;

see page 65) then
Fill in the subspaces, complete, and replicated tables of the dope for that symbol:

The subspaces are filled in from the alignee dims. The associated data allocation
functions come from the stride and offset fields of those alignee dims.

The complete table (i.e., the completion structure) is filled in from the template dims
having non-nil scalar expr.

The replicated table is filled in from the template dims having a nil scalar expr.
else

Give the symbol the default allocation.
end if

end

6.3 Other functions

1. By inspecting the subscript expressions for each VCarrayref node in the dotree, fill in its uses
table (see page 51).

2. For all arrays, fill in the num folds fields of each data subspace, as described in the next
section. This corresponds to local dope, as described above in Section 4.3.1, page 48. (There
are no iteration subspaces as yet; as they are created, in ITER, their num folds fields will be
filled in as well.)

3. For each array which will be allocated statically, fill in the size field in the symbol table entry
for that array with the product of the num folds expressions for the dimensions of the array.
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6.4 Calculating the num folds of a data subspace

For each array symbol, we fill in the num folds of its data subspaces, as follows:

We denote the number of folds in the jth dimension (which is the contribution to the memory depth
of the array in the jth dimension) by num foldsj . Of course, num foldsj will be a run-time variable
unless the size of the array1 is known at compile time. In any case, its value is available to every
processor (and is the same for every processor). It is computed as follows:

Let fj denote the data allocation function for the subspace corresponding to the jth dimension of
A. Equivalently, if sj is the jth subscript of A, then

vj = fj(s) = alloc stridej ∗ sj + alloc offsetj .

fj is normalized so that it generates 0-based results. (This just means that the partial virtual
addresses vj are each 0-based.)

Let DLBj and DUBj refer to the declared lower and upper bounds in dimension j, respectively.

Let Tj denote the (declared) template extent in the jth dimension. (Tj is only needed in the case
of BLOCK distribution.)

In the case of BLOCK(n) or CYCLIC(n) distribution, let nj denote n, the (declared) block size in
the jth dimension. That is, nj is the parameter appearing after the keyword BLOCK or CYCLIC,
as BLOCK(nj) or CYCLIC(nj).

In the following formulas, we use “normalized” lower and upper bounds, defined as follows:

NLBj =

{
DLBj if fj ↑
DUBj if fj ↓

NUBj =

{
DUBj if fj ↑
DLBj if fj ↓

Defined in this way, we have fj(NUBj) ≥ fj(NLBj), unless the array is a 0-sized array.

SERIAL distribution

num foldsj = max{0, fj(NUBj)− fj(NLBj) + 1}

BLOCK distribution

num foldsj =
⌈

Tj

strip lengthj

⌉

BLOCK(n) distribution
num foldsj = nj

1in the case of BLOCK distribution, the size of the corresponding template.
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NOTE: once num folds has been computed, there is no difference between BLOCK and
BLOCK(n) distributions. So from here on in this report, BLOCK(n) distributions will not be
considered separately.

CYCLIC distribution

num foldsj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if DUBj < DLBj That is, if the
array is 0-sized

⌊
fj(NUBj)

strip lengthj

⌋
−
⌊

fj(NLBj)
strip lengthj

⌋
+ 1 otherwise

CYCLIC(n) distribution

num foldsj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
if DUBj < DLBj

That is, if the ar-
ray is 0-sized

nj ∗
(⌊

fj(NUBj)
nj ∗ strip lengthj

⌋
−
⌊

fj(NLBj)
nj ∗ strip lengthj

⌋
+ 1
)

otherwise

We formerly optimized this so that if, for instance, the programmer declared an array to
be distributed CYCLIC(1000) but the array only had 3 elements, we would only allocate 3
elements. This turned out to be more trouble than it was worth, so we eliminated it.

The main problem occurred in parameter passing—the caller might only allocate 3 elements
but the callee might not know the size at compile time and therefore allocate a positive multiple
of 1000, the multiple being determined at run time. If the dummies are passed explicit shape
with the sizes being also passed as dummy arguments, this could result in some of the dummies
being located by the callee in non-existent memory.

Some of our original automatically generated regression tests had small arrays that were
distributed CYCLIC(1000); this is what led us to this attempt at optimization. We now
believe these tests were unrealistic, and have changed them.

Our feeling now is that a user who specifies CYCLIC(1000) has some reason for expecting
at least 1000 elements per processor to be allocated. We will not try to second-guess this
decision.

Note that in the case of SERIAL, CYCLIC, and CYCLIC(n) distributions, num foldsj is based on
the declared lower bound in dimension j, so that, for instance, an array declared as A(1000 : 2000)
will not have space reserved for any values of the subscript less than 1000.

Also note that in the case of BLOCK distribution, num foldsj is based on the template size, not on
the array size. (Of course if there is no explicit template, then the array itself is the template, and
so the array size is also the template size.)

Essentially the same formulas can also be used to compute the number of folds of an iteration
subspace. The following changes have to be made:

• Letting φj denote the iteration allocation function and Sj denote the stride of the iteration
subspace, the formulas for NUB and NLB become somewhat more complex:
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NUBj =

{
UBj if φj ↑ and Sj > 0, or φj ↓ and Sj < 0
LBj if φj ↓ and Sj > 0, or φj ↑ and Sj < 0

NLBj =

{
LBj if φj ↑ and Sj > 0, or φj ↓ and Sj < 0
UBj if φj ↓ and Sj > 0, or φj ↑ and Sj < 0

Thus, φj(UBj) ≥ φj(LBj) unless the iteration subspace is 0-sized.

• The data allocation function fj is replaced consistently by the iteration allocation function
φj .

• The guards for CYCLIC and CYCLIC(n) distributions (that check for a 0 size) are changed
from

DUBj < DLBj

to (
(Sj > 0) ∧ (UBj < LBj)

) ∨ ((Sj < 0) ∧ (UBj > LBj)
)

6.5 Adjusting alloc offset

The computation for num folds in the last section allocates storage, in the case of SERIAL and
CYCLIC distributions, only for the array elements actually specified, and for CYCLIC(n) distri-
butions, only for the blocks actually used. To be consistent about this and to avoid addressing
non-existent memory, the alloc offset part of the data allocation functions have to be adjusted. We
do this as follows:

SERIAL distribution

alloc offsetj ← alloc offsetj − fj(NLBj)

CYCLIC distribution

alloc offsetj ← alloc offsetj −
⌊

fj(NLBj)
strip lengthj

⌋
∗ strip lengthj

CYCLIC(n) distribution

alloc offsetj ← alloc offsetj −
⌊

fj(NLBj)
nj ∗ strip lengthj

⌋
∗ nj ∗ strip lengthj

We refer to this adjustment as “squishing”.
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6.6 Function return values

We continue the running example of section 5.1.3 (page 59). DATA adds the following dope in-
formation (as represented in the dump file) to the symbol table for the function return value ar-
ray func result:

Dope for "ARRAY_FUNC_RESULT", Owner: "ARRAY_FUNC"

Regular Dope:
Irank: 1
Address: "ARRAY_FUNC_RESULT"
Charlen: <NIL>
Dim 1
low: 1
high: FETCH(@2)

all replicated = TRUE
SubSpace Table:
Dim: 1
SubSpace

folds: FETCH(@2)
as: 1
ao: -1
Cell
slen: 1
mult: 1
vbar: 0
Dist: serial, extent: FETCH(@2)

Replicated cells Cell Table:
Dim: 1
Cell

slen: 4
mult: 1
vbar: FETCH("_HPF_MYNODE")
Dist: block, shadow: 0 , extent: 4

Completion

AFuncSizeInfo <null>

AltDopeInfo <null>
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LOWER

7.1 Further lowering of array expressions

LOWER removes ARCS and SZLCON nodes from the dotree. Then it turns each triple node into
a vINDEX node. Since each vINDEX node that comes from a FORALL statement is indexed (see
below) by a positive number referring to the position of the variable it represents in the FORALL
header, we let the index child of these new vINDEX nodes be indexed by the numbers −1, −2,
. . . , where −1 represents the first vTRIPLE in an expression, −2 the second, and so on, so that
conforming dimensions have the same index.

In effect, this amounts to replacing each statement containing Fortran array syntax with an equiv-
alent FORALL statement. Although this replaces a more specialized construct by a more general
one, there is no loss of efficiency in the compiler’s generated code.

In this way, the expression in Figure 5.2 is changed so that it looks like Figure 7.1. As before in
such pictures, a table of subscripts with more than one element is enclosed in a dotted box.

LOWER also inserts triple nodes that are implicit in the CIR, together with their associated vINDEX
nodes, so Figure 5.4 becomes Figure 7.2.

7.2 Lowering of FORALL statements

For FORALL statements which can be executed in parallel, LOWER also turns FAINDEX nodes into
vINDEX nodes. Since a vINDEX node carries all the information about a forall index (including its
bounds), the FORALL header information does not have to be represented separately in the dotree.
Therefore the FORALL node itself is replaced by a VSTORE node. Thus, Figure 5.6 becomes
Figure 7.3.

If a FORALL statement cannot be executed in parallel, LOWER replaces it by the equivalent nest
of DO loops. In any case, after LOWER there are no more FORALL nodes in the dotree.

Either of the following expressions in the body of a FORALL statement causes that FORALL to
be lowered to a nest of sequential DO loops:

• A statement function having a FORALL index in one of its arguments.

77
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vSTORE

. . .vARRAY

“A” vINDEX

-1 TRIPLE

1 20 1

vINDEX

-2 TRIPLE

1 20 1

Figure 7.1: a( : , : ) = . . . after LOWER

vPLUS

vFETCH

vARRAY

“B” 3

vINDEX

-1 TRIPLE

1 20 1

1

〈TRUE〉

vFETCH

vARRAY

“C” vINDEX

-2 TRIPLE

1 20 1

〈TRUE〉

〈TRUE〉

Figure 7.2: B(3, : , 1) + C after LOWER
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vSTORE

vARRAY

“A” vINDEX

1 TRIPLE

1 10 1

vINDEX

2 TRIPLE

3 17 1

vFETCH

vARRAY

“C” vPLUS

vINDEX

1 TRIPLE

1 10 1

vINDEX

2 TRIPLE

3 17 1

〈TRUE〉

〈TRUE〉

〈TRUE〉

Figure 7.3: forall (I = 1:10, J = 3:17) A(I, J) = C(I+J) after LOWER

• An array constructor containing a FORALL index.

These are both cases that could be reconsidered in the future. They would both need
additional design work.

Any form of the general HPF FORALL construct (sometimes called the “block FORALL”) that
we support is conceptually replaced by a sequence of single-statement FORALL statements, after
which each of these statements is lowered as above. (The bounds of the FORALL may have to be
evaluated into temporaries first, to avoid evaluating them more than once.)

7.3 Array-valued functions

We continue with the running example of section 5.7 (pages 59, 63, and 64; see also page 76).

Computing the size of the returned value of an array-valued function presents a problem which is
exhibited by that example:

Since the array-valued function array func is the entire argument of the intrinsic function SUM, the
size of its returned value cannot be inferred from the expression it is in (as it could be if for instance
array func were one of two children of a vector plus operation—the size might then be able to be
inferred from the other child). In order to lower the function SUM, STRIP needs to have its argument
in the form of a simple array expression, and so array func needs to be assigned to a temporary.
To construct this temporary, we need to know the size (at least as a run-time expression). This
size is computed later, in ARG. Right now, LOWER just performs a partial lowering of the calling
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sequence (in the main program), generating the following representation. (In reading this, note the
convention that names starting with the “@” sign represent compiler-generated temporaries.)

SEQ (a dt_seq node)
NEWSCOPE
SEQ

@3 = LFUNC(scalar func, (3)) -- LFUNC refers to a “local function”, i.e., a function
that is contained in the routine being compiled.

AFUNC(@4, LFUNC(array func, (a(1 :5 :1), @3)))
s = sum(@4(1:AFTER ARG UB(@4,1))) -- AFTER ARG UB(@4,1) is a stand-in for

the upper bound in dimension 1 of the array @4. It will be fixed up later, in the ARG
phase.

ENDSCOPE

The AFUNC operator is used to add the return temp @4 to array func as a hidden argument. We
do it this way so that @4 can be allocated on the stack frame of the caller. If we did not do this,
then the callee would have to allocate its return temp on the heap, and this return temp would then
have to be explicitly deallocated by the caller after the call returned.

Of course in order to allocate @4, its size needs to be known, at least as an expression. Computing
an expression for this size is the work of the ARG phase. So in the meantime, @4 is just entered into
the symbol table as a compiler-generated allocatable array, together with any directive information
for it that comes from directives for array func in its explicit interface. The allocation of @4 is
inserted later, in ARG.

The symbol table information for the temporary array @4 looks like this:

Dope for "@4", Owner: "AF"

Regular Dope:
Irank: 1
Address: "@4"
Charlen: <NIL>
Dim 1
low: 1
high: AFTER_ARG_UB("@4",1)

all replicated = TRUE
SubSpace Table:
Dim: 1
SubSpace

folds: FETCH(ARRAY(ACTPOS(1),[FETCH(ACTPOS(2))]))
as: 1
ao: -1
Cell
slen: 1
mult: 1
vbar: 0
Dist: serial, extent: FETCH(ARRAY(ACTPOS(1),[FETCH(ACTPOS(2))]))

Replicated cells Cell Table:
Dim: 1
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Cell
slen: 4
mult: 1
vbar: FETCH("_HPF_MYNODE")
Dist: block, shadow: 0 , extent: 4

Completion

AFuncSizeInfo <null>

AltDopeInfo <null>

The two significant things here are:

1. The high bound in dimension 1, which is expressed using the operator AFTER_ARG_UB. This
operator will be replaced later, in ARG.

2. The expressions containing ACTPOS. These will also be replaced by ARG.

Since @4 is a stack temporary, it is implicitly deallocated by the ENDSCOPE statement.

The body of the function array func is lowered slightly so it looks like this:

SEQ (a dt_seq node)
ENTRY (a dt_entry node)

PREAMBLE (field of the dt_entry node)
@1 = n
@2 = d(@1)

array func result(1:@2) = d(1:n)

Finally, PURE functions occurring in FORALL constructs are handled as a special case. If a PURE
function is array-valued, the transformation outlined above is still performed but not in LOWER:
It is performed later in the ARG phase (see page 97).

7.4 Array constructors containing implied DO loops

In general, array constructors are just passed through TRANSFORM and then handled by the
Middle End. This works provided everything in the constructor is replicated. Any mapped data in
the constructor has to be extracted from the constructor and evaluated into a replicated temp which
is then used in the constructor. If there is an implied DO loop in the constructor, then LOWER
has to create an explicit DO loop in the dotree, because the loop variable has to be available when
evaluating any mapped data in the constructor.

So (unless LOWER can determine that the array constructor is simple enough to be passed straight
through to the Middle End) LOWER creates explicit DO loops in the dotree corresponding to
implicit DO loops in array constructors. These loops are created before the punting processing in
LOWER, and also before the handling of the SALLOCATE statement, also in LOWER.
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As in the previous section, LOWER may not know the size of an expression that is pulled out of
such an array constructor. For example, in the expression

(/ a(1:i), i = n:m /)

LOWER does not know the size of the array section a(1:i), since it contains an implied do variable,
which is meaningless outside the context of the implied do loop.

Therefore, a temporary to hold the value of such an expression cannot be completely specified.
To solve this problem, we have introduced a new operator—DEFER—which enables us to name a
temporary and indicate that later phases of TRANSFORM need to complete the job of allocating
it and filling in its symbol table dope information.

The source construct
call faa( (/ fbb(a(1:i, 1:j)), i=1:n, j=1:m /) )

is transformed by LOWER into following dotree code:

ALLOCATE(prev, SIZE = 0)
prevsize = 0
do i = 1, n

do j = 1, m

NEWSCOPE
DEFER(T 1, (/fbb(a(1 : i, 1:j))/))
-- LOWER doesn’t know the size of this; after ITER we will know it. Also note

that T 1 is a mapped array; it gets its mapping from fbb. The array construc-
tor is needed because in effect we are reshaping a 2-dimensional object to a 1-
dimensional one.

newsize = prevsize + size(T 1)
SALLOCATE(new, newsize) -- new is a replicated array
new(1 :prevsize) = T 1
prevsize = newsize
new(prevsize+1:newsize) = T 2
DEALLOCATE(prev)
prev =⇒ new -- pointer assignment
nullify(new) ENDSCOPE

end do
end do

call faa(T 1)

The lowering of the DEFER operator happens later in ITER.

7.5 Other lowerings

7.5.1 DATA statements

Since data objects initialized by DATA statements are generally distributed, the initialized values
will differ on different processors. Therefore, the results of the initialization cannot be reflected
in the executable image, which is loaded identically onto each processor. For this reason, DATA
statements are turned into an equivalent sequence of assignment statements.
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Since a variable initialized by a DATA statement is automatically a SAVE variable, we make sure
that these assignment statements are executed only on the first invocation of the routine.

7.5.2 Statement functions

A statement function in the CIR, and in the dotree before LOWER, looks like this:

SFUNC

list of
assignments
into temps

expression
(using temps)

The left-hand child is a sequence of assignment statements created by the Front End which assign
the actual arguments of the statement function into (compiler-generated) temporaries. The right-
hand child is just the expression which defines the statement function, written in terms of those
temporaries.

The assignments in the left-hand child of the statement function are inserted at the statement level
prior to the statement in which the function occurs. The function is then in effect macro expanded by
simply replacing the call to the function by the expression defining the function (i.e. the right-hand
child shown above).

7.5.3 SPREAD

Each SPREAD node is replaced by an EXPLICIT SPREAD node. This is a node with four children:

• The expression being spread.

• The ncopies parameter of the SPREAD.

• The dim parameter of the SPREAD.

• The index (i.e., the first child) of the vINDEX node representing the dimension being spread
to.

The first three of these children are just the corresponding children of the original SPREAD node,
and come from the source program. The last child, which is easily computed here, is stored in this
node so that it does not have to be recomputed later.

7.5.4 PACK, RESHAPE, and UNPACK

These operators are punted, as explained above in Section 3.8, (pages 30ff).

7.5.5 MAX and MIN operators

These operators each take a list of arguments, and return the max or min of them all. LOWER
replaces these operators by a nest of BINMAX or BINMIN operators, which are binary max or min
operators.
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7.5.6 WHERE masks

WHERE masks are attached as children to all expression nodes to which they apply. Expression
nodes under the ELSEWHERE clause are given the negation of the WHERE mask. The WHERE
operator itself is deleted from the dotree.

7.5.7 Special processor 0 handling

LOWER performs the array copying necessary for alternate entries and exits, and also for NAMELIST
handling, as described above in Section 3.4.

7.5.8 Filling in global dope

LOWER creates global dope from symbol table dimension information for arrays that are not
assumed-shape, as mentioned above in Section 4.3.1. For assumed-shape arrays, LOWER creates
global dope as expressions referring to fields in the passed-in dope vector.
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ITER

Iter fills in the iteration space information for all the nodes in the dotree.

8.1 The leaves

Constants and Front-End temporaries (i.e. vaCONTOK and vaTMPTOK nodes) are given an
iteration space which is all replicated.

The iteration space for each scalar is simply the same as that of its data space (i.e. the replicated
and completion structures are the same; there are no subspaces).

The only other kind of leaf node is an arrayref. They are handled as follows:

• The replicated and completion structures are copied from the dope (i.e. from the data space).

• Data subspaces corresponding to scalar subscripts are added to the completion structure.

• Primary data subspaces can be matched with corresponding iteration subspaces by the primary
cell constraints.

At this point, the total iteration virtual processor (VP) space at the arrayref consists of

• all the iteration subspaces which match up with data space structures in this manner, and

• all the iteration completion and iteration replicated structures

together with additional iteration subspaces which represent iteration coordinates not represented
in primary data subspaces. Let us use I to denote the family of these additional iteration subspaces.

Similarly, the total data virtual processor space at the arrayref consists of

• all the data subspaces which match up with iteration space structures as above, and

• all the data completion and data replicated structures

85
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together with additional data subspaces which have complex subspace uses. Let us use D to denote
the family of these additional data subspaces.

To complete the specification of the map from iteration space to virtual processor space, we need to

• map each element of I somewhere, and

• make sure that the dimensions of the virtual processor space corresponding to the elements of
D are accounted for.

In principle, there might be many ways in which this could be done. The method we use is to match
up as much as possible, elements of I with elements of D. Precisely, we use the following method:

begin
while I �= ∅ do begin

if D �= ∅ then
Extract a subspace i from I and a subspace d from D. Copy the information from d

(cell place, distribution) into i.
else

Make all the subspaces in I serial.
end if

end
if D �= ∅ then

foreach d ∈ D do
Create a completion subspace in I with the same cell place as d and value 0.

end if
end

8.2 Intermediate nodes

First perform a bottom up tree walk over each expression.

1. If the node is a FETCH or a vFETCH, take its iteration VP space from its child.

2. Otherwise, if the node is a scalar,

• If it has at least one child whose iteration VP space is not all replicated, use the VP
space of one such child.

• Otherwise, give the node a completely replicated iteration VP space.

3. Otherwise, ignore the node.

Next, implement the owner-computes determination of iteration VP spaces by taking the iteration
VP space of the left-hand side and performing a top-down walk of right-hand side of the statement,
attaching that VP space to each node, stopping only at scalar nodes and at terminal vFETCH
nodes, all of which have previously been given an iteration VP space by the bottom-up walk above.

Actually, we do much better than a naive implementation of the owner-computes rule. For instance,
if we are compiling a statement of the form A(:) = B(:) + C(:) and B and C align with each other
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but not with A, then iter will indeed determine the iteration space of the root of the statement to
be that of A. However, DIVIDE will later discover that B and C are in the “same region”, and will
compute their sum into a temporary T aligned with each of them—this is a local computation—and
then generate a statement moving T to another temporary aligned with A. Thus, only half as much
data is moved as in a naive implementation of the owner-computes rule.

Regardless of any other optimizations which may be made, a PURE function is assigned an iteration
VP structure as follows:

• Subspaces corresponding to unnamed dimensions must have strip length 1.

• If all such subspaces in the parent of the function have strip length 1, then the iteration VP
structure of the function can be identical with that of its parent. In any other case, motion
will be necessary, and the rest of the iteration VP structure can be assigned in any convenient
way.

Note that the iteration cells in the VP structure of a PURE function other than those correspond-
ing to unnamed dimensions must be either completion or replicated. The cells corresponding to
the FORALL indexes are represented as replicated cells, but the indexes themselves are actually
privatized variables (see the footnote on page 152).

8.3 Iteration space bounds for temporaries

After ITER has run, each computation node in the dotree has an iteration space structure associated
with it. The following two phases—ARG and DIVIDE—may introduce new temporaries. The
iteration space associated with these temporaries (or with their associated FETCH or STORE
parents) has to be determined with some care, because of the following problem. Suppose we have
introduced a temporary T as follows:

forall I = 2:10:2
T (I) = B(I/2)

It would seem natural to say that the iteration bounds of T (i.e. of the vSTORE) are 1 :5 :1.
However, by the time STRIP begins, the iteration bounds of all nodes in the statement must be
the same, and so at the end of DIVIDE, all such bounds are normalized so that they are equal (see
Section 10.7). If we were to choose 1 :5 :1 for the iteration bounds of every node in this statement,
we would run into problems with the integer division in the subscript of B.1

We solve this problem as follows: when a temporary is created, it takes the iteration bounds for
any named dimension from the corresponding bounds of some iteration space on the right-hand side
of the statement. (All such bounds must be the same, since they come from the same FORALL
header.) Unnamed dimensions are created with lower bound 1 and stride 1, since there is no way
that an implicit division can be represented in a TRIPLE on the right-hand side.

1If it were not for the fact that the integer division throws away the remainder, there would be no problem, for
at the same time as the iteration range at B was adjusted from 2:10:2 to 1:5 :1, the data alloc stride would also be
multiplied by 2, so that the same virtual processor would be referenced.
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8.4 Handling the DEFER operator

The dotree statement

DEFER(T 1, fbb(a(1 : i, 1:j)))

is created by LOWER in the process of lowering array constructors containing implied DO loops
(see page 82). When ITER encounters such a statement, it does three things:

1. It synthesizes the iteration space of the DEFER node from that of its second child.

2. It generates an SALLOCATE for the temporary T 1—it can do this because it now knows the
size of T 1—and fills in the symbol table dope information for T 1, which it will then use in
generating iteration space information for later statements created by LOWER (see page 82).

3. It replaces the DEFER node with a local punted vector assignment.

Thus, the DEFER statement is replaced by the following dotree code:

SALLOCATE(T 1, sizeof(fbb))
T 1 = (/ fbb(a(1 : i, 1:j)) /) -- a punted statement

8.5 Intrinsic functions

The intrinsic functions

• SIZE

• SHAPE

• LBOUND

• UBOUND

• NUMBER OF PROCESSORS

• PROCESSOR SHAPE

are inlined: NUMBER OF PROCESSORS and PROCESSOR SHAPE become constants (if known
at compile time) or references to the internal variable numnodes, as explained previously in Sec-
tion 3.8 (pages 30ff). The other four intrinsics are turned into expressions computed from informa-
tion in the iteration space.
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ARG

The ARG phase handles arguments to I/O calls, external procedures, and some intrinsics. In the
course of doing this, it has to perform some special transformations to handle alternate exits from
I/O statements correctly.

PURE functions are handled differently from other functions by ARG. Therefore, none of the pro-
cessing in this chapter applies to PURE functions unless specifically stated. The PURE function
processing is detailed in Sections 9.4 and 9.6.

9.1 I/O: arguments

Children of I/O nodes have had iteration spaces attached to them by ITER. ARG uses this iteration
information in copying all necessary data into processor 0 temporaries, after which the I/O call is
made on processor 0. The iteration information is necessary to determine the size of the temporaries.

The data copied to processor 0 includes all the arguments of the call together with all the information
in the specification list. For example:

dimension A(1000), B(1000)
!hpf$ template T (1000)
!hpf$ distribute T (block)
!hpf$ align A(i), B(i) with T (i)

read (unit = A(j)) B

requires both A(j) and B(:) to be moved to processor 0. In addition, B must be copied back from
processor 0 after the read, because it was modified by the I/O statement. In addition to the list
of arguments of the I/O statement, some specifications (e.g. an IOSTAT parameter) may also be
modified by the call, and so they must also be copied back.

Of course, if the data is already on processor 0, we do not perform an unnecessary copy.

The determination of whether a temporary is actually necessary is based on the location of the
referenced data, in the following way:

89
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if the data is not modified then
if the data is completely available on processor 0 (but may also live elsewhere; e.g. if the

data is replicated) then
no temporary is needed

else
the data must be copied into a processor 0 temporary

end if
else -- the data is modified

if the data lives only on processor 0 then
no temporary is needed

else if the data is completely replicated then
we perform the optimization described on page 20: we do not create a temporary. In-

stead, we simply read the data into its destination on processor 0 and then update
the rest of the replicated data on the other processors.

else
the data must be copied into and out of a processor 0 temporary

end if
end if

As mentioned above, determining if a value is modified is more complicated than simply asking if
the statement is a read or a write. For example, in the statement

print(∗, IOSTAT = A(5)) B, C

the array A is actually modified.

The structure of the actual code for an I/O statement without alternate exits is shown in Figure 9.1.

dt_seq

BEGINSCOPE
dt_io, as explained in Section 4.2.1.

cond: if my processor() == 0
pre_stmts: an empty dt_seq node
specs: a dt_seq node containing a list of dt_io_item nodes. Each of these nodes is

either NULL or represents a specification (e.g., UNIT number, label of FORMAT
statement, IOSTAT variable, etc.).

items: a dt_seq node containing a list of dt_io_item or dt_io_loop nodes (each
dt_io_loop node itself containing dt_io_item nodes). Each dt_io_item node spec-
ifies a value to be read or written, together with any copy-in/copy-out code that is
needed to support that operation.

post_stmts: an empty dt_seq node
ENDSCOPE

Figure 9.1: How I/O with no alternate exits is handled.
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9.2 I/O: alternate exits

Making the copies to and from processor 0 explicit in the dotree also makes it necessary to transform
the I/O call to handle alternate exits properly. For instance, if for the call

read (∗, err = 200), a

we were to generate the equivalent of

temp = a

if (my processor() == 0) then
read (∗, err = 200), temp

end if
a = temp
. . .

200 . . .

then if the READ statement exited early to line 200, processor 0 would miss the copy-out code
a = temp. It would go directly to line 200, and all the other processors would stall, waiting for
processor 0 to send them the value being copied out.To avoid this, we perform a transformation as
follows: The statement

read (∗, err = 200, end = 300, eor = 400), a

results in the dotree structure under the dt_io node of Figure 9.1 being modified in the following
way:

• Each io_item is modified so that the original labels (which we will call errlabel, endlabel,
and eorlabel) are replaced with new labels, which we denote by terrlabel, tendlabel, and
teorlabel.

• Each io_item node, which has the following structure,
dt_io_item

pre_stmts: a dt_seq node containing copy-in code for the item being written or
read

item: the actual item being written or read
post_stmts: a dt_seq node containing copy-out code as needed

is modified by adding the following code to the beginning of each pre_stmts and post_stmts
section:

replicate(err occurred) -- from processor 0
if (err occurred) then

goto errlabel
end if

Similar code is inserted for END and EOR exceptions as specified. If no error occurs, all
processors will reach this code, a FALSE value of err occurred will be propagated to all the
processors, and each processor will fall through to the next statement. If on the other hand,
an error does occur, it will occur on processor 0, which will therefore not get to this point—it
will jump to terrlabel. The remaining processors will wait at this point to receive the value of
err occurred from processor 0. Since this value will now be TRUE, these processors will then
jump to the normal error processing line (errlabel), as specified in the source program.
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• It remains to show how processor 0 is managed so that it sends a FALSE value of err occurred
when necessary and jumps to errlabel. To make this happen correctly, the code in Figure 9.1
is replaced by the code in Figure 9.2. Each of the error processing segments in the post_stmts
section is guarded by if (FALSE), and so can only be reached by jumping into it. This only
happens on processor 0, when an error happens and a jump is executed to terrlabel, tendlabel,
or teorlabel. Processor 0 then replicates the appropriate error condition and jumps to the
actual error location (errlabel, endlabel, or eorlabel).

• Finally, if only IOSTAT is specified, then there is no label associated with it in Fortran.
Therefore, processor 0 makes no jump. Instead, it simply falls through to the next statement,
which is the one after the comment “only if IOSTAT was specified”. This is where processor
0 sets the variable iostat occurred. This variable is replicated in the following statement.

9.3 Function and procedure calls

All function and procedure calls (remember that we are excluding PURE functions here) are raised
to the statement level.

For global function calls, ARG determines where copy-in/copy-out is needed, and inserts the neces-
sary copies to and from temps to implement this. Again, the iteration space information attached
to the actual arguments is used to construct any needed temporaries.

When a mapped array section is passed to a subroutine and the dummy has the INHERIT attribute,
no copy-in should take place. However, because of some difficulties in the interface with the Middle
End, we have found it necessary for the time being to perform a copy-in in this case. This is what
is done:

This will be fixed in the future so that no copy-in will take place.

Say the array section is
A(LB1 :UB1 :S1, . . . , LBn :UBn :Sn)

and denote the iteration allocation function for the jth iteration dimension by φj . Then this actual
argument will be replaced by the whole array T , where the array T is defined as follows:

• The base address of T is the same as the base address of A.

• The declared lower bound of T in dimension j = DLBT
j = 1.

• The declared upper bound of T in dimension j = DUBT
j is

UBj − LBj

Sj
+ 1

• The data allocation function of T is given by
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dt_io
cond: if my processor() == 0
pre_stmts: a dt_seq node:

err occurred = FALSE -- only if specified
end occurred = FALSE -- only if specified
eor occurred = FALSE -- only if specified
iostat occurred = FALSE -- only if iostat and none of err, end, eor are specified

specs: modified as indicated.
items: modified as indicated.
post_stmts:

if (FALSE) then -- only if ERR was specified
terrlabel err occurred = TRUE

replicate(err occurred)
goto errlabel

end if
if (FALSE) then -- only if END was specified

tendlabel end occurred = TRUE
replicate(err occurred) -- only if ERR was specified
replicate(end occurred)
goto endlabel

end if

if (FALSE) then -- only if EOR was specified:
teorlabel eor occurred = TRUE

replicate(err occurred) -- only if ERR was specified
replicate(end occurred) -- only if END was specified
replicate(eor occurred)
goto eorlabel

end if

-- only if IOSTAT was specified:
if (my processor() == 0) then

if (iostat variable �= 0) then
iostat occurred = TRUE

end if
end if

-- For I/O without any items (!), we must put this code here, one instance for each
kind of error exit specified, since there are no items to put this code into. This
code also handles the replication of the iostat occurred variable.

replicate(err occurred)
if (err occurred) goto err label

tiostatlabel continue
. . . 〈rest of program〉

errlabel -- original line 200
. . .

endlabel -- original line 300
. . .

eorlabel -- original line 400
. . .

Figure 9.2: How Alternate I/O Exits are Handled.



94 CHAPTER 9. ARG

alloc stridej(T ) = alloc stridej(A) ∗ Sj

alloc offsetj(T ) = alloc offsetj(A) + φj(LBj)− φj(DLBj)

= alloc offsetj(A) + (LBj −DLBj) ∗ alloc stridej(A)

9.3.1 ACTPOS processing

A caller may need to create a temporary for an actual argument, and the size of that temporary
may depend on the values of other actual arguments. Consider for instance, what is entailed in
compiling a call to the function foo, where foo is declared as follows:

foo(A, N , B)
integer N , A(:), B(:)
!hpf$ distribute A (block(B(N)))

The value of N at run-time is needed to find B(N), which in turn is needed to compute the local
size of the array A that is being passed. Arbitrarily complicated examples of this nature can be
constructed.

The fundamental idea, however, is that dependences of this nature create a partial order on the
actual arguments. The compiler computes this partial order, and then walks the actual arguments
in some order compatible with it in order to generate code for any temporaries that are needed.

9.3.2 Array-valued functions

We continue with the running example introduced in section 5.1.3 (pages 59, 63, and 64; also pages
76 and 79).

Array-valued function calls, which were partially processed in LOWER, are further processed in
ARG to allocate the temporary into which the function is to be computed. In this processing, the
operator AFTER ARG UB that was inserted in the code by LOWER is replaced by the expression
that ARG computes for the actual upper bound, based on its ACTPOS processing. In addition, the
ACTPOS expressions are replaced by temps into which the values will be computed at run-time.
Thus, the dope information for the temp @4 (see page 80 is now put in its final form:

Dope for "@4", Owner: "AF"

Regular Dope:
Irank: 1
Address: "@4"
Charlen: <NIL>
Dim 1
low: 1
high: FETCH("@4_ub1")

all replicated = TRUE
SubSpace Table:
Dim: 1
SubSpace
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folds: FETCH("@60")
as: 1
ao: -1
Cell
slen: 1
mult: 1
vbar: 0
Dist: serial, extent: FETCH("@58")

Replicated cells Cell Table:
Dim: 1
Cell

slen: 4
mult: 1
vbar: FETCH("_HPF_MYNODE")
Dist: block, shadow: 0 , extent: 4

Completion

AFuncSizeInfo <null>

AltDopeInfo <null>

where the temporaries @4_ub1, @58, and @60 are assigned to by the ACTPOS processing, as shown
below.

In addition, ARG uses some utilities from DIVIDE to discover that the actual and the dummy have
different mappings, so that a copy-in/copy-out is needed. An array temporary @53 is constructed
for this purpose. Its dope looks like this:

Dope for "@53", Owner: "AF"

Regular Dope:
...
Dim 1
low: 1
high: 5

...

The executable code in our running example (in the caller) is then modified by ARG to look like
this:



96 CHAPTER 9. ARG

SEQ (a dt_seq node)
NEWSCOPE
@3 = LFUNC(scalar func, (3)) -- LFUNC refers to a “local function”, i.e., a function that

is contained in the routine being compiled.
SEQ

SALLOCATE(@53)
@53(1:5:1) = a(1:5:1) -- The dummy variable d is mapped differently than the actual a

is, so a copy-in is necessary.
-- Now the ACTPOS processing begins:
@54 = @3
@55 = 1
@56 = @53(@54 - (1 - @55))
@4_ub1 = @56
@57 = 1
@58 = @53(@54 - (1 - @57))
@59 = 1
@60 = @53(@54 - (1 - @59))
-- End of the ACTPOS processing.
SALLOCATE(@4)
AFUNC(@4, LFUNC(array func, (@53(1:5:1), @3)))
a(1:5:1) = @53(1:5:1) -- This is the copy-out.

s = sum(@4(1:@4_ub1))
ENDSCOPE

9.4 Handling SPREADs

A SPREAD in an assignment statement is deleted by DATA. This is possible for the following reason:
a SPREAD cannot occur at the top of the left-hand side of an assignment statement. So the left-
hand side of an assignment statement explicitly represents the total iteration space. Therefore,
when a SPREAD is deleted by DATA, the iteration space of the resulting node is determined by
the original parent of the SPREAD, which, if it is the top-level vSTORE, gets this information
synthesized from the left-hand side.

If the SPREAD causes data motion, that fact is subsequently determined by DIVIDE just by looking
at iteration space information—cf. the same region() function on page 106.

For a function argument, however, the SPREAD could actually be the top-level node, and once it
was deleted, there would be no way to reconstruct the iteration space. Therefore, DATA does not
delete such SPREADS, but leaves them for ARG to handle.

ARG takes SPREADs in arguments to I/O or external procedure calls and brings them up to
the statement level; i.e., the first child of each SPREAD is remapped into a partially replicated
temporary, and the SPREAD is replaced by a fetch of that temporary.
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9.5 Intrinsic functions

The Fortran intrinsic functions CSHIFT and EOSHIFT are replaced by an equivalent set of array
assignments.

The XXX SCATTER functions are handled by first introducing a new assignment statement to
express the initialization of the result by the base, and then generating a second statement which
expresses the scatter operation itself. The remainder of the work in lowering these functions is done
by STRIP.

9.6 PURE functions in FORALL constructs

ARG performs all the lowering for PURE functions in a FORALL construct; if the function is
array-valued, this includes the lowering that otherwise would have been performed by LOWER (see
Section 7.3).

All intrinsic functions and functions in the HPF library are by definition PURE, so this processing
in ARG applies to them as well. In particular, functions which otherwise would have been inlined
by the compiler, such as CSHIFT and the reduction intrinsics, are handled by this alternate method
when they appear inside FORALL constructs.

The lowering is performed as follows:

• Any data references in actual arguments are remapped if necessary before the FORALL so
that all their unnamed dimensions are distributed serially, and so that their named dimensions
and completion and replicated structures conform with the iteration space of the FORALL.

Any named FORALL dimension not corresponding to a primary data subspace in the actual
argument is turned into a conformant replicated cell in the iteration space of the actual.1

• A dt_group_forall node is created to contain the body of the FORALL. Under this node,
the actual arguments to the PURE function are privatized over the FORALL dimensions (i.e.
over the named dimensions).2

This amounts to a copy-in. No copy-out is necessary, because arguments to a PURE function
must all be IN parameters. (See the HPF language specification, section 4.3.1.1.)

• If the PURE function is array-valued, the temporary into which the function is computed (e.g.
t1 in the example in Section 7.3) is handled similarly: its unnamed dimensions are all serial,
and its named dimensions disappear, being privatized. In this case, a copy is then made to a
“de-privatized” temporary.

The NEWSCOPE and ENDSCOPE surround the dt_group_forall.

• After the dt_group_forall, the result is remapped to its final location. This action may be
unnecessary if no initial remapping was needed.

1This replicated cell actually represents a privatization over the corresponding logical processor dimension – note
that it is not over the corresponding virtual processor dimension (as in the next footnote), which is folded over that
logical processor dimension)

2In this implementation, privatized VP subspaces are represented by replicated cells; see the footnote on page 152
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The dt_group_forall node enables the STRIP phase to handle this sequence of statements under
it as a unit. In particular, the STRIP phase is then able to create a nest of strip loops around the
entire body of the dt_group_forall which reflects the FORALL indexes.

ARG attaches to the dt_group_forall node an iteration space that STRIP uses to create the loop
nest. This iteration space (call it I) is constructed as follows:

• The table of replicated cells of I is initialized from the table of replicated cells of the ispace
at the root of the statement.

• The completion structure of I is taken from the completion structure of the ispace at the root
of the statement.

• Each vector array reference on the left-hand side of the statement is visited. For each such
reference, its iteration subspaces are processed as follows:

– Any unnamed dimension or dimension with nested vINDEX nodes (e.g., a TRIPLE whose
lower bound contains a reference to a FORALL index) is transformed into a replicated
cell in I. No loop will be created for this dimension—the vector construct (which is of
necessity serial) will be passed through to the middle end.

– A named dimension that is complex is made serial and inserted into I, and a replicated
cell is added to I to hold the original cell place.

– Any other named dimension (which must be primary) is copied as is into the subspace
table of I.

Thus, for instance, the source construct (where F is a PURE function)

forall (I = LB1 :UB1 :S1, J = LB2 :UB2 :S2)
A(I, J, : , : ) = F (B(I, : , : , : ))

which appears as a vector assignment statement after LOWER, is transformed by ARG into the
following three constructions:

1. remap B

T 1(I, : , : , : ) = B(I, : , : , : )

where the last three dimensions of T 1 (which correspond to the unnamed dimensions of B in
the FORALL construct) are distributed serially and the first dimension of T 1 conforms with
the iteration space of the FORALL index I. The FORALL primary dimension for J , which
is not represented in the subscripts of B, becomes a replicated cell for T 1. If the FORALL
iteration space has any completion or replicated structure, that is also present in the data
space of T 1.

2. lower the PURE function

NEWSCOPE
dt_group_forall

T 2(: , : , : ) = T 1(I, : , : , : )
AFUNC(R1(: , : ), EFUNC(F, LIST(T 2(: , : , : ))))
R2(I, J, : , : ) = R1(: , : )

ENDSCOPE
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where all the unnamed dimensions (i.e. the dimensions indicated by :) are serial, and where
T 2 and R1 are privatized over the I and J dimensions. If T 2 would be scalar, it is omitted,
and T 1 is used directly as an actual argument in the AFUNC. Similarly, if R1 would be scalar,
it is omitted, and R2 is used directly as the return value in the AFUNC.

3. remap the result to A

A( : , : , : , : ) = R2(: , : , : , : )

Of course the initial and final remapping are omitted if they are not needed.

As a help in reading the code in the file arg_calls.c where these transformations are implemented,
T 1 is produced from B and R2 is produced from A by the function itr_tmp_for_pure_fn_arg().
T 2 is produced from T 1 and R1 is produced from R2 by the function itr_tmp_for_privatized_arg().

If the FORALL construct contains a mask, that mask is attached by ARG to the dt_group_forall
node as a dtb attribute. STRIP will retrieve this and use it to create an IF guard.
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DIVIDE: Setting Up for Motion

10.1 Some formulas

The purpose of DIVIDE is to insure that corresponding nodes of an expression represent elements
on the same processor, for corresponding values of the iteration space indexes. To understand the
way this is done, we first explain some notation and formulas that are used for this purpose1:

For any quantity in either data or iteration space, the effective value of that quantity is the image
of that quantity in virtual processor space. So for instance, if LB is the lower bound of an iteration
subspace, and if

φ(x) = alloc stride ∗ x + alloc offset

is the iteration allocation function for that subspace, then φ(LB) is the effective lower bound for
that iteration subspace. Similarly, if S is the source stride for that iteration subspace (as would
be the case if that iteration subspace came from a triple 〈LB :UB :S〉), then alloc stride ∗ S is the
effective stride for that iteration subspace.

If an iteration subspace has lower bound LBj and stride Sj—for instance, if it arises from a construct
such as

FORALL (. . . , I = LBj :UBj :Sj, . . . )

—then denoting the successive coordinate values of the iteration subspace by

{
LBj + Sj ∗ i : 0 ≤ i ≤ UBj − LBj

Sj

}

we have

vj = φj(LBj + Sj ∗ i)

= φj(LBj) + alloc stridej ∗ Sj ∗ i

So the coordinate in virtual processor space of this iteration is determined by the iteration number
(i) together with the effective lower bound and the effective stride of the iteration subspace.

1See [14] for the notation v, v̄, and v̂ used below

100
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The maps from the iteration virtual processor space to the iteration logical processor space are given
by the following formulas:

v̄j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⌊
vj

num foldsj

⌋
BLOCK distribution

vj mod strip lengthj CYCLIC distribution⌊
vj

nj

⌋
mod strip lengthj CYCLIC(nj) distribution

10.2 Regions

We say that two nodes in an expression are in the same region if and only if the conformance
preference between them is honored. (This is just another way of expressing the condition in the
first sentence of this chapter.) Ignoring for the moment complications that arise in the presence
of replicated subspaces (we will show how to handle these below), this amounts to saying (cf. [14])
that the iteration VP subspaces of the two nodes match up so that

• corresponding subspaces have the same strip length; and if the strip length > 1, then also

– corresponding iteration allocation functions are equal,

– corresponding iteration distribution functions are equal, and

– corresponding iteration cells have the same cell place. (Remember that two cells have
the same cell place iff they have the same strip length and multiplier.)

An equivalent formulation is this: two computation nodes are in the same region if and only if
corresponding iteration VP cells of each node

1. Both have strip length 1; or

2. Both

(a) are identically distributed (i.e. both serial, or both BLOCK, or both CYCLIC, or both
CYCLIC(n) with the same value of n).

(b) have the same value of num folds if they are both BLOCK; have the same strip length if
they are both CYCLIC or CYCLIC(n).

(c) have the same multiplier.

(d) have the same effective stride.

(e) have the same effective lower bound.

Because the effective strides and effective lower bounds are the same, corresponding values of vj

are equal for the two nodes; and because the strip length (or num folds) and multiplier (and the
parameter n if appropriate) are the same, corresponding values of v̄ are the same for the two nodes.
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10.3 The tasks of DIVIDE

DIVIDE moves up all motion to the statement level. This happens in the following way:

• Remote fetches are assigned into a temp (aligned with the parent of the remote fetch) if
necessary so that they become the complete right-hand side of an assignment statement. A
fetch of the temp is then substituted for the remote fetch.

• Any other nodes which are not in the same region as their parents are similarly assigned into
temps aligned with their parents, and fetches of those temps are substituted for the original
nodes.

If there are replicated cells in the iteration VP space, the same-region test outlined above must
happen after the algorithm on page 104 is performed.

For example, a typical remote fetch looks like this, after having been raised up if necessary so that
it is the complete right hand side:

A(1 :N, 1:M) = B(V (1 :N), 1:M)

DIVIDE then pulls out the V (1 : N) and spreads it into a temporary, yielding

PBRDCST(W (1 :N, 1:M), DIMS = {2}, V (1 :N))

A(1 :N, 1:M) = B(W (1 :N, 1:M), 1:M)

Of course, the second statement is not expressible in Fortran, but this is effectively what the internal
representation looks like. Also, the first statement is not really what happens. The root operator
is actually a REMAP STORE, and the information about the spread dimension is found in the
iteration VP spaces of the two sides.

In the course of doing this motion processing, DIVIDE updates the stmt_kind attribute of each
statement. This field is set whenever a statement is constructed in the dotree, and previous phases
may have modified this field. DIVIDE further refines this classification. The complete list of possible
values for this attribute is as follows:

STMT ILLEGAL Indicates an error.

STMT TBD A temporary annotation, to be refined by a later phase. Indicates that the children of
the operator must be examined to determine the correct stmt_kind. This never occurs after
DIVIDE.

STMT IO An I/O statement, subsequently lowered (in ARG) to a dt_io construct.

STMT ASSIGN An scalar or vector assignment statement, before DIVIDE. DIVIDE gives a more
specific stmt_kind to these statements.

STMT IGNORE STRIP will just pass this statement through without modifying it.

STMT FLOW A flow of control statement.

STMT CALL The statement is a call, or the right-hand side of the statment is a function call.

STMT LOCALIZE This statement does not need strip loops made for it, but subscripts in it need to
be localized.
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STMT PRIVATIZED ASSIGN Used in connection with FORALL statements containing pure functions.

STMT PASSIGN A pointer assignment. This tells STRIP to generate dope vector stores.

STMT REPLICATE Replicate the data from processor 0.

STMT RANDOM For random_number().

STMT ALLOC For heap allocation.

STMT PRIVATE ALLOC For heap allocation with no dope vector. This is only used in stp_datamot.c
when allocating a 1-dimensional temporary array on the heap for the purpose of passing values
to runtime routines.

STMT DV DUMP For dumping a dope vector.

STMT DV COPY For copying a dope vector.

STMT SCATTER A statement derived from an XXX SCATTER intrinsic.

The following statement kinds are assigned by ARG:

STMT REDUCTION INTRINSIC A reduction intrinsic without a DIM argument.

STMT DIMREDUCE INTRINSIC A reduction intrinsic with a DIM argument.

The following statement kinds are assigned by DIVIDE:

STMT LOCAL ASSIGN The statement is a local assignment statement. See Section 12.1, page 121. In
particular, no interprocessor communication is needed in this statement.

STMT LIBRARY RESHAPE A remapping store implemented by calling a library routine rather than by
generating inline code including message-passing calls.

STMT RESHAPE ASSIGN The statement is a remapping store. See Section 13.1, page 142.

STMT REMOTE ASSIGN The statement is a remote store. See Section 13.3, page 146

STMT RFETCH ASSIGN The statement is a simple store of a remote fetch. See Section 13.2, page 144.

STMT NEIGHBOR ASSIGN The statement is a nearest-neighbor assignment statement. See Chapter 15,
page 169.

STMT NN FETCH A nearest-neighbor fetch. That is, a fetch that fills in the shadow edges in support
of a nearest-neighbor operation.

STMT NUMA REPLICATED STORE Strip needs to generate a loop to store data to a replicated left-hand
side. See Chapter 16, page 215.

STMT LOCLOC ASSIGN Used for an assignment to a dope vector for an object with a non-trivial
completion. We need to guard the assignment, because the object does not live on every
processor. This is done by putting the ispace of the right-hand side (the %LOC) on the root
of the store; STRIP then adds the appropriate guard.
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The actual enumeration is of type dt_stmt_kind, and is defined in the file udb/master/dote_udb.h.

All of the transformational functions are raised to the statement level. The XXX SCATTER func-
tion

RESULT = XXX SCATTER(SRC, BASE, INDX1, . . . , INDXn, MASK)

is replaced by

RESULT = BASE
RESULT = XXX SCATTER(SRC, INDX1, . . . , INDXn, MASK)

When the statement is a nearest-neighbor computation, DIVIDE suppresses the same-region check,
since all motion will be handled later by STRIP for these statements. But it does tag each array
name in the statement as being a nearest-neighbor array. This is because the addressing for these
arrays has to be handled differently by STRIP (see page 173).

In addition, DIVIDE generates local remapping for subroutine parameters which are involved in
nearest-neighbor computations (see page 184).

Finally, DIVIDE makes sure that the computed return value of a function is laid out as specified in
the function interface (or has the default layout if not specified). An extra remapping store may be
introduced at the function return to implement this.

An important optimization is performed when generating motion: if the parent iteration space has
a (primary) subspace not represented in the child—this constitutes an implicit spread of the child’s
values into that subspace—then the temporary into which the child is moved is created from the
parent’s iteration space except that the unmatched primary subspace is replaced by a replicated cell
in the temporary. By doing this, we insure that only 1 copy of the child’s values are moved to each
processor, rather than moving the child’s values a large number of times (the number of times being
the num_folds of the unmatched primary cell).

10.4 The handling of replicated cells

Here is a way of dealing with replicated cells in iteration VP spaces which is general enough to
handle most cases without introducing unnecessary motion:

The replicated cells in the iteration VP space of a leaf node are synthesized from the replicated cells
in its data VP space, using the replicated cell constraints.

The replicated cells in the iteration VP space of a non-leaf node are synthesized from those of
its children by the following algorithm. This algorithm is not intended to be a sketch of an
implementation—it just specifies the results we expect. The actual implementation could be quite
different.

First we note that if a replicated cell R has a strip length l which can be factored, say l = pq, then
R can be replaced by two replicated cells R1 and R2, where

multiplier(R1) = multiplier(R) strip length(R1) = p

multiplier(R2) = multiplier(R) ∗ p strip length(R2) = q

The method then consists of the following steps:
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1. If a replicated cell R in one child corresponds to a product
∏

Ci of cells in another child, in
the following sense:

(∀i) multiplier(R) ≤ multiplier(Ci)

≤ multiplier(Ci) ∗ strip length(Ci)

≤ multiplier(R) ∗ strip length(R)∏
strip length(Ci) = strip length(R)

then replace R by a family of replicated cells Ri (by successive applications of the process
noted above) so that Ri has the same cell place as Ci.

We refer to this procedure as factoring the replicated cell.

2. After performing step 1 until no more subdivisions of replicated cells can be done, if all the
children of the parent node have the same replicated cell (by “the same” we mean that the
cell places are the same), then that cell occurs also in the parent node’s iteration VP space.

3. If all except one child of the parent node have the same replicated cell, and the remaining
child (call it child c) has a non-replicated cell C in the same cell place which is either

• a scalar cell; or
• a primary cell whose iteration coordinate, if it appears at all in the iteration VP space

of any child c′ (c′ �= c) containing the replicated cell R, appears only in that child (c′) as
the iteration coordinate of a serial cell (i.e. a cell with strip length = 1)

then that non-replicated cell is synthesized to the parent in the place of the replicated cell,
and if there was a serial cell as indicated above, then that serial cell does not appear in the
parent. An example of this appears in Section 17.2.3.

4. Any replicated cells which are not accounted for by steps 3 and 4 result in explicit motion
being inserted. This motion is implemented as a remapping store.

After all nodes in a statement have been processed in this manner, the only question which has to
be dealt with is how to handle ordinary vector stores (that is, stores at which no motion has already
been indicated).

Any replicated cell on the right-hand side of an assignment statement can be ignored. The context
of the assignment statement is taken from the root of the statement.

If there is a replicated cell on the left-hand side of an assignment statement which does not cor-
respond to a replicated cell on the right-hand side, then a REMAP STORE needs to be inserted
to spread the right-hand side over the range of processors indicated by the replicated cell on the
left-hand side.

10.5 An implementation of same region()

Figure 10.1 illustrates an outline for code to implement same region(), which takes account of most
of the considerations of the preceding sections.
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In reading the pseudo-code, think of same region() as a boolean function which compares the iter-
ation VP spaces of a node (the “parent”) and each of its children in an expression tree. It returns
TRUE if and only if no motion is necessary between the two nodes.

The parent’s iteration VP space is passed in to the function as Π and the child’s iteration VP space
is passed in as Γ.

function same region(iteration VP space Π, Γ):boolean
begin

if Π and Γ are the same (i.e. if they are dagged) then return TRUE;
if Γ consists entirely of replicated cells then return TRUE;
for each subspace π in Π, make sure that there is either

1. a subspace γ in Γ such that
begin
The iteration index of γ = the iteration index of π; and
multiplier[γ] = multiplier[π]; and
γ and π are identically distributed (i.e. both serial, or both BLOCK, or both CYCLIC,

or both CYCLIC(n) with the same value of n); and
γ and π have the same value of num folds if they are both BLOCK; have the same value

of strip length if they are both CYCLIC or CYCLIC(n);and
γ and π have the same effective stride and the same effective lower bound if they are not

serial.
end

or else that there is
2. a replicated cell in Γ with the same cell place as π;

and if neither of these is true, return FALSE;

for each replicated cell in Π make sure that there is a replicated cell in Γ with the same multiplier
and strip length; otherwise return FALSE;

for each completion in Π make sure that there is either
1. a completion in Γ with the same multiplier and strip length and the same v̄;

or else that there is
2. a replicated cell in Γ with the same multiplier and strip length;

and if neither of these is true, return FALSE;

return TRUE;
end

Figure 10.1: An implementation of same region().

10.5.1 PURE functions

PURE functions require some special handling, as follows:

• Any unnamed dimension in the iteration space of an argument to a PURE function must be
serial.

• All the other iteration subspaces of arguments to a PURE function must match up with
corresponding iteration subspaces of the function itself.



10.6. OPTIMIZING TRANSPOSE 107

10.6 Optimizing TRANSPOSE

In general, the TRANSPOSE operator is inlined in a completely straightforward manner.

However, when compiling a statement such as

A = TRANSPOSE(B)

where the transposed dimensions of B are either serial or block, we generate more efficient code.
Our current implementation has some further restrictions, the main ones being:

• A and B must be whole arrays, each of rank 2.

• There must be no non-trivial alignments.

• There must be no replicated or completion cells.

In such a case, we know that each processor holds a single chunk of the array B that is contiguous in
array element order. (It is also contiguous in memory because there are no non-trivial alignments).
The same is true for A. Further, each such chunk of B corresponds exactly to a unique chunk of
A—the only thing that has to be taken account of is the local transpose that has to take place in
addition to the data motion.

We compute the data motion as follows: say A is distributed onto the processor arrangement

P (strip lengthA
1 , strip lengthA

2 )

B must then be distributed onto the processor arrangement

Q(strip lengthB
1 , strip lengthB

2 )

where

strip lengthB
1 = strip lengthA

2

strip lengthB
2 = strip lengthA

1

A particular processor holding an element of B can be represented as v̄B = (v̄B
1 , v̄B

2 ), where (letting
the multiplier corresponding to the ith dimension of B be denoted by multiplierB

i )

v̄B
i =
⌊

v̄B

multiplierB
i

⌋
mod strip lengthB

i

Similarly, the processor holding an element of A can be represented as v̄A = (v̄A
1 , v̄A

2 ), where (letting
the multiplier corresponding the ith dimension of A be denoted by multiplierA

i )

v̄A =
2∑

i=1

v̄A
i ∗multiplierA

i

Since we are implementing a TRANSPOSE, the correspondence between the processor v̄B holding
an element of B and the processor v̄A holding the corresponding element of A is given by

(v̄A
1 , v̄A

2 ) = (v̄B
2 , v̄B

1 )
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Thus, we have

v̄A =
(⌊

v̄B

multiplierB
2

⌋
mod strip lengthB

2

)
∗multiplierA

1

+
(⌊

v̄B

multiplierB
1

⌋
mod strip lengthB

1

)
∗multiplierA

2

We generate in such a case a call to a library routine that uses this formula to move the data and
perform the local transpose on each processor.

10.7 Normalizing the iteration space

As far as the STRIP phase is concerned, the precise iteration bounds in a statement are not impor-
tant, so long as every iteration space in that statement has the same bounds.

In our first implementation, therefore, at the end of DIVIDE (when all the statements created before
STRIP exist in the dotree) the iteration space of each computational node in every statement was
normalized so they have the same bounds.

We no longer do this in DIVIDE. It turned out that this created subscript expressions that were too
complicated for the data motion part of strip to analyze effectively for some of its optimizations.
Therefore, this normalization happens on demand in STRIP in the course of localizing the subscripts
of array expressions. (See page 130, item 1.)

For historical interest, however, and to show conceptually what is at stake, we indicate our original
implementation here:

The particular bounds we use to normalize the iteration spaces to are almost arbitrary. We generally
use the bounds of the iteration space of the root node of the statement.2 Section 8.3 showed how
we have arranged matters so that this can be done safely.

Let us denote the iteration bounds of the root of the statement by

〈LBnew, UBnew, Snew〉.

If the old (i.e. original) iteration bounds of a node in the statement are denoted by

〈LBold, UBold, Sold〉

then a vINDEX node (call it I) which came from a TRIPLE node (i.e. which represents an unnamed
dimension) must be replaced by

I − LBnew

Snew
∗ Sold + LBold

Finally, the iteration allocation function is adjusted as follows:

2The one exception occurs when the right-hand side of the statement is a reduction intrinsic. In this case, the
iteration space of the root has smaller rank than that of the array argument of the reduction, and so in this case, we
normalize to the bounds of the array argument of the reduction.
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alloc stridenew =
alloc strideold ∗ Sold

Snew

alloc offsetnew = alloc offsetold + alloc strideold ∗ LBold − alloc stridenew ∗ LBnew

In the case of a local statement (the term “local statement” is defined on page 121), the alloc stride
and alloc offset could just be inherited from the root node, just as the iteration bounds are; this is
not true for non-local statements, however.

As explained above, this processing is no longer performed in DIVIDE. The processing that takes
its place in STRIP only modifies array subscripts, since there is no longer any need to keep the
iteration allocation function up to date after STRIP.



Chapter 11

DIVIDE: Independent DO Loops

11.1 High-level design

We distribute iterations of INDEPENDENT do loops under certain conditions: The only procedure
calls we allow inside distributed loops are procedures that are within the scope of an ON directive
with a RESIDENT clause with no res-object-list. This guarantees that such a procedure accesses
only data available in its local memory, and has the further property that no remapping will be
necessary between actual and dummy arguments. So we make the following definition:

A top-level independent do loop is an independent do loop (i.e., a dt_do_loop tagged as INDEPENDENT),
having the following properties:

1. Each procedure call within the loop lies within the scope of an ON directive with a RESIDENT
clause with no res-object-list.

2. No array reference within the loop contains a subscript with a non-affine reference to an inde-
pendent loop variable, or contains a subscript with a reference to more than one independent
loop variables.

3. No array reference within the loop has two subscripts containing a reference to the same
independent loop variable.

4. No punted construct is found within the loop.

5. There is no independent do loop node above it having the above properties.

Only loops within a top-level independent do loop will be processed as independent, i.e., will have
their iterations distributed.

Now for each top-level independent do loop d, consider the tree of do tree nodes with d as its root.
The term “tree” below will always refer to this tree.

1. For each path in the tree from the root d to a terminal node, we build an iteration space, as
follows:

(a) Non-independent loops in this path do not contribute to the iteration space.

110
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(b) Each unnamed dimension (i.e. each “colon”) corresponds to a serial subspace. (This is
for simplicity; we assume that in general users will not mix the two idioms of independent
loops and Fortran 90 array syntax.)

(c) Each independent loop on the path contributes a subspace to the iteration space. The
corresponding cell places are allocated in some fashion. We don’t worry too much about
getting an optimal allocation, because the programmer can specify this precisely, using
an ON clause.
If the programmer does use an ON clause that specifies an array, that array is referred
to in our implementation as a home_ref. In other cases, the compiler may pick, where
possible, one of the available array references to act as the home_ref.

We call this iteration space the loop iteration space. Each terminal node in the tree thus has
an associated loop iteration space.

2. Each array reference in the tree has associated with it a reference iteration space, derived from
the subscript map and the data space of the array, in the usual fashion.

3. Thus, at each array reference, there are two iteration spaces:

(a) The reference space for that array reference.

(b) The loop iteration space at that point in the tree.

If at each array reference, these two iteration spaces are the same, then the loop nest is capable
of being executed in parallel—all the data is available where it needs to be accessed. This is
the typical case.

In any other case, we have some work to do. An optimal solution to this problem involves the
techniques of data optimization; we discuss this briefly on page 116 below. Here we indicate
a simpler approach that will probably handle the most common cases.

(a) If all the references to an array A in the tree have the same loop iteration space, and also
have the same reference iteration space, but the two spaces are not the same, then we
perform a “copy-in/copy-out” of A in the conventional fashion:

• Create a temporary whose data space conforms with the (unique) loop iteration space
for the references to A in the loop nest, and copy A into that temporary before the
tree.
• Replace each reference to A in the tree by a corresponding reference to that tempo-

rary.
• Copy the temporary back to A after the tree. (This last step can be omitted if there

were no assignments to A in the tree.)

(b) Otherwise, if there is no true dependence involving h in the loop nest1, and if all the refer-
ences to A that are stored to (e.g., that are the left-hand sides of assignment statements)
have the same loop iteration space and the same reference iteration space, then

• For each reference to A whose reference iteration space is not the loop iteration space
at that point, create a temporary for the whole array A whose data space is consistent
with that loop iteration space, and assign (all of) A to that temporary before the

1Precisely, there is no true dependence at the level of one of the independent loops in the nest. Note that any
dependence at the level of an independent loop in the nest would have to be a loop independent dependence, since
the loop is independent.
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tree. (Note that if two such references have the same reference iteration space and
the same loop iteration space, they can use the same temporary.)
• Replace that reference to A by a corresponding refence to that temporary.
• After the tree, copy out the temporary corresponding to the stored reference(s) back

to A (if the temporary was used for a stored occurrence). Again, we emphasize that
this can happen for at most one temporary.

(c) Otherwise, for each two references to A at which the loop iteration spaces are different,
we modify the loop iteration spaces at those two occurrences by making the subspaces
contributing to the differences in mappings all serial. (The cell place that was used by
such a subspace can be made either a completion cell or a replicated cell.) After this
step, each occurrence of a given array has exactly one loop iteration space throughout the
entire tree. The same copy-in/copy-out technique as used above in item 3b can then be
used (without having to check for true dependences; we know that all the loop iteration
spaces are now the same).

4. A data object that does not have the full complement of subscripts (i.e., one for each iteration
subspace) is then constrained to be replicated over the missing dimensions, and is copied in
and out as above if necessary to satisfy this constraint.

The remainder of the processing is handled later, by the STRIP phase. We specify it here simply
for clarity:

1. The iteration space is used later in STRIP to localize the loop bounds and subscripts. For this
purpose, the primary subspace corresponding to the loop is stored in a loop attribute called
independent_ispace.

2. Any unnamed dimensions of course have to be turned into (serial) loops. These loops are
inspected (in STRIP) for the possible presence of strip mining obstacles, which are removed
in the usual manner.

3. The remainder of the loops as written are guaranteed to be semantically correct. Therefore
no checking for strip mining obstacles has to be done for these loops. However, we can still
perform loop fusion and exterior loop optimization. This is handled in the usual manner by
dependence analysis.

11.2 Examples

Here we give four examples. The first three correspond to the situations listed under item 3 in the
previous section.

11.2.1 Example for 3a

The program fragment in Figure 11.1 shows two references to the array h, each having the same
loop iteration space and the same reference iteration space, but the two spaces are different. In this
case the processing indicated above in item 3a applies: h would be copied to a temporary before
this program fragment, and copied out afterwards.
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!hpf$ distribute(block, block, block) :: h
!hpf$ independent

do k = 1, 100

!hpf$ independent

do i = 1, 100
!hpf$ independent

do j = 1, 100
!hpf$ on home(h(i, j, k)) begin
h(j, i, k) = . . .
!hpf$ end on

end do

end do

!hpf$ independent

do i = 1, 100
!hpf$ independent

do j = 1, 100
!hpf$ on home(h(i, j, k)) begin
· · · = h(j, i, k)
!hpf$ end on

end do

end do

end do

Figure 11.1: Since the loop iteration space for each set 〈i, j, k〉 is consistent with the mapping of
h(i, j, k), each reference to h has the same reference iteration space, and each also has the same
loop iteration space, and the two spaces are not the same.

11.2.2 Example for 3b

The program fragment in Figure 11.2 shows an array h whose references have two different reference
iteration spaces.

However, there is no true dependence involving h, and there is only one statement storing to h.
Since the loop iteration space at all the references to h is the same, this example can be handled as
in item 3b above: since the loops are mapped to align with h(i, j, k), a temp is created for h, with
the same mapping as h, and before the loop

forall (i = 1 : 100, j = 1 : 100, k = 1 : 100)
temp(j, i, k) = h(i, j, k)

end forall

is inserted. In the program fragment, h(j, i, k) is replaced consistently with temp(i, j, k). And
finally, after the program fragment, temp is copied back out to h.

11.2.3 Example for 3c

The program fragment illustrated in Figure 11.3 again shows an array h with two different reference
iteration spaces.

In this case, however, there is a true dependence involving h, and also there there are two different
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!hpf$ distribute(block, block, block) :: h
!hpf$ independent

do k = 1, 100

!hpf$ independent

do i = 1, 100
!hpf$ independent

do j = 1, 100
!hpf$ on home(h(i, j, k)) begin
if g(i, j) then
· · · = h(i, j, k)

else

· · · = h(j, i, k)
end if

!hpf$ end on

end do

end do

!hpf$ independent

do i = 1, 100
!hpf$ independent

do j = 1, 100
!hpf$ on home(h(i, j, k)) begin
h(j, i, k) = . . .
!hpf$ end on

end do

end do

end do

Figure 11.2: The i loops are mapped the same and similarly for the j loops (i.e., the loop iteration
spaces at all the references to the array h are identical). The references to h have different reference
iteration spaces, but we can still honor the distribution of the loop iterations.

reference iteration spaces for the references to h that are stored to. For both of these reasons,
item 3c applies. Therefore, we serialize the first two dimensions of h (by a copy-in/copy-out). In
effect, this removes the INDEPENDENT directive from both sets of i and j loops, and also means
that we are not fully honoring the ON directive.

11.2.4 One more example

The program fragment illustrated in Figure 11.4 gives rise to the tree illustrated in Figure 11.5.

This program fragment has several interesting characteristics:

1. If both j loops are given the same cell place in iteration space, and if the i and j dimensions
account for all of the processors2, then the k loop will be serialized, since there will be nothing
left to distribute it over. However, the i and both j loops can then be distributed and executed
in parallel.

2that is, in the terminology of our internal representation, if there are no completion or replicated cells in the loop
iteration space of the first 〈i, j〉 path down the tree.
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!hpf$ distribute(block, block, block) :: h
!hpf$ independent

do k = 1, 100
!hpf$ independent

do i = 1, 100

!hpf$ independent

do j = 1, 100
!hpf$ on home(h(i, j, k)) begin
if f(i, j) then

h(i, j, k) = . . .
else

h(j, i, k) = . . .
end if

!hpf$ end on

end do

end do

!hpf$ independent

do i = 1, 100
!hpf$ independent

do j = 1, 100
!hpf$ on home(h(i, j, k)) begin
if g(i, j) then
· · · = h(i, j, k)

else

· · · = h(j, i, k)
end if

!hpf$ end on

end do

end do

end do

Figure 11.3: h has two different reference iteration spaces, and must be copied to a partially serialized
temporary, in effect serializing the i and j loops.

2. If the k loop is distributed in a non-trivial manner, then the two j loops can only correspond
to the same cell place in their iteration spaces if the iteration space for the 〈i, j〉 path (the
first, or leftmost, path) has either a completion or a replicated cell in the place of the k cell
in the iteration space for the 〈i, j, k〉 path. If it does not, the loop iteration spaces at the two
references to b be different, and the same will be true at the two references to c. This in turn
will force b and c to be completely serialized. The only computation that can be carried out
in parallel in this case is the computations involving f .

3. If the statement involving f is changed to

f(i, m, k) = f(j, m, k)

then the two references to f in this statement have different reference iteration spaces (as-
suming that i and j are distributed non-trivially). Hence f must be serialized in its first
dimension.
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!hpf$ independent

do i = 1, n

a(i) = . . .

!hpf$ independent

do j = 3, s
b(i, j) = . . .
c(j) = . . .

end do

!hpf$ independent

do j = 3, s
b(i, j) = . . .
do m = 4, p

d(i, j, m) = . . .
do n = 5, r

e(i, j, m, n) = e(i, j, n, m)
!hpf$ independent

do k = 6, s
f(i, m, k) = f(i, n, k)

end do

end do

end do

c(j) = . . .
end do

end do

Figure 11.4: An example with independent and non-independent loops.

11.3 Data optimization

The example in Figure 11.3 can actually be handled without serializing any of the dimensions of h,
at the cost of introducing addition data motion. In effect, the compiler turns it into the code in
Figure 11.6.

In this figure, no copy-out is necessary. The analysis the compiler would have to use to generate this
code is the same as that used in data optimization: at each point in the program at which h is live, a
“home” for h would be established; this just means a temporary array holding the values of h. The
mappings of those homes would be determined by finding the graph of preferences between them
and breaking those preferences that minimize a cost function. In this case, a home was established
between the two i and j loop nests, and motion was created at that site.

Of course, the programmer could have written this all out explicitly. And in this particular example,
an even simpler way to write the program would be as in Figure 11.7.

This last rewriting is only possible, however, because the example is so simple. If there were other
statements and flow of control in the loops, this kind of rewriting might be impossible.
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Figure 11.5: The tree corresponding to the program fragment of Figure 11.4. Nodes in circles
represent independent do loops. Nodes in rectangles represent non-independent do loops. The
remainder of the nodes represent statements.

11.4 An optimization for independent loops with indirect
addressing

Consider the loop in Figure 11.8. Here the arrays x, y, and r are assumed to be replicated. The
first two statements in the loop body set up the indirect addressing which is used in the remaining
statements of the body.

Although the compiler cannot determine how to distribute iterations at compile-time, the iterations
can certainly be performed independently, and without incurring any data motion. We do it roughly
like this (the precise details are described subsequently):

• Take off the INDEPENDENT attribute of the DO loop.

• Execute the first two statements in parallel. That is, all processors execute the identical code.
This is possible because the everything in these statements is replicated.

• Guard each of the last two statements so that only processors owning elements of the left-hand
side of each statement execute that statement.

These guards are evaluated at run-time. Thus, we have actually distributed iterations of the loop (or
at least those parts of the iterations that deal with mapped data), but the details of the distribution
are not known until run-time.

Precisely, we first perform the following checks:
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!hpf$ distribute(block, block, block) :: h
!hpf$ align temp with h
forall (i = 1 : 100, j = 1 : 100, k = 1 : 100)
temp(i, j, k) = h(j, i, k)
end forall

!hpf$ independent

do k = 1, 100
!hpf$ independent

do i = 1, 100
!hpf$ independent

do j = 1, 100
!hpf$ on home(h(i, j, k)) begin
if f(i, j) then

h(i, j, k) = . . .
else

temp(i, j, k) = . . .
!hpf$ end on

end if

end do

end do

forall (i = 1 : 100, j = 1 : 100, f(i, j))
temp(j, i, k) = h(i, j, k)

end forall

forall (i = 1 : 100, j = 1 : 100, .not.f(i, j))
h(j, i, k) = temp(i, j, k)

end forall

!hpf$ independent

do i = 1, 100
!hpf$ independent

do j = 1, 100
!hpf$ on home(h(i, j, k)) begin
if g(i, j) then
· · · = h(i, j, k)

else

· · · = temp(i, j, k)
end if

!hpf$ end on

end do

end do

end do

Figure 11.6: An alternative way for the compiler to handle the example shown in Figure 11.3. This
requires data optimization techniques.
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!hpf$ distribute(block, block, block) :: h
!hpf$ independent

do k = 1, 100
forall (i = 1 : 100, j = 1 : 100)

where f(i, j)
h(i, j, k) = . . .

else where

h(j, i, k) = . . .
end where

end forall

forall i = 1 : 100, j = 1 : 100
where g(i, j)
· · · = h(i, j, k)

else where

· · · = h(j, i, k)
end where

end forall

end do

Figure 11.7: Yet another way the example in Figure 11.3 could have been written. In general, this
sort of rewriting would not be possible, however.

!hpf$ distribute(block, block) :: a
!hpf$ distribute(block, cyclic) :: b
!hpf$ align s(i, j) with b(i, j)
!hpf$ independent, new(j, k)
do i = 1, 100

j = x(i)
k = y(i)
a(j, k) = r(j, k) + 2
b(j, k) = s(j, k) ∗ r(j, k)

end do

Figure 11.8: An INDEPENDENT loop with indirect addressing.

1. We are in a set of tightly nested INDEPENDENT DO loops. (Perhaps we could relax this
restriction at some point; we have not found the need to do so yet.)

2. At least one non-NEW array reference lvalue (i.e., location being stored to) is explicitly
mapped. (If this were not true, there would be no reason to execute anything in parallel.)

3. Each non-NEW array reference rvalue (i.e., location being fetched) is available where it is
used. In particular, it is either unmapped, replicated, or aligns with the left-hand side of the
assignment in which it is used.

4. Each subscript of each mapped array reference is a fetch of a NEW scalar. (Assignments to
non-NEW scalars are not allowed inside an INDEPENDENT DO loop in any case.)
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5. All the assignments to these NEW scalars (i.e., that are involved in subscripts of mapped
array references) occur in statements at the top of the loop body.

If these conditions are all met, we perform the following transformation:

• Take off the INDEPENDENT attribute of the DO loops.

• Divide the statements in the loop body into two consecutive sequences, each covered by a
dt_seq node.

• The first dt_seq covers the assignments to the scalar NEW variables used as subscripts.

• The second dt_seq covers the rest of the original body. This dt_seq is tagged with the
attribute needs_privatized_guard.

• STRIP will later compute a guard for this second dt_seq composed of the OR of the cc_guards
of each statement under the dt_seq node. STRIP then places this dt_seq node under a
dt_simple_if node guarded by this computed expression.

Of course each statement under the second dt_seq is still guarded by its own cc_guard, just as it
normally would be in non-parallel code.

(We don’t know at this point whether or not the guard over the dt_seq really helps. It does provide
an early exit where appropriate. However, deleting it would not alter the semantics of the program.)

Note that the transformation we perform in this way does indeed preserve the semantics of the
original program:

• Since the loops were declared INDEPENDENT, we are assured that there are no loop-carried
dependences among the loop iterations.

• Normally, each iteration of an INDEPENDENT loop is executed in its entirety by one proces-
sor. This ensures that any loop-independent dependences within the iteration are honored.

Now with this optimization, it is possible that different statements within a single iteration
may execute on different processors. This cannot cause a problem, however, because the only
variables that are defined and then used within the loop body are either NEW scalar variables,
or are mapped array references that are used by the same processor that assigned to them.

There is a special case of this optimization that occurs when in addition to the 5 restrictions stated
above,

6. All non-NEW array references are aligned with each other.

This additional restriction is not satisfied in the example in Figure 11.8, but it would be if the
mappings of the arrays a and b were identical.

In such a case, only the guard for the second dt_seq needs to be generated—the individual guards for
the statements under that dt_seq would all be identical to this guard, and are therefore suppressed
by STRIP. In this case, the dt_seq is classified by DIVIDE as single_guard, rather than as
needs_privatized_guard.
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STRIP: Local Statements

For vector statements not requiring interprocessor communication, STRIP first generates strip loops
and modifies the subscripts in the array references so that the code becomes explicit SPMD; i.e.,
the code is parametrized by my processor() and is therefore different on each processor. (This
corresponds to what we call “naive strip mining” on a uni-processor; the term “strip mining” comes
from an early implementation for a vector uniprocessor machine.) Then STRIP performs whatever
transformations are necessary to correct the semantics of the transformed code, and to further
optimize the resulting loop structure.

Vector statements involving interprocessor communication are handled differently, as described in
Chapters 13–15 below. This separate handling is designed to reduce the number of interprocessor
messages as much as possible.

Sections 12.8 and 12.9 describe additional tasks that STRIP performs, in addition to its handling
of local statements.

12.1 Local statements

Assignment statements involving arrays are of two kinds: local and remote. A local statement is one
in which no interprocessor motion takes place. Local statements can be characterized as follows:

• All nodes in the statement are in the same region, and

• Each complex cell (including complex scalar cells) in the data VP space is allocated serially;
i.e. has strip length = 1. Of course, in typical cases, there will be no complex cells in the data
VP space.

The second condition insures that the address of each array reference is locally computable, provided
that the value of each of its subscripts is locally available. And the first condition insures that the
value of each subscript is in fact locally available.

So for instance, any assignment statement where all the array references are in the same region and
where the subscripts are all triples or local scalars is a local array reference. But also a statement
such as

A(V ( : ), : ) = B( : , : )

121
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is a local statement provided A and B are are aligned, are both distributed serially in the first
dimension, and that V is replicated over all the processors, so in any case the values of both array
references are computable locally.

Local statements can be thought of as falling into two categories. (The compiler does not actually
make this distinction—it is put here only to help with the explanation.)

• Statements in which all data VP cells are primary, local scalar, or replicated. These statements
can be called completely local.

• Statements in which there is at least one complex data VP cell. (Of course, such a cell would
have to have strip length = 1.) Such a statement can be called local with local copy.

The assignment statement above exhibits a local copy. Here is another example:

!hpf$ template t(n)
real result(n), data(n, n)
integer index(n)

!hpf$ distribute t(block)
!hpf$ align result(i), index(i), data(i, ∗) with t(i)

forall (i = 1:n)
result(i) = data(i, index(i))

And here is a more complicated example exhibiting a local copy:

!hpf$ template t(n, n, n)
real A(n, n, n), B(n, n, n, n)
integer V (n, n, n, n), W (n, n, n)

!hpf$ distribute t(block, block, block)
!hpf$ align A(l, m, n), V (l, m, n, ∗), W (l, m, n), B(l, m, n, ∗) with t(l, m, n)

forall (i = 1:n, j = 1:n, k = 1:n)
A(i, j, k) = B(i, j, k, V (i, j, k, W (i, j, k)+j)+i)

12.2 Generating strip loops

Three tasks are necessary in order to strip mine a local statement:

• Construct a nest of DO loops around the statement, based on the statement’s iteration space.
The loop bounds in general differ on each processor.

• Localize the subscripts of the array references in the statement. This amounts to expressing
these subscripts in terms of the loop variables for the loop nest just introduced.

• Remove any obstacles to strip mining (i.e. loop-carried dependences which have been intro-
duced by the first two steps).

In this section we show how to construct the nest of DO loops around a local statement.

First, enumerate the primary cells in the iteration space. For each such primary cell, we construct
a DO loop
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do Ij = LBloc
j , UBloc

j , Sloc
j

In general, the loop bounds and step differ for different processors. In the remainder of this section,
we show how to compute these parameters and how to adjust the corresponding subscript expressions
of the array references in the body of the loop.

The iteration cell in question either comes from a FORALL index

forall (Ij = LBj, UBj, Sj)

or a triple

. . . A(LBj :UBj :Sj) . . .

We will refer to LBj , UBj , and Sj as the iteration bounds.

We will deal with each iteration cell separately. What we do depends on the distribution of that
dimension:

SERIAL distribution. This includes all cases in which the jth iteration cell has strip length = 1—
all such cells have been made SERIAL by the time the processing gets to STRIP. (We are using
j simply as a tag here; the order of the cells in the two data structures might well be different.)
The strip loop must be the same on each processor. (In all other cases, the strip loop may have
different bounds on different processors.) The local loop bounds are constructed immediately
from the iteration bounds:

LBloc
j = LBj

UBloc
j = UBj

Sloc
j = Sj

If on the other hand the jth iteration cell has strip length > 1, then since the statement is local, it
must correspond to exactly one data cell of the array reference on the left-hand side of the assignment
statement. For simplicity, let us refer to this also as the jth data cell (although the numbering might
really be different; the two numbers would be related through the correspond field (page 51). fj

will denote the corresponding data allocation function, and φj will denote the iteration allocation
function. The partial subscript map between the iteration cell and the data cell will be denoted by
σj . σj is an affine map, and we have

φj = fj ◦ σj .

DLBj will denote the declared lower bound of the array reference on the left-hand side in the
dimension corresponding to the jth data cell, and DUBj will denote the corresponding declared
upper bound.

BLOCK distribution. The values of the jth iteration coordinate are

{
Sj ∗ i + LBj : 0 ≤ i ≤

⌊
UBj − LBj

Sj

⌋}
.
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To find the addresses in the jth cell (i.e. the partial values of v̄) corresponding to these
subscripts, we reason as follows: The jth component of the virtual processor address (which
we call vj) is just fj(σj(Sj ∗ i + LBj)), or, equivalently, φj(Sj ∗ i + LBj). The partial value v̄j

is then given by

⌊
φj(Sj ∗ i + LBj)

num foldsj

⌋
.

Now each processor knows its own value of v̄j , as outlined above on page 50. This value is
computed once during the DATA phase and stored as the v bar attribute of each cell. The
first and last elements of the array in a particular processor’s memory correspond to the least
and greatest value of i in the range

0 ≤ i ≤
⌊

UBj − LBj

Sj

⌋

satisfying ⌊
φj(Sj ∗ i + LBj)

num foldsj

⌋
= v̄j

Solving for i, we see that the least and greatest values of i are computed as follows:

If φj ↑ and Sj > 0, or φj ↓ and Sj < 0 then

iloclow = max

{
0,

⌈
φ−1

j (v̄j ∗ num foldsj)− LBj

Sj

⌉}

and

ilochigh = min

{⌊
UBj − LBj

Sj

⌋
,

⌈
φ−1

j ((v̄j + 1) ∗ num foldsj)− LBj

Sj

⌉
− 1

}

On the other hand, if φj ↑ and Sj < 0, or φj ↓ and Sj > 0 then

iloclow = max

{
0,

⌊
φ−1

j ((v̄j + 1) ∗ num foldsj)− LBj

Sj

⌋
+ 1

}

and

ilochigh = min

{⌊
UBj − LBj

Sj

⌋
,

⌊
φ−1

j (v̄j ∗ num foldsj)− LBj

Sj

⌋}

If iloclow ≤ ilochigh, there are elements of A in the local processor’s memory. In this case, the

local (0-based) jth component of the address of the element of A corresponding to i is v̂j =
φj(Sj ∗ i + LBj) mod num foldsj . Hence the local lower and upper loop bounds and the local
loop stride are given by

LBloc
j = Sj ∗ iloclow + LBj

UBloc
j = Sj ∗ ilochigh + LBj

Sloc
j = Sj
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An example showing a BLOCK distribution is presented on page 133.

If the effective stride and alloc stridej are both known at compile time to be 1 (and hence also
the source stride Sj = 1), these calculations can be greatly simplified1:

The possible values of vj in the current block run from v̄j ∗ nj to v̄j ∗ nj + nj − 1. Thus, we
have

vloc
j,low = max

{
φj(LBj), v̄j ∗ num foldsj

}
vloc

j,high = min
{
φj(UBj), (v̄j + 1) ∗ num foldsj − 1

}

Now we apply φ−1
j to each term. We can do this because since φj ↑, applying φ−1

j pre-

serves the inequalities. (In fact, applying φ−1
j in this special case just amounts to subtracting

alloc offsetj .) This gives us the following formulas:

LBloc
j = max

{
LBj, φ

−1
j (v̄j ∗ num foldsj)

}
UBloc

j = min
{
UBj , φ

−1
j

(
(v̄j + 1) ∗ num foldsj − 1

)}

Note in particular that if v̄j is not in the interval

φj(LBj) div num foldsj ≤ v̄j ≤ φj(UBj) div num foldsj

then these formulas yield a local upper bound that is less than the local lower bound—i.e.,
the local loop is empty, as it should be.

CYCLIC distribution. The idea behind the calculations is similar, but a closed-form solution
does not seem possible. The calculations to find the local bounds and stride become a short
algorithm, illustrated in Figure 12.1.

The values of vj corresponding to these local bounds are then given by the triple vj,low :
vj,high : vj,str, where

vj,low = φj(LBloc
j )

vj,high = φj(UBloc
j )

vj,str = φj(LBloc
j + Sloc

j )− vj,low

1A significant part of this simplification is due to Bill Noyce.
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function compute cyclic bounds

begin
-- First initialize the return values to create an empty loop. If either (and hence both) of

the for loops in this function cannot find an element, this is what will be returned.

LBloc
j ← strip lengthj ;

UBloc
j ← 0;

Sloc
j ← strip lengthj ;

-- Search forward to find the local lower bound and local stride:

element← 0;
for i = 0 to

⌊
UBj−LBj

Sj

⌋
do

if φj(Sj ∗ i + LBj) mod strip lengthj = v̄j then begin
element← element + 1;
if element = 1 then begin

LBloc
j ← Sj ∗ i + LBj;

continue;
end if
if element = 2 then begin

UBloc
j ← Sj ∗ i + LBj;

Sloc
j ← UBloc

j − LBloc
j ;

break;
end if

end if
end for

-- Search backward to find the local upper bound:

for i =
⌊

UBj−LBj

Sj

⌋
down to 0 do

if φj(Sj ∗ i + LBj) mod strip lengthj = v̄j then begin
UBloc

j ← Sj ∗ i + LBj ;
break;

end if
end for

end

Figure 12.1: Definition of the library function compute cyclic bounds(). By having two loops, one
searching forward and the other backward, we avoid the problem of visiting every element of a very
large iteration space and performing an expensive computation (including a mod) at each step.

As in the case of BLOCK distribution, if we know at compile time that the effective stride is
1, these calculations can be simplified, and an actual expression (rather than a function call
or inlined code for the algorithm) can be generated, as shown in Figure 12.2.

If LBloc
j > UBloc

j , then the local processor does not address any elements of the arrays and so
the DO loop is empty.
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Sloc
j ← strip lengthj ;

if φj(LBj) mod strip lengthj > v̄j then
LBloc

j ← LBj + (v̄j − φj(LBj) mod strip lengthj) + strip lengthj ;
else

LBloc
j ← LBj + (v̄j − φj(LBj) mod strip lengthj);

end if
if φj(UBj) mod strip lengthj ≥ v̄j then

UBloc
j ← UBj + (v̄j − φj(UBj) mod strip lengthj);

else
UBloc

j ← UBj + (v̄j − φj(UBj) mod strip lengthj)− strip lengthj ;
end if

Figure 12.2: Computation of local loop bounds and stride for CYCLIC distribution when the
effective stride is known to be 1.

The corresponding values of vj are

vj,low : vj,high : strip lengthj

where

vj,low = φj(LBloc
j )

vj,high = φj(UBloc
j )

CYCLIC(n) distribution Before generating strip loops corresponding to a primary cell which has
been distributed CYCLIC(n), STRIP first creates a loop around the statement, each iteration
of which corresponds to one “block” of the array. The loop is of the form

do Kj = K init
j , Ktrm

j , K incr
j

. . .
end do

where

K init
j =

⌊
φj(LBj)

nj ∗ strip lengthj

⌋

Ktrm
j =

⌊
φj(UBj)

nj ∗ strip lengthj

⌋

K incr
j =

{
1 if K init

j ≤ Ktrm
j

−1 otherwise
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We further set

K low
j =

{
K init

j if φj ↑ and Sj > 0, or φj ↓ and Sj < 0
Ktrm

j if φj ↑ and Sj < 0, or φj ↓ and Sj > 0

Khigh
j =

{
Ktrm

j if φj ↑ and Sj > 0, or φj ↓ and Sj < 0
K init

j if φj ↑ and Sj < 0, or φj ↓ and Sj > 0

Note that we always have
0 ≤ K low

j ≤ Khigh
j .

Now we continue in a similar manner to the discussion of BLOCK distribution. The jth

iteration coordinate takes on the values {Sj ∗ i + LBj}, where

Kj ∗ nj ∗ strip lengthj ≤ φj(Sj ∗ i + LBj) < (Kj + 1) ∗ nj ∗ strip lengthj .

The addresses in the jth cell (i.e., the partial values of v̄) corresponding to these subscripts
are the values {⌊

φj(Sj ∗ i + LBj)
nj

⌋
−Kj ∗ strip lengthj

}

where again

Kj ∗ nj ∗ strip lengthj ≤ φj(Sj ∗ i + LBj) < (Kj + 1) ∗ nj ∗ strip lengthj .

Note that this last inequality could just as well be written as

0 ≤
⌊

φj(Sj ∗ i + LBj)
nj

⌋
−Kj ∗ strip lengthj < strip lengthj

So we see that the first and last elements of the array in a particular processor’s memory
correspond to the least and greatest value of i such that⌊

φj(Sj ∗ i + LBj)
nj

⌋
= v̄j + Kj ∗ strip length

Setting Kj ∗ strip lengthj = Wj and solving for i, we see that the least and greatest values of
i are computed as follows:

If φj ↑ and Sj > 0, or φj ↓ and Sj < 0 then

iloclow = max

{
0,

⌈
φ−1

j ((v̄j + Wj) ∗ nj)− LBj

Sj

⌉}

and

ilochigh = min

{⌊
UBj − LBj

Sj

⌋
,

⌈
φ−1

j ((v̄j + Wj + 1) ∗ nj)− LBj

Sj

⌉
− 1

}

If on the other hand φj ↑ and Sj < 0, or φj ↓ and Sj > 0 then

iloclow = max

{
0,

⌊
φ−1

j ((v̄j + Wj + 1) ∗ nj)− LBj

Sj

⌋
+ 1

}
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and

ilochigh = min

{⌊
UBj − LBj

Sj

⌋
,

⌊
φ−1

j (v̄j + Wj) ∗ nj)− LBj

Sj

⌋}

The local lower and upper loop bounds and the local loop stride are then given (just as in the
case of BLOCK distribution) by

LBloc
j = Sj ∗ iloclow + LBj

UBloc
j = Sj ∗ ilochigh + LBj

Sloc
j = Sj

An example showing a CYCLIC(n) distribution is presented on page 134.

Once again, if the effective stride and alloc stridej are both known at compile time to be 1
(and hence also the source stride Sj = 1), simpler formulas can be generated in the following
manner:

The current block number is given by

my block = Kj ∗ strip lengthj + v̄j

The possible values of vj in this block run from

my block ∗ nj = Kj ∗ strip lengthj ∗ nj + v̄j ∗ nj

to
my block ∗ nj + nj − 1 = Kj ∗ strip lengthj ∗ nj + (v̄ + 1) ∗ nj − 1

We thus have

vloc
j,low = max

{
φj(LBj), Kj ∗ strip lengthj ∗ nj + v̄j ∗ nj

}
vloc

j,high = min
{
φj(UBj), Kj ∗ strip lengthj ∗ nj + (v̄ + 1) ∗ nj − 1

}
and so, just as in the similar computation for BLOCK distributions, we have

LBloc
j = max

{
LBj , φ

−1
j (Kj ∗ strip lengthj ∗ nj + v̄j ∗ nj)

}
UBloc

j = min
{
UBj , φ

−1
j

(
Kj ∗ strip lengthj ∗ nj + (v̄ + 1) ∗ nj − 1

)}

12.3 Handling the completion structure

The iteration space of a local statement may have a non-trivial completion structure. Such a struc-
ture corresponds to a restriction of the set of processors performing the local statement. This
restriction can be implemented in the form of a boolean expression computed locally on each pro-
cessor. This boolean expression can then be used to construct a test outside of the outermost
generated strip loop. However, we do not want to expose this test until the end the strip mine
phase, because it will inhibit loop fusion. Therefore, we compute the boolean expression and store
it as an attribute of the outermost strip loop. This attribute is preserved by the transformations
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the strip miner makes (including loop interchange). Then a final pass over the dotree at the end of
the strip miner inserts the IF tests.

The boolean expressions constructed from completion subspaces are constructed by ANDing together
boolean expressions formed for each such subspace. These elementary boolean expressions are each
of the form

IF v̄j =
⌊
my processor()

multiplierj

⌋
mod strip lengthj

where v̄j is derived from the completion subspace value sj , and is calculated as follows:

BLOCK distribution.

v̄j =
⌊

φj(sj)
num foldsj

⌋
.

CYCLIC distribution.
v̄j = φj(sj) mod strip lengthj .

CYCLIC(n) distribution.

v̄j =
⌊

φj(sj)
nj

⌋
mod strip lengthj .

Such a boolean expression is known in the implementation as a cc_guard (“completion cell guard”)

12.4 Localizing subscripts

After building a loop nest for each local statement (and in the process assigning a loop variable to
each iteration subspace), the array references in the statement are processed. Two things happen:

1. Each vINDEX node (which may come from a FORALL index or from a triple) is replaced by
its corresponding loop index. It then is normalized (see the discussion on page 108) so that
in effect all the iteration spaces in the statement have the same bounds. This is done simply
by using the loop bounds as the normalized bounds. Thus, LB, and S come from the loop. If
we denote the corresponding values from the vINDEX node by LBold and Sold, then the loop
variable I is replaced by the expression

I − LB
S

∗ Sold + LBold

2. The subscript is then localized. That is, in our notation, the subscript sj is replaced by v̂j .

The first of these tasks is straightforward. Here we show how the second one is performed. In
general, v̂j is computed as follows (note that here we are walking through the subscripts and not the
iteration space): First of all, vj is simply computed as fj(sj). Then, depending on the distribution
of the data subspace, we have

SERIAL distribution
v̂j = fj(sj)
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BLOCK distribution.
v̂j = fj(sj) mod num foldsj .

CYCLIC distribution.

v̂j =
⌊

fj(sj)
strip lengthj

⌋

CYCLIC(n) distribution

v̂j = nj ∗
⌊

fj(sj)
nj ∗ strip lengthj

⌋
+ fj(sj) mod nj

The subtracted term in the SERIAL, CYCLIC, and CYCLIC(n) cases takes account of the opti-
mization in the computation of num foldsj on page 74—we only allocate storage starting at the
lower bound for these cases.

In the BLOCK case, the expression fj(sj) mod num foldsj involves a mod which has to be evaluated
each time the array reference is encountered in any loop iteration. This expression can be rewritten
as

fj(sj)−
⌊

fj(sj)
num foldsj

⌋
∗ num foldsj

which is not in itself an improvement. However, when the the subscript is a primary subscript, this
is in turn equivalent to the expression

fj(sj)−
⌊

φj(LBloc
j )

num foldsj

⌋
∗ num foldsj

and in this formulation, the term containing the division operator is a loop invariant, and so can be
moved out of the loop.

Some care is necessary here to realize that this really works: the expression φj(LBloc
j ) is computed

in terms of the iteration space of the loop, which is not the same as the iteration space of the array
reference. However, for BLOCK distributions, corresponding elements live on the same virtual
processor, so this has to yield the same result as if both φj and LBloc

j were computed from the array
reference itself. This reasoning does not work, however for CYCLIC(n) dimensions, as we see next:

For a CYCLIC(n) primary subscript, we would like in a similar way to replace the formula for v̂j

above by

nj ∗Kj + fj(sj)−
⌊

φj(LBloc
j )

nj

⌋
∗ nj

This would be correct if φj , LBloc
j and the bounds for Kj were derived from the iteration space of

the array reference whose subscripts are being localized. However, in general, they are not—they
are derived from some particular iteration space (which in a local statement is typically that of the
array reference on the left-hand side).

This did not cause a problem when handling BLOCK distributions, but CYCLIC(n) distributions
are slightly more complex: Immediately below, we will let φ denote the iteration allocation function
of the iteration space of the array reference being localized, as opposed to φ, which denotes the
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iteration allocation function fo the iteration space used to construct the loop nest. Similarly, LBloc
j

denotes the localized lower bound of that iteration space. It may then be the case that φj(LBloc
j )

can differ from φ(LBloc
j ) by a multiple of vj ∗ strip lengthj . That is, the corresponding values of v̄j

are equal, and the offsets within the individual blocks are equal, but the block numbers may differ.

We therefore have to adjust the first and third terms as follows:

• Let us use the following notation:

– φ denotes the iteration allocation function of the iteration space of the array reference
being localized (as opposed to φ, which denotes the iteration allocation function of the
iteration space used to construct the loop nest).

– LBj denotes the lower bound of that iteration space.

– LBloc
j denotes the localized lower bound—i.e., the local lower bound that we would com-

pute if we were using this iteration space to generate the local loop bounds.

The third term can then be adjusted by adding to it the expression

⌊
φj(LBloc

j )
nj

⌋
∗ nj −

⌊
φj(LBloc

j )
nj

⌋
∗ nj

Now this is much too complicated to compute. However, we do know that in any case, we
must have

φj(LBloc
j ) ≡ φj(LBloc

j ) (mod nj ∗ strip lengthj)

Therefore the above expression simplifies to

φj(LBloc
j )− φj(LBloc

j )

Further, we also know that

φj(LBj)− φj(LBloc
j ) = φj(LBj)− φj(LBloc

j )

so the expression simplifies further to

φj(LBj)− φj(LBj)

• Similarly, the first term can be adjusted by subtracting from it the expression

φj(LBj)− φj(LBj)
strip lengthj

Thus, for BLOCK and CYCLIC(n) primary subscripts, the formulas for v̂j above are optimized to

BLOCK distribution.

v̂j = fj(sj)−
⌊

φj(LBloc
j )

num foldsj

⌋
∗ num foldsj .
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CYCLIC(n) distribution.

v̂j = nj ∗Kj + fj(sj)−
⌊

φj(LBloc
j )

nj

⌋
∗ nj −

φj(LBj)− φj(LBj)
strip lengthj

+ φj(LBj)− φj(LBj)

For an example involving a BLOCK distribution, suppose we have the following situation:

!hpf$ template t(50)
!hpf$ distribute t(block)

real A(46)
!hpf$ align A(i) with t(i+3)

A(1 :46 :3) = . . .

and suppose we know that strip length = 5. Then num folds is forced to be 10, and alloc stride = 1,
and alloc offset = 2. In this example, φj = fj, and the array is distributed as follows across 5
processors (where each of the 5 columns in this picture represents the linear memory associated
with one of the 5 processors):

.

A(1)

A(4)

A(7)

A(10)

A(13)

A(16)

A(19)

A(22)

A(25)

A(28)

A(31)

A(34)

A(37)

A(40)

A(43)

A(46)

The computations in processor 2 (numbering the processors from 0) then generate the DO loop

do I = 19, 25, 3
A(I − 18) = . . .

which assigns to the array section A(1 : 7 : 3), and in processor 3 they generate the DO loop

do I = 28, 37, 3
A(I − 28) = . . .
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which assigns to the array section A(0 : 9 : 3). Note that the subscripts now refer to local addresses
within each processor’s memory.

For an example involving a CYCLIC(n) distribution, we can consider the same local statement

A(1 : 46 : 3) = . . .

as before, where again strip length = 5, alloc stride = 1, and alloc offset = 2, but this time allocated
CYCLIC(5). Here K ( = K1) runs from 0 to 1, and the corresponding picture looks like this:

.

A(1)

A(4)

A(7)

A(10)

A(13)

A(16)

A(19)

A(22)

A(25)

A(28)

A(31)

A(34)

A(37)

A(40)

A(43)

A(46)

12.5 “Simplifying subscripts”

In many cases, we can perform a transformation on the generated loop bounds and corresponding
subscripts that has the effect of making the subscripts a lot simpler (at the cost of making the loop
bounds more complicated). This can make it easier for the scalar optimizer in GEM to do its work,
and sometimes results in more efficient code.

The transformation leads to a simplification in the cases when the subscripts are primary and the
dimension is non-serial (i.e., the data subspace has strip length > 1). We consider these cases first:

12.5.1 Primary subscript with strip length > 1

The key fact that we lean on in these cases is that since the statement is local, if two array references
(L and R in the code fragments below) contain such subscripts in corresponding dimensions, then
corresponding elements of L and R in those dimensions have the same virtual processor coordinate.
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(In the case when L and R are 1-dimensional, this is easier to state: in such a case, corresponding
elements of L and R live on the same virtual processor.)

BLOCK distribution

Suppose we have a statement equivalent to

!hpf$ distribute(block) :: L,R
forall (i = LB :UB :S)

L(a ∗ i + b) = . . . R(c ∗ i + d) . . .

Our normal STRIP processing, as explained above, would transform this into a statement equivalent
to

!hpf$ distribute(block) :: L,R
do i = LBloc, UBloc, Sloc

L(λL(a ∗ i + b)) = . . . R(λR(c ∗ i + d)) . . .

where λL is the composition of the data allocation function and the data distribution function for
(the first dimension of) the array L, and similarly for λR. That is, the input to λL is the subscript,
and the output is v̂. Section 12.4 showed how λL is computed.

The transformation we make in this situation replaces the code above by

!hpf$ distribute(block) :: L,R
do i = λL(a ∗ LBloc + b), λL(a ∗ UBloc + b), dasL ∗ a ∗ Sloc

L(i) = . . . R(i) . . .

where dasL is the data allocation stride for (the first dimension of) L.

The reason this works is that, as explained above, since the statement is local, corresponding
elements of L and R live on the same virtual processor. In particular,

λL(a ∗ LBloc + b) = λR(c ∗ LBloc + d)

dasL ∗ a = dasR ∗ c

The computation of λR for a BLOCK distributed subscript has to be slightly modified when we
are simplifying subscripts: the value of LBloc

j used in the computation refers to the original value
(i.e., the value of the localized loop bound if we had not performed the transformation on the loop
bounds indicated above). So this value has to be computed and saved when the loop is created, for
use later in transforming the loop bounds.

CYCLIC distribution

The idea is the same. The only differences are the following:

• The new loop increment has to be
dasL ∗ a ∗ Sloc

strip lengthL
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• When localizing the subscripts, we have to allow for the fact that corresponding elements of
arrays L and R, while they must lie on the same physical processor, may not lie on the same
virtual processor. We account for this by actually generating

!hpf$ distribute(cyclic) :: L,R

do i = λL(a ∗ LBloc + b), λL(a ∗ UBloc + b),
dasL ∗ a ∗ Sloc

strip lengthL

L(i + dL) = . . . R(i + dR) . . .

where for any array A, dA represents the following expression:

dA =
⌊

φA(LBA)− φL(LBL)
strip length

⌋

In particular, this makes dL = 0. In the typical case, dR will be 0 also. Actually, we want to
compute d′A, defined in terms of LBloc

B or UBloc
B . But this is in general much more difficult,

and, as on page 132, we know that we must have

φA(LBloc
A )− φL(LBloc

L ) = φA(LBA)− φL(LBL)

so d′A = da.

CYCLIC(n) distribution

In the case of a CYCLIC(n) distribution, the following modifications are made:

• The transformation of loop bounds is carried out only on the inner of the two loops that are
created. The outer loop is unchanged.

• The new loop increment (in the inner loop) remains dasA ∗a∗Sloc, as in the case of a BLOCK
distribution. (This is because the inner loop is really a BLOCK loop.)

• As in the case of a BLOCK distribution, the computation of λR uses the value of LBloc
j that

would have been used if the loop bounds had not been transformed. So in this case also, this
“original” value is computed when the loop is created, and saved for the subsequent application
of the function λR.

• As in the case of a CYCLIC distribution, we have to allow for the fact corresponding elements
may lie on different virtual processors. So we generate the following code (we don’t bother to
show the outer loop here, since it is the same whether or not we are simplifying subscripts):

!hpf$ distribute(cyclic(n)) :: L,R
do i = λL(a ∗ LBloc + b), λL(a ∗ UBloc + b), dasL ∗ a ∗ Sloc

L(i + dL) = . . . R(i + dR) . . .

where for any array A, dA represents the following expression:

dA = nA ∗
⌊

φA(LBA)− φL(LBL)
nA ∗ strip lengthA

⌋

where nA is the declared block size of A in the dimension being considered. (We know that
nA = nL and strip lengthA = strip lengthL.) As in the case of CYCLIC data above, this
computation is really a substitute for the same expression written in terms of LBloc

A and
LBloc

L , which we know must have the same value.
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12.5.2 Non-primary subscript, or strip length = 1

When the strip length is 1 in a primary subscript in the array L, we still perform the transformation
on the loop bounds: the loop becomes

!hpf$ distribute(block) :: L,R
do i = λL(a ∗ LBloc + b), λL(a ∗ UBloc + b), dasL ∗ a ∗ Sloc

However, we cannot transform the subscripts as simply as we did above, because corresponding
elements are not guaranteed to live on the same virtual processor. The same problem occurs in
a subscript that does not come from a primary subspace. (For instance, we may have a refer-
ence A(i, V (i)). The second subscript is not primary, but contains a reference to i, whose local
iteration bounds have been transformed as above. We actually inhibit the simplifying subscripts
transformation in this case; see below.)

In these cases, we have to bite the bullet and create a subscript expression that is the equivalent of
the expression that would be generated without the simplifying subscripts transformation. We do
this in two steps:

• We adjust each loop variable so that it runs over the non-simplified loop range. We do this
by replacing each reference to a loop variable I by the expression

I − LBloc
new

Sloc
new

∗ Sloc
orig + LBloc

orig

where the “orig” values are just the values LBloc and Sloc computed without the simplify-
ing subscripts changes indicated above, and the “new” values are computed with with these
changes. That is,

LBloc
new = λL(a ∗ LBloc + b)

Sloc
new = dasL ∗ a ∗ Sloc

Since serial subspaces are quite common, and since this transformation has the potential for
introducing division operators in addressing expressions, we currently inhibit the simplifying
subscripts transformation for a serial iteration subspace unless the corresponding subscript
(on the left-hand side array L) has

• dasL = 1

• a = 1

This is, of course, the typical case, so this is not really much of a restriction. An example of
code, however, that would not be transformed with this restriction is the following:

!hpf$ template t(100)
!hpf$ distribute(*) :: t

!hpf$ align L(i) with t(2 ∗ i)
!hpf$ align R(i) with t(i)

L = R

since it would lead to generated code that looked like this::



138 CHAPTER 12. STRIP: LOCAL STATEMENTS

do i = 2, 100, 2
L(i) = R(i/2)

• We then localize subscripts as usual, as explained in Section 12.4 (page 130). This also takes
care of local scalar and local complex subscripts (i.e., the subscripts that do not correspond
to any loop index).

• As a further simplification, we also inhibit the simplifying subscripts transformation completely
for any statement that contains a complex subscript. (Our code would work correctly, but the
addressing expressions might again become somewhat more complex, and we want to avoid
this.)

12.6 Inserting IF guards for WHERE constructions

We have shown how a strip loop is generated for each primary data cell, and how the subscript in
that cell is localized. If the resulting local subscript is non-existent, the generated strip loop will
never be executed—the zero-trip test will branch around the loop. Thus, “context” information is
automatically inserted into the dotree by the strip miner in this case.

Scalar subscripts, on the other hand, contribute to the completion cell of the iteration VP space,
and are handled by the mechanism described above in section 12.3.

If the statement being strip mined is guarded by a non-trivial WHERE mask, an IF guard has to be
generated for the stripped mask expression. This IF guard is constructed directly over the stripped
statement, inside the generated do loop nest.

12.7 Removing strip mining obstacles

At this point, STRIP has generated strip loops for all local statements, and has localized the
subscripts of all array references in those statements.

These generated loops run locally on each processor and the loop bounds are functions of the
processor. However, the introduction of the strip mining loops may have introduced artificial (and
incorrect) loop-carried dependences. For instance, if an array assignment

A(2 :1000) = A(1 :999)

(where the dimension is laid out serially) is strip mined to become

do I = 1, 999
A(I+1) = A(I)

end do

then a loop-carried dependence has been introduced (e.g. A(2) is assigned to on the first iteration
of the loop, and this new value is subsequently used on the second iteration of the loop). This
dependence is an artifact of naive strip mining, and it is incorrect—it violates the semantics of the
original statement, which is that the value of A(2) which is used should be the original value. Such
introduced dependences—loop-carried dependences in strip loops—are referred to as strip mining
obstacles.
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The dependence analyzer is used to identify these strip mining obstacles, and loop reversal and loop
interchange are used where possible to either eliminate them or to minimize their effects.

In the worst case, a temporary must be introduced to eliminate a strip mining obstacle. Such a
temporary is always allocated on the stack—i.e., a local temporary is allocated on the stack of each
processor. The size of this local temporary must be large enough to accomodate the maximum size
local temporary that each processor needs. This maximum size is computed for each dimension
corresponding to a loop which is being copied (i.e. for all loops inside the loop carrying the strip
mining obstacle). The contribution of the size for a loop corresponding to a particular dimension
can be computed as follows:

BLOCK distribution. ⌈
num foldsj

|Sj |
⌉

CYCLIC distribution. ∣∣∣∣
⌊

φj(UBj)
strip lengthj

⌋
−
⌊

φj(LBj)
strip lengthj

⌋∣∣∣∣+ 1

CYCLIC(n) distribution. If Khigh
j = K low

j (so the entire array section fits in the first block), we
use

min
{
|φj(UBj)− φj(LBj)|+ 1,

⌈
nj

|Sj |
⌉
∗ (Khigh

j −K low
j + 1)

}

provided this expression is a compile-time constant; otherwise we simply use⌈
nj

|Sj |
⌉
∗ (Khigh

j −K low
j + 1)

The reason for the first expression is that it allows for the possibility that the array section
might actually be a small part of the block size—in this case, we only allocate a temp large
enough to hold the array, rather than allocating a full block size of memory.

SERIAL (∗) distribution.
UBj − LBj

Sj
+ 1

After the removal of strip mining obstacles, further transformations may be used to improve the
quality of generated code. Such transformations include loop fusion and exterior loop optimization.

The techniques referred to in this section are described in more detail in [3].

12.8 Actual arguments to function calls

All function calls appear in the dotree as SCALAR statements (even when the function returns an
array; the call is buried under an AFUNC operator which is classified as SCALAR)

STRIP localizes the subscripts of all array references in SCALAR statements as follows: First,
all vINDEX nodes are replaced by their contained TRIPLE nodes. vINDEX nodes are no longer
necessary, because they were only needed for ITER to create iteration space information. We don’t
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want vINDEX nodes to appear after Transform. Then if the array reference is part of an actual
argument, the following processing takes place, depending on the kind of function:

Arguments to I/O Such array references must live on processor 0. STRIP localizes each scalar
subscript, and localizes the bounds of each TRIPLE. Such localization amounts to no more
than introducing a possible affine function, since these are serial dimensions.

Arguments to non-I/O Global Functions STRIP replaces each TRIPLE by [0 :num folds −
1:1]. (Note that this makes each array be 0-based; the convention is that after Transform, all
arrays are indexed as if they were 0-based, and the DTR2CIR phase at the end of Transform
resets the bounds of each dimension in the array’s entry in the symbol table to be [0 .. extent−
1].)

It may actually be the case that fewer than num folds− 1 array elements are passed on each
processor. Nevertheless, there is no harm in transforming the subscripts in this way. The only
thing the subscripts are used for is by a later phase of the compiler in generating a temporary.
The actual addressing is determined by the HPF directives and/or dope vector information,
and this is always guaranteed to represent the actual array section which is passed.

Arguments to HPF LOCAL Functions STRIP localizes each scalar subscript, and replaces
each TRIPLE by its localized version (that is, by the TRIPLE representing what the local
loop bounds would be if the original TRIPLE were used to create a loop).

12.9 Processing PURE functions in FORALL constructs

A FORALL construct containing PURE function calls appears after ARG as a dt_group_forall
node with a list of statements below it, as shown in Section 9.6 (page 97).

STRIP performs the following transformation on such constructions:

• The dt_group_forall node is deleted. (Its sole purpose is to group the statements under it
together so that STRIP can identify them as a unit for processing.)

• A nest of do loops (with localized loop bounds) is created for the FORALL dimensions. (The
iteration space corresponding to these dimensions is created by ARG and stored as an attribute
of the dt_group_forall node.)

• All the statements under the dt_group_forall node are placed in the body of that nest of do
loops, and the corresponding subscripts are localized. The techniques used to perform these
last two steps are just the same as those detailed earlier in this chapter for generating strip
loops for local statements.

The only statements needing localization are vanilla vector assignments. This is because the
only other statements under the dt_group_forall are AFUNC nodes, and all the arrays under
these nodes have been privatized, so no vINDEX nodes corresponding to FORALL indexes
appear in their subscripts.

Any vINDEX node that is not changed into a loop index by this process must then be changed
back into its corresponding TRIPLE, as is the case in the handling of global functions (Sec-
tion 12.8).
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• Any unnamed vector dimensions in these statements are left alone. They are all guaranteed to
be serial dimensions, and so they can be handled as normal Fortran constructs by the Middle
End.

• If the dt_group_forall had a non-null mask attribute (coming from the original FORALL
construct), then this mask expression is also localized and used to construct a guard (a
dt_simple_if) over the list of children of the inner strip loop.

Thus, the PURE function lowering in the example on page 98 becomes

NEWSCOPE
do I loc = LBloc

1 , UBloc
1 , Sloc

1

do J loc = LBloc
2 , UBloc

2 , Sloc
2

T 2(: , : , : ) = T 1(I loc, J loc, : , : , : )
AFUNC(R1(: , : ), EFUNC(F, LIST(T 2(: , : , : ))))
R2(I loc, J loc, : , : ) = R1(: , : )

end do
end do
ENDSCOPE



Chapter 13

STRIP: Handling Motion Code

Conceptually, all interprocessor communication is handled by means of run-time library routines,
with the following parameters:

SEND

• Address of the buffer to be sent.

• Length of the buffer to be sent.

• Target processor number.

• Message-type: a compiler-generated identifying message number.

RECEIVE

• Address of buffer which will hold the received message.

• Length of the message to be received.

• Message-type: must match the message type in the corresponding SEND. If the receiving
processor needs to specify the processor from which the message is being sent, that
information can be encoded in the message-type.

There is also a routine SEND BROADCAST, which implements a partial broadcast, or multicast.
Its parameters are identical with those of SEND, except that instead of the target processor number,
there is a list of target processor numbers.

In the following, pr(x) denotes the processor holding the value x, mem(x) denotes the memory
address of x in that processor, and p denotes the number of processors. In addition, we denote
iteration allocation functions by φ. (Recall that data allocation functions are denoted by f .)

13.1 Remapping stores and partial broadcasts

A remapping store is an assignment statement which would be a local assignment statement (see
page 121) except that the right-hand and left-hand sides are in different regions.

142
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The most common example is
A(:, :) = B(:, :)

B may actually be an expression; but each node in that expression will be in the same region. What
characterizes this as a remapping store is that A is in a different region. Thus the sections of the
arrays A and B on each processor are in general not conformant.

Another example would be
A(V (:), :) = B(:, :)

where the first dimension of A is distributed serially, V is replicated over each processor, and both
dimensions of B are distributed. If in this second example A and B are aligned, this is a local
statement with local copy; if they are not, it is a remapping store.

By allowing the left and right hand sides of the assignment statement to contain replicated cells,
we can include the kind of statements we have been referring to as partial broadcasts. It turns out
that one method handles all these cases at once.

The strip miner generates the following code, where A really means “the left-hand side”, and B
really means “the right-hand side” of the assignment statement.

begin
Allocate an array of empty buffers {OUT[j] : 1 ≤ j ≤ p} and an integer array {in[j] : 1 ≤

j ≤ p} initialized to 0;
Create a nest of strip mine loops based on the iteration space of B, and localize the subscripts

of B.
If the local section of B has any elements in this processor, then for each such element,

calculate the corresponding processors and memory addresses which hold the values of
A it is being spread to, as follows: If the iteration VP space for B contains a replicated
cell which is not in the same place as a replicated cell for A, and if v̄B for that cell is
not 0, do nothing—this processor will not generate any SENDs of B. Otherwise,
1. For each primary iteration cell of B, retrieve vB,j and then calculate

vA,j = φA,j ◦ φ−1
B,j(vBj )

where vA,j is the virtual cell contents of the corresponding primary cell of A. Then
use the cell place information of A to derive v̄A,j and v̂A,j from vA,j .

2. For each replicated iteration cell of A, set v̂A,j = 0. If the cell is in the same place
as a replicated cell of B, set v̄A,j = v̄A,j of the current processor. Otherwise, let v̄A,j

run over all possible values for that cell.
3. For each primary iteration cell of A which does not correspond to an iteration cell of B,

let vA,j run over all possible values of v in that cell, and construct the corresponding
values of v̄A,j and v̂A,j .

4. For each scalar iteration cell of A, compute
vA,j = φA,j(〈scalar value〉),

and then derive v̄A,j and v̂A,j as before.
5. Using the values of v̄A,j and v̂A,j thus obtained, compute v̄A and v̂A, from which a

sequence 〈pr(A),mem(A)〉 is derived. For each element in this sequence, generate a
call

setup remap send(pr(A),mem(A), B);
-- This run-time call appends the ordered pair 〈mem(A), B〉 to the buffer OUT[pr(A)].

For each nonempty buffer OUT[j], generate a SEND of it to processor j.
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Create a nest of strip mine loops based on the iteration space of A, and localize the subscripts
of A.

If the local section of A has any elements in this processor, then for each such element,
calculate the corresponding processor which is sending an element of B here, as follows:
1. For each primary iteration cell of A which corresponds to a primary cell of B, retrieve

vAj and then calculate

vB,j = φB,j ◦ φ−1
A,j(vA,j)

where as above vB,j is the virtual cell contents of the corresponding primary cell of
B. Then use the cell place information of B to derive v̄B,j .
-- Nothing further needs to be done for primary iteration cells of A which do not

correspond to primary cells of B—these cells have already been represented in
the loop nest created from the iteration space of A

2. For each replicated iteration cell of B, if the cell is in the same place as a replicated
cell of A, set v̄B,j = v̄B,j of the current processor. Otherwise, set v̄B,j = 0.

3. For each scalar iteration cell of B, compute vB,j = φB,j(〈scalar value〉), and then
derive v̄B,j as before.

4. Use the values of v̄B,j to compute v̄B = pr(B).
5. Generate the call

setup remap recv(pr(B));
-- This run-time call increments IN[pr(B)].

For each IN[j] �= 0, generate a RECEIVE of a message from processor j of length IN[j].
For each ordered pair 〈m, v〉 in that received message, assign the value v to the local
memory address m.

Deallocate OUT and IN.
end

Actually, in our implementation, the receiver rather than the sender computes the memory address—
this saves us from having to send the memory address to the target, and so enables us to generate
smaller messages. We can do this because we make sure that the loop nests for the sending com-
putations and receiving computations cause corresponding elements to be processed in the same
order.

In a simple case where the assignment statement involves only scalar array references and there are
no replicated cells, STRIP merely generates a SEND/RECEIVE pair – this is actually just a special
case of the above code, but no auxiliary buffers need to be allocated. An example of this occurs on
page 231.

13.2 A remote fetch

As previously noted, ITER transforms the remote fetch

A( : , : ) = B(V (1 :N), 1:M)

so it looks like this:

PBRDCST(W (1 :N, 1:M), DIMS = {2}, V (1 :N))

A( : , : ) = B(W (1 :N, 1:M), 1:M)
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(Again, the first statement is really a REMAP STORE.) We consider the second statement. STRIP
generates the following code:

Allocate a buffer BUF ;
do I = 1, N

do J = 1, M

if W (I, J) is local then
package(pr(B(W (I, J), J)),

mem(B(W (I, J), J)),
mem(A(I, J)),
BUF );

end do
end do
do I = 1, p

send right(BUF );
receive left(BUF );
process fetch request(BUF );

end do
store fetched values(BUF );
Deallocate BUF ;

where package() appends the triple consisting of its first three arguments to a list being assembled
in BUF. The IF test is just the test

if pr(W (I, J)) = mynode()

mentioned in section 12.3 above. Note that W (I, J) is local if and only if A(I, J) is local, because
W has been created to align with A.

The size of the buffer BUF on each processor can be taken to be the number of elements of W
(equivalently, of A) which live on that processor. In practice, the size of the buffer is taken to be
an upper bound for this number, which is the same on all processors.

The fields in the triples in BUF have the significance

〈source processor, source address, target address〉.

The procedure send right() generates a SEND of its argument to the processor “on its right” in the
ring of processors. To implement this, we could use an operating system call which tells us, for each
processor, which is the processor on its right.

The procedure receive left() generates a RECEIVE into its argument. The RECEIVE will be from
the processor “on the left”, but this does not have to be specified.

The procedure process fetch request() inspects each triple in BUF. For each triple in which the
source processor = my processor(), the appropriate value of B(W (I, J), J) is fetched (it is local,
and the memory address is given by the source address field in the triple), and this value is placed
in the triple—it can overwrite any fields but the target address field.

At the end of the loop, each buffer is back in the original processor that created it, and all the
requested information has been filled in. The procedure store fetched values() then extracts this
information from each triple and stores it at its corresponding address (which is the target address
field in the triple).
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There is really no need to include the target address in the message, since it will just be used by
the processor that computed it when the message comes back to where it started. So actually we
just compute it and save it locally, to be used when needed.

A remote fetch which involves only a single scalar array reference, such as a fetch of A(V (I)), say, is
handled by simply broadcasting the request to all processors. Each processor executes a RECEIVE
of the broadcast, and the processor holding A(V (I)) then executes a SEND of its value to the
requesting processor, which in turn executes a RECEIVE for this value.

13.3 A remote store

Remote stores are handled similarly, except that they are a little simpler: A typical remote store is

A(V (1 : N), 1 : M) = B(:, :)

where the right-hand side of course could be a more general expression. After ITER, it looks like
this:

PBRDCST(W (1 :N, 1:M), DIMS = {2}, V (1 :N))

A(W (1 :N, 1:M), 1:M) = B( : , : )

where the first statement is really a REMAP STORE. The replacement code for the second state-
ment is:

Allocate a buffer BUF ;
do I = 1, N

do J = 1, M

if W (I, J) is local then
package(pr(A(W (I, J), J)),

mem(A(W (I, J), J)),
B(I, J),
BUF );

end do
end do
do I = 1, p− 1

send right(BUF );
receive left(BUF );
process store data(BUF );

end do
Deallocate BUF ;

The fields in the triples now have the significance

〈target processor, target address, value〉.

The procedures send right() and receive left() are the same as are used above in processing remote
fetches.

The procedure process store data() inspects each triple in BUF. For each triple in which target processor =
my processor(), the contents of the value field is stored at the target address.
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Note that in this case the last loop runs only from 1 to p− 1 instead of p.

A remote store which involves only a single scalar array reference, such as a store into A(V (I)), is
handled by simply broadcasting the corresponding triple to all processors. Every processor executes
a RECEIVE for that triple, and the appropriate one stores the data.

In implementing all these pseudo-code descriptions, we avoid generating messages from a processor
to itself.

13.4 Dealing with reusable irregular data accesses

Irregular data accesses which occur more than once in a scoping unit are preprocessed at run-time
so that (after the initial cost of preprocessing has been paid) they in effect become remapping stores.
This is done as follows:

Before processing any motion code, STRIP makes a pass through the executable statements. It ig-
nores all statements except those classified by DIVIDE as REMOTE ASSIGN or REMOTE FETCH
ASSIGN. For each such statement, it identifies the remote array access, and for each array access,
it identifies the vector-valued subscripts (if any) in that array access. A table is created, and each
such array reference is used to create an entry in that table. The entries in the table each contain
three fields:

array reference This is the array reference itself.

vv sub list The list of vector-valued subscripts in that array reference. This list may be empty.

do loop This field is initially empty.

Next, for each array reference in this table, we walk up the dotree from that reference to find the
highest dt_do_loop such that within that loop there is no dependence involving the vector-valued
subscripts in that reference. Equivalently, this is the outermost dt_do_loopwithin which the vector-
valued subscripts in that reference are not changed. That dt_do_loop is then entered in the do loop
field of the table.

Now if there are any entries in the table with an empty do loop field, delete those entries from the
table. These entries represent irregular data accesses which will not profit from additional run-time
preprocessing, and so we omit them from further consideration.

Now tag each statement containing an array reference in the table with the corresponding table
entry.

(We could go farther and try to find entries in the table which correspond to array references which
are formally the same but occur in different parts of the program, and see if they can be processed
as a unit—this could happen if the corresponding vector-valued subscripts were not assigned to
between the two occurrences. We will try to see if this will be a useful thing to do.)

Once this table has been built by the compiler, the run-time code is generated as follows:

Remote Fetches We use the same notation as in Section 13.2, and in particular, we show how
to generate code for the statement which after ITER looks like this:

A( : , : ) = B(W (1 :N, 1:M), 1:M)
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For each such statement, at the entry to the do loop found in the corresponding entry, code is
generated to perform the following actions:

Each processor allocates two arrays:

send info: array [1..p] of list of record
target addr
source addr

end

receive info: array [1..p] of list of record
source addr
target addr

end

Then each processor does the following:

Allocate a buffer BUF ;
do I = 1, N

do J = 1, M

if W (I, J) is local then
insert 〈mem(B(W (I, J), J)), mem(A(I, J))〉

in receive info[pr(B(W (I, J), J))]
insert into BUF the record
〈pr(B(W (I, J), J)), my processor(),
mem(B(W (I, J), J)), mem(A(I, J))〉

end if
end do

end do

-- Thus, the entries in BUF are 4-tuples having the significance
-- 〈source proc, target proc, source addr, target addr〉.
do K = 1, p

send right(BUF )
receive left(BUF )
foreach 4-tuple in BUF for which source proc = my processor(),

insert 〈target addr, source addr〉 in send info[target proc]
end do
Deallocate BUF

That finishes the code generated at the head of the loop which does the pre-processing. At the end
of the loop, code is generated to deallocate the arrays send info and receive info.

Now at each occurrence of the remote fetch in the loop, the following code is generated:
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do K = 1, p

if the send info[K] is non-empty, then using the entries in that array, create a message
consisting of the pairs
〈target addr, my-value at source addr〉

and send this message to processor K.
end do

do K = 1, p

if the receive info[K] array is non-empty, receive a message from processor K. That message
will consist of pairs
〈target addr, value〉.

For each such pair in that message, assign value to the location target addr in local memory.
end do

Remark The array receive info really could be just an array of booleans, initialized to FALSE,
and the line inserting a record into receive info could be replaced by

receive info[pr(B(W (I, J), J))]← TRUE

Remote Stores Remote stores are handled similarly. We use the same notation as in Section 13.3,
and we show how to generate code for the statement which after ITER looks like this:

A(W (1 :N, 1:M), 1:M) = B( : , : )

Arrays send info and receive info are allocated as above at the entry to the containing do loop.
Then each processor does the following:

Allocate a buffer BUF ;
do I = 1, N

do J = 1, M

if W (I, J) is local then
insert 〈mem(A(W (I, J), J)), mem(B(I, J))〉

in send info[pr(A(W (I, J), J))]
insert into BUF the record
〈my processor(), pr(A(W (I, J), J)),
mem(B(I, J)), mem(A(W (I, J), J))〉

end if
end do

end do

-- Thus, the entries in BUF are 4-tuples having the significance
-- 〈source proc, target proc, source addr, target addr〉.
do K = 1, p

send right(BUF )
receive left(BUF )
foreach 4-tuple in BUF for which target proc = my processor(),

insert 〈source addr, target addr〉 in receive info[source proc]
end do
Deallocate BUF
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That finishes the code generated at the head of the loop which does the pre-processing. At the end
of the loop, code is generated to deallocate the arrays send info and receive info.

Now at each occurrence of the remote fetch in the loop, the following code is generated:

do K = 1, p

if the send info[K] is non-empty, then using the entries in that array, create a message
consisting of the pairs
〈target addr, my-value at source addr〉

and send this message to processor K.
end do

do K = 1, p

if the receive info[K] array is non-empty, receive a message from processor K. That message
will consist of pairs
〈target addr, value〉.

For each such pair in that message, assign value to the location target addr in local memory.
end do

Remark In this case, the array send info really could be just an array of booleans, initialized to
FALSE, and the line inserting a record into send info could be replaced by

send info[pr(A(W (I, J), J))]← TRUE



Chapter 14

STRIP: Inlined Library Functions

Some HPF and Fortran intrinsics and library functions are inlined by the compiler in STRIP. This
chapter describes how the inlining is done.

14.1 Reduction functions

14.1.1 An example

We start with an example. Consider the reduction

B = sum(A, dim = d, mask = M)

where none of the primary dimensions of A is distributed CYCLIC(m), and where A and M have
dimension n and B has dimension n− 1. We lower this as follows:

• M is first remapped if necessary so that it aligns with A.

• If the following two conditions are not satisfied, then B is replaced by a temporary T for which
they are satisfied. T is subsequently remapped into B.

– With the exception of the cell corresponding to dimension d, the iteration space for B is
in the same region as that of A. That is, B is available where it is needed by A.

– The cell of B which corresponds to the dimension d cell of A is a scalar cell. We will use
c̄d to denote the value in dimension d of the logical processor space represented by that
cell. That is, c̄d is the value of v̄d represented by the constant value in that cell.
NOTE: If we knew that strip lengthd (i.e. the strip length of the dimension d cell of A)
was a power of 2, then we could just as easily create B so it was replicated over that cell.
But without that knowledge, it is easier to make that cell a scalar cell.

• A temporary array S of dimension n is used to accumulate values locally. With the exception
of the cell corresponding to dimension d, the cells of S and the associated data allocation maps
and distribution maps are identical to those of A.

151
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• The cell of S which corresponds to the dimension d cell of A has the same cell place as that
of the A cell, and is a replicated cell.1

The way that this array is used (see Figure 14.2 on page 154), it can really be implemented
as a privatized scalar (again privatized through the d dimension), since only one element of S
on each processor is accumulated at a time, and then is used, before the next element is accu-
mulated. This is entirely similar to the privatized scalar S introduced below in Section 14.1.4
(page 155).

Thus, the data cell structures for A, B, and S differ only in cell d, as shown in Figure 14.1.

S

B

A

cell d

cell d

cell d

repl.

scalar

primary

Figure 14.1: Cell d is the only cell which differs in the data space structures for A, B, and S.

The reduction happens in four steps:

1. S is initialized to 0.

2. S is used locally to accumulate the values of A.

3. Processors differing only in their values of v̄d (i.e., processors having the same values of v̄i for all
i �= d) will have parallel sections of S which need to be accumulated. A partial global reduction
is used to accumulate these sections into a similar section living on the same processor as the
corresponding elements of B live (i.e. the processor having the same values of v̄i for i �= d and
for which v̄d = c̄d).

This partial global reduction is performed in a “logarithmic” fashion, so that the minimal
number of messages are generated.

4. That accumulated section is then copied (locally) into the corresponding section of B.

In effect, code as in Figure 14.2 is generated.

A notational convention used in the pseudocode is that a parenthesized subscript means that the
subscript is omitted—this is used in writing an n− 1-dimensional array which is missing one of the
subscripts of a similar n-dimensional array.

1 The real intent here is that this array S is privatized over dimension d. This is an overloading of the notion of a
replicated cell. The strip miner handles this by pretending that S is replicated through that dimension of the virtual
processor space, but not enforcing the replication.
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The operator mod is used in the sense of a non-negative value. That is,

0 ≤ x mod strip lengthd ≤ strip lengthd − 1.

The buffers INBUF and OUTBUF (allocated on each processor) each have size calculated as a prod-
uct of contributions from the various dimensions, as follows: for any but CYCLIC(n) dimensions,
the contribution to the size is

n∏
j=1
j �=d

(
UBloc

j − LBloc
j

Sloc
j

+ 1

)

For CYCLIC(n) dimensions, the size is found from the corresponding formula in Section 12.7.
(Actually, those formulas could be used for all distributions, but the formula given here is slightly
tighter, because it allows the size to be different on different processors for the non-CYCLIC(n)
dimensions.)

This value is the same on processors with equal values of v̄i for all i �= d, so that the elementwise
accumulation of INBUF into OUTBUF in the code in Figure 14.2 makes sense. In the last assignment
statement in the pseudocode, OUTBUF should be thought of as a local (linear) array of shape(

UBloc
1 − LBloc

1

Sloc
1

+ 1, . . . ,
UBloc

n − LBloc
n

Sloc
n

+ 1
)

(where the expression corresponding to dimension d is omitted).

14.1.2 The general case

Except for MAXLOC and MINLOC, all other reductions with a dim argument are handled in a
similar way, with the following changes:

• If a primary dimension of A is allocated CYCLIC(m), then the corresponding loop becomes
two loops (in the usual fashion, as outlined in Chapter 12). The buffers INBUF and OUTBUF
have in such a dimension the same extent as A (and S); thus, these buffers are not compacted
in such dimensions.

• The fact that we were lowering the SUM intrinsic (as opposed to any other) was reflected in the
operator “+=” and in the initialization of S. Other intrinsics correspond to other operators
and other initializations, as follows:

Reduction Intrinsic Scalar Operator Initial Value
SUM + 0
COUNT + 0
PRODUCT * 1
ALL .AND. .TRUE.
ANY .OR. .FALSE.
MAXVAL MAX −∞
MINVAL MIN ∞
IALL IAND -1
IANY IOR 0
IPARITY IEOR 0
PARITY .NEQV. .FALSE.
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Allocate buffers INBUF and OUTBUF.

S ← 0

do I loc
1 = LBloc

1 , UBloc
1 , Sloc

1

· · · (no I loc
d )

do I loc
n = LBloc

n , UBloc
n , Sloc

n

do I loc
d = LBloc

d , UBloc
d , Sloc

d

if (mask(v̂1, . . . , v̂n))
S(v̂1, . . . , (v̂d), . . . , v̂n) += A(v̂1, . . . , v̂n)

end do

insert S(v̂1, . . . , (v̂d), . . . , v̂n) into OUTBUF
end do

. . .

end do

I ← 1

ṽd ← (v̄d − c̄d) mod strip lengthd

node tag← ṽd

while I < strip lengthd do
begin
if odd(node tag)

begin

send OUTBUF to processor
〈v̄1, v̄2, . . . , (ṽd − I + c̄d) mod strip lengthd, . . . , v̄n〉

break

end

else

begin

if ṽd + I < strip lengthd

begin

receive INBUF from processor
〈v̄1, v̄2, . . . , (ṽd + I + c̄d) mod strip lengthd, . . . , v̄n〉

OUTBUF += INBUF (elementwise)
end

node tag← node tag/2
end

I ← 2 ∗ I

end

if ṽd = 0
do I loc

1 = LBloc
1 , UBloc

1 , Sloc
1

· · · (no I loc
d )

do I loc
n = LBloc

n , UBloc
n , Sloc

n

B(v̂1, . . . , (v̂d), . . . , v̂n)← OUTBUF(v̂1, . . . , (v̂d), . . . , v̂n)
end do

. . .

end do

Deallocate buffers INBUF and OUTBUF.

Figure 14.2: An implementation of the SUM reduction.
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14.1.3 MAXLOC and MINLOC

MAXLOC and MINLOC need special handling, because both a value and a location need to be
kept track of during the computation. We show the changes needed for MAXLOC with dim = d:

• The temporary array S becomes an array of records with two fields: val and loc. The type
of the val field is the base type of A, and the type of the loc field is INTEGER. The buffers
OUTBUF and INBUF similarly become buffers containing records of that same form.

• The val field is initialized as usual to −∞, and the loc field is initialized to any legal value;
the value 1 would be fine.

• The first “+=” assignment (to S) is replaced by the following:

if S(v̂1, . . . , (v̂d), . . . , v̂n).val < A(v̂1, . . . , v̂n) then
begin
S(v̂1, . . . , (v̂d), . . . , v̂n).val← A(v̂1, . . . , v̂n)

S(v̂1, . . . , (v̂d), . . . , v̂n).loc← I loc
d − LBd

Sd
+ 1

end

(Note that LBd and Sd are not the localized bounds LBloc
d and Sloc

d , but are the global iteration
bounds.)

• The second “+=” assignment (the elementwise assignment to OUTBUF) is replaced by the
following:

do I loc
1 = LBloc

1 , UBloc
1 , Sloc

1

· · · (no I loc
d )

do I loc
n = LBloc

n , UBloc
n , Sloc

n

if OUTBUF(v̂1, . . . , (v̂d), . . . , v̂n).val < INBUF(v̂1, . . . , (v̂d), . . . , v̂n).val then
OUTBUF(v̂1, . . . , (v̂d), . . . , v̂n).loc← INBUF(v̂1, . . . , (v̂d), . . . , v̂n).loc

end do
. . .

end do

• The assignment to B at the end is replaced by

B(v̂1, . . . , (v̂d), . . . , v̂n) = OUTBUF(v̂1, . . . , (v̂d), . . . , v̂n).loc

14.1.4 Reductions with no dim argument

The reductions with no dim argument are performed with a somewhat simpler algorithm, but
somewhat more complicated data structures.

The target B is a scalar. B will not be replicated, however: its data space structure is determined
as follows:

• Cells corresponding to (i.e. having the same cell place as) primary cells of A are completion
cells with value c̄j , where c̄j is the value in that cell of some element of the iteration space.
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• Cells corresponding to replicated cells of A are completion cells with value 0.

• Cells corresponding to completion cells of A are completion cells with the same value as the
cells of A.

S, OUTBUF, and INBUF are local (i.e. privatized) scalars with the following data space structure:

• Cells corresponding to primary cells of A are replicated.2

• Cells corresponding to replicated cells of A are completion cells with value 0.

• Cells corresponding to completion cells of A are completion cells with the same value as the
cells of A.

(In the case of MAXLOC and MINLOC, these are not scalars but records with two fields as above.)

We show how to generate code for

B = sum(A, mask = M)

where none of the primary dimensions of A is allocated CYCLIC(m), and where A and M have
dimension n. This code, which is shown in Figure 14.3, uses some auxiliary functions, which are
needed to deal with the cells of A which are replicated. We create these auxiliary functions as
follows:

Say the cell places of A are denoted by

{〈mj , sj〉 : 1 ≤ j ≤ n}

where mj is the multiplier and sj is the strip length. Let us assume that we have numbered the cells
so that the first ν cells are primary cells. (So ν ≤ n. This numbering is purely for convenience in
presenting this algorithm, and is not intended to imply anything about the actual implementation.)

Further, if cell j is a completion cell, we let c̄j = the value it represents in dimension j of the logical
processor space. Thus, c̄j is analogous to the quantity c̄d used before for reductions with a dim
argument.

We create a new set of cell places, in effect by deleting the replicated and completion cells of A and
compressing the rest of the cells so there are no “holes” in the cell structure. This new set of cell
places is denoted by

{〈μk, σk〉 : 1 ≤ k ≤ ν}
We create this new set of cell places as follows: Say the jth “new cell” corresponds to the jth

“original cell”. (Remember that the original first ν cells are primary). We then set

σj ← sj (1 ≤ j ≤ ν)

and then perform the following algorithm:

μ1 ← 1
for k = 2 to ν do

μk ← μk−1 ∗ σk−1

2really privatized; see the footnote on page 152
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At this point in the compilation process, the “squashed” cell places 〈μj , σj〉 have been assigned
correctly and ν has its correct value.

To translate back and forth from a real processor number to a “squashed” processor number, we
create two auxiliary run-time functions:

function SQUASH(x: integer): integer

begin
val← 0
for j = 1 to ν do

val← val +
((⌊

x

mj

⌋
− c̄j

)
mod sj

)
∗ μj

return (val)
end

function UNSQUASH(x: integer): integer

begin
val← 0
for j = 1 to ν do

val← val +
((⌊

x

μj

⌋
+ c̄j

)
mod σj

)
∗mj

foreach completion cell with cell place 〈mj , sj〉
val← val + c̄j ∗mj

return (val)
end

We also need an auxiliary run-time function to tell if a processor number has a 0 component in all
the replicated cells of A and the correct value in all the completion cells of A:

function IS RESTRICTED(x: integer): boolean

begin
foreach replicated cell with cell place 〈mj , sj〉

if
⌊

x

mj

⌋
mod sj �= 0 then

return (FALSE)
foreach completion cell with cell place 〈mj , sj〉

if
⌊

x

mj

⌋
mod sj �= c̄j then

return (FALSE)
return (TRUE)
end

With these functions, the code in Figure 14.3 is generated. If in fact A has no completion or
replicated cells, and if is known at compile time that all c̄j are 0, then ν = n, no IS RESTRICTED
guard is generated, and, since the functions SQUASH and UNSQUASH would each be equivalent
to the identity, no calls to them are made.
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if IS RESTRICTED(my processor()) then
begin
Allocate scalars INBUF and OUTBUF.
S ← 0

do I loc
1 = LBloc

1 , UBloc
1 , Sloc

1

· · ·
do I loc

n = LBloc
n , UBloc

n , Sloc
n

if (mask(v̂1, . . . , v̂n))
S += A(v̂1, . . . , v̂n)

end do
. . .

end do
copy S into OUTBUF

I ← 1
node tag← SQUASH(my processor())
while I < μν ∗ σν do

begin
if odd(node tag)

begin
send OUTBUF to processor

UNSQUASH(SQUASH(my processor())− I)
break
end

else
begin
if SQUASH(my processor()) + I < μν ∗ σν

begin
receive INBUF from processor

UNSQUASH(SQUASH(my processor()) + I)
OUTBUF += INBUF
end

node tag← node tag/2
end

I ← 2 ∗ I

end

Deallocate buffers INBUF and OUTBUF.
end

Figure 14.3: An implementation of the SUM reduction with no dim argument.
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14.2 Combining SCATTER functions

After DIVIDE has finished its preliminary lowering of the XXX SCATTER functions, what STRIP
has to deal with is a statement of the form

RESULT = XXX SCATTER(SRC, INDX1, . . . , INDXn, MASK)

STRIP then handles XXX SCATTER in the same manner as a remote store, except that at the
target location, instead of doing a store of the source values, the corresponding scalar operator is
used to combine the source and target values.

The corresponding scalar operator is the same as that indicated previously for the reductions, except
for the function COPY SCATTER (COPY is not a reduction). For this function, the corresponding
scalar operator is just the assignment of the source to the target. Thus, COPY SCATTER provides
a non-deterministic version of remote store, where there is no requirement that distinct source data
elements are assigned to distinct target locations.

14.3 DOT PRODUCT

DOT PRODUCT is handled by expressing it in terms of other reductions, as outlined in the Fortran
Language Specification:

• If the arguments are of real or integer type, then

dot product(A, B) = sum(A ∗B)

where ∗ denotes the elemental vector multipication operator.

• If the arguments are of complex type, then

dot product(A, B) = sum(CONJG(A) ∗B)

where CONJG is the elemental Fortran vector complex conjugate operator.

• If the arguments are of logical type, then

dot product(A, B) = any(A .AND. B)

where .AND. is the elemental Fortran vector logical AND operator.

14.4 Parallel random number generation

Here is how we implement the call

RANDOM NUMBER(A(LB1 :UB1 :S1, . . . ,LBn :UBn :Sn))

where A is an array of rank n.

We will use the notation ej to denote the (iteration space) extent in dimension j. To be precise, we
set

ej =
⌊
UBj − LBj

Sj

⌋
+ 1
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The effect of the call to RANDOM_NUMBER is to fill in the actual argument with random numbers in
array element order. What this means is that we linearize the array and fill in the ith element of
the array with the ith random number that our generator produces. In the case at hand, the value
of i for the array reference A(i1, i2, . . . , in) is given by

i =
i1 − LB1

S1

+
i2 − LB2

S2
∗ e1

+
i3 − LB3

S3
∗ e1 ∗ e2

+ . . .

+
in − LBn

Sn
∗ e1 ∗ e2 ∗ · · · ∗ en−1

+ 1

or, more simply,

i = 1 +
n∑

k=1

ik − LBk

Sk

k−1∏
p=1

ep

We start out by assuming that no distribution is CYCLIC(n)—that is, that the distributions are
limited to serial, BLOCK, and CYCLIC. We will explain below in Section 14.4.5 what changes have
to be made in order to support CYCLIC(n) distributions.

14.4.1 Privatized variables

Create the following privatized variables:

• Integers i and last i . On each processor, last i is the index (in array element order) of the last
array element assigned to, and i is the index of the current array element being assigned to.

Thus, if the statement we are compiling is

RANDOM NUMBER(A(3 :5, 0:8))

Then i will have values between 1 and 27. Each processor will deal with a subset of these
values, and these subsets will constitute a (disjoint) partition of the entire range (1 :27).

• A 2-element real array seed [2]. The two elements of this array, seed [0] and seed [1], hold 32-bit
integers that are combined to produce a 32-bit random number. The length of the period of
this generator is about 258. This array is a privatized version of the (replicated) array seed [2]
used in the current Fortran intrinsic implementation.

14.4.2 An initial implementation

A straightforward implementation is shown in Figure 14.4.
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-- Initialize the privatized variables:

last i ← 0
seed [0]← the global version of seed [0]
seed [1]← the global version of seed [1]

-- Create a nest of INDEPENDENT DO loops:

do in = LBn,UBn,Sn

do in−1 = LBn−1,UBn−1,Sn−1

. . .
do i1 = LB1,UB1,S1

-- Compute i and jump:

i← 1 +
∑n

k=1

ik − LBk

Sk

∏k−1
p=1 ep

jump ← i− last i

-- Compute the next random number and update seed[ ]:
A(i1, i2, . . . , in)← compute(jump, seed)

-- Finally, update last i :
last i ← i

end do
. . .

end do
end do

-- Update the seed:

After the do loops have finished, the global values of seed [0] and seed [1] have to be updated
from the last iteration of the loop. (That is, the array seed is treated as if it were both
FIRSTPRIVATE and LASTPRIVATE.)

Figure 14.4: Initial implementation of the parallel random number generator

The function compute is a simplification of the already existing C function my_for_ran_ used in
the serial Fortran implementation of the algorithm in L’Ecuyer’s paper [11]. (The computation
in the original version of my_for_ran_ is unnecessarily complicated because it was designed for a
machine that could only support 32-bit integer arithmetic. Since we have a 64-bit machine, our
computation is completely straightforward.) The computation is shown in Figure 14.5.

In order to update the seeds at the end of this computation, we have to find the processor that has
executed the (logically) last iteration. If the data is partially or wholly replicated, there may be
more than one such processor. We pick one of them arbitrarily. We find the processor in question as
follows: we create a Boolean expression that will be TRUE only for that processor. The expression
is formed by taking the logical AND of the following four expressions:

• The first expression is the boolean constraint computed from the completion cells (if there are
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function compute(jump, seed)

parameter(m0 = 2147483563, a0 = 40014, a inv0 = 2082061899)
parameter(m1 = 2147483399, a1 = 40692, a inv1 = 1481316021)
parameter(inv231 = 4.65661305739176e-10)

atj 0 ← ajump
0 mod m0

seed [0]← atj 0 ∗ seed [0] mod m0

atj 1 ← ajump
1 mod m1

seed [1]← atj 1 ∗ seed [1] mod m1

z ← seed [0]− seed [1]
if (z < 1) then

z ← z + m0 − 1
end if
return (double)(z ∗ inv231 )

Figure 14.5: The function compute

any) by taking the logical AND of the following expression for each completion cell:

(14.1) v̄j =
⌊
my processor()

multiplierj

⌋
mod strip lengthj

where v̄j is computed from the completion subspace value. This is the same computation as
specified in Section 12.3.

• The second expression enforces the constraint that there was at least one iteration on this
particular processor:

(14.2)
n∧

j=1

[(
(Sloc

j > 0) ∧ (LBloc
j ≤ UBloc

j )
) ∨ ((Sloc

j < 0) ∧ (LBloc
j ≥ UBloc

j )
)]

• The third expresssion enforces the constraint that this particular processor performed the last
iteration:

(14.3)
n∧

j=1

(
LBloc

j +

⌊
UBloc

j − LBloc
j

Sloc
j

⌋
∗ Sloc

j = LBj +
⌊
UBj − LBj

Sj

⌋
∗ Sj

)

• The fourth expression, which occurs only if there are replicated cells in the iteration space,
serves to choose the processor with value 0 in each such cell. That is, for each replicated cell
in the subspace, with multiplier multiplierj and strip length strip lengthj , we must have

(14.4)
⌊
my processor()

multiplierj

⌋
mod strip lengthj = 0
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The unique processor that satisfies all these constraints then propagates its values of seed [0] and
seed [1] to the other processors, which then place these values in the replicated array seed [ ].

It is not immediately obvious that the second of these four expressions is really necessary. The
reason it is needed is that, at least in our implementation, it is possible for the third expression
to evaluate to TRUE on a processor in which the loop is empty. It doesn’t seem like a good idea
to change the way we handle empty loops to make sure this can’t happen, since this might change
again in the future. Keeping the second expression is inexpensive and makes the implementation
robust.

14.4.3 Computing the possible jumps

This computation as it has been presented would really not speed things up much, if at all, because
each processor would compute the same number of multiplications by a0 and a1 as if it performed
all the iterations—the sum of the jumps is the total number of iterations.

However, we can greatly optimize this computation by realizing that there are in practice only a
small number of jumps, and that we can precompute them all. We can then make a table having one
entry for each precomputed jump. Each entry can contain precomputed values for the quantities atj 0

and atj 1. Once we have done this, a simple table lookup takes the place of most of the computation
in the function compute.

So here is how the jumps are computed: the do loop nest that is created above is localized by
STRIP. Figure 14.6 shows the resulting nest.

do in = LBloc
n , UBloc

n , Sloc
n

do in−1 = LBloc
n−1, UBloc

n−1, S
loc
n−1

. . .
do i1 = LBloc

1 , UBloc
1 , Sloc

1

i← 1 +
∑n

k=1

ik − LBk

Sk

∏k−1
p=1 ep

. . .
end do

. . .
end do

end do

Figure 14.6: The localized loop nest.

If we let jk denote the jump due to the variable ik increasing by Sloc
k in the kth loop, then we have
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j1 =
Sloc

1

S1

j2 =
Sloc

2

S2
e1 − UBloc

1 − LBloc
1

S1

j3 =
Sloc

3

S3
e2e1 − UBloc

2 − LBloc
2

S2
e1 − UBloc

1 − LBloc
1

S1

j4 =
Sloc

4

S4
e3e2e1 − UBloc

3 − LBloc
3

S3
e2e1 − UBloc

2 − LBloc
2

S2
e1 − UBloc

1 − LBloc
1

S1

and so on. That is, if we use λk to denote

λk = UBloc
k − LBloc

k

then we have

jk =
Sloc

k

Sk

k−1∏
q=1

eq −
k−1∑
p=1

λp

Sp

p−1∏
q=1

eq

To compute atj 0 and atj 1, we use the O(log j) algorithm shown in Figure 14.7.

14.4.4 Optimizing the actual jump computations

The design as just presented computes the actual jump on each iteration by first computing i and
then computing jump = i − last i . This is needlessly complicated. The computations of the last
section indicate a better way. We can generate the set of loops shown in Figure 14.8.

(Note that in this optimized version jump is initialized to jinit before the loop nest.) The point of
this is that each of the expressions assigned to jump are all loop invariants. Therefore, they can all
be precomputed into temporary variables before the loop starts, so the assignments are very cheap.

In fact, what we actually do is precompute the jumps and the values atj 0 and atj 1 into a table. The
assignments to jump in Firgure 14.8 are replaced by assignments to a variable that is then used to
index into this table and retrieve these three quantities.

14.4.5 Handling CYCLIC(n) distributions

Computing the jumps

Suppose now that the kth loop has a CYCLIC(n) distribution. Then it turns into two loops, which
we will refer to as “inner” and “outer” loops. We will consider two cases:

Case I. The alloc stridek and the source stride Sk are both 1. This must be true for all CYCLIC(n)
dimensions for the computations in this case to apply.
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1. Denote the multiplicative inverse of ai mod mi by ai (i = 1, 2). As already noted in Figure 14.5,
a1 = 2082061899 and a2 = 1481316021.

2. Precompute the four arrays

Pi,j [k] =

{
a2k

i mod mi, i = 1, 2 and k = 1, 32 j = 1
ai

2k

mod mi, i = 1, 2 and k = 1, 32 j = -1

as follows:

function fill in array P(P, a, m)

P [1]← a mod m
do k = 2, 32

P [k]← P [k − 1] ∗ P [k − 1] mod m
end do

3. Compute aj mod m as follows: set

P =

{
Pi,1 if j > 0
Pi,−1 otherwise

and then invoke the following function:

function a to the j mod m(P, j, m)

r← 1
k← 1
while (j > 0) do

if (j&1) then
r← r ∗ P [k] mod m

end if
j ← j >> 1
k ← k + 1

end while
return r

Figure 14.7: An O(log j) algorithm for computing aj

In this case, the “inner” and “outer” jumps are computed as

jinner =
k−1∏
q=1

eq −
k−1∑
p=1

λp

Sp

p−1∏
q=1

eq

jouter = {nk ∗ (strip lengthk − 1) + 1} ∗
k−1∏
q=1

eq −
k−1∑
p=1

λp

Sp

p−1∏
q=1

eq

λk has to be computed as follows. (Here and in the next few lines, we suppress the subscript
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jump ← jinit

do in = LBn,UBn,Sn

do in−1 = LBn−1,UBn−1,Sn−1

. . .
do i2 = LB2,UB2,S2

do i1 = LB1,UB1,S1

-- Compute the next random number and update seed [ ]:
A(i1, i2, . . . , in)← compute(jump, seed)

jump ← Sloc
1

S1
end do

jump ← Sloc
2

S2
e1 − λ1

S1
end do

jump ← Sloc
3

S3
e2e1 − λ2

S2
e1 − λ1

S1. . .
end do

jump ← Sloc
n

Sn

n−1∏
q=1

eq −
n−1∑
p=1

λp

Sp

p−1∏
q=1

eq

end do

Figure 14.8: An optimized version

k in many of the variables.)

λk = ilochigh − iloclow

where, in the notation used in chapter 12,

iloclow =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

iloclow

∣∣∣∣
K=Kinit

if iloclow

∣∣∣∣
K=Kinit

≤ ilochigh

∣∣∣∣
K=Kinit

iloclow

∣∣∣∣
K=Kinit+1

otherwise

ilochigh =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ilochigh

∣∣∣∣
K=Ktrm

if iloclow

∣∣∣∣
K=Ktrm

≤ ilochigh

∣∣∣∣
K=Ktrm

ilochigh

∣∣∣∣
K=Ktrm−1

otherwise

These terms are evaluated as follows: First, we have

K init =
⌊
LBk + alloc offsetk
nk ∗ strip lengthk

⌋

Ktrm =
⌊
UBk + alloc offsetk
nk ∗ strip lengthk

⌋
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Then just substitute the correct value of K in the following expressions:

iloclow = max{0, (v̄k + K ∗ strip lengthk) ∗ nk − alloc offsetk − LBk}
ilochigh = min{UBk − LBk, (v̄k + K ∗ strip lengthk + 1) ∗ nk − alloc offsetk − LBk − 1}

Finally, we have to modify the computation of jinit. We also have to allow for the fact that on
one or more processors, the inner loop may be empty for the first iteration of the outer loop.
This happens precisely when

iloclow

∣∣∣∣
K=Kinit

> ilochigh

∣∣∣∣
K=Kinit

So first, in the computation for jinit,

jinit = 1 +
n∑

k=1

LBloc
k − LBk

Sk

k−1∏
p=1

ep

the term LBloc
k must be evaluated as LBloc

k

∣∣∣∣
K=Kinit

or LBloc
k

∣∣∣∣
K=Kinit+1

(the second expression

being used for each CYCLIC(n) dimension in which the inner loop is empty for K = K init

on that processor). Thus, again using the notation of chapter 12, for any such dimension the
factor

LBloc
k − LBk

Sk

must be replaced by iloclow.

Finally, if on some processor there is at least one CYCLIC(n) dimension whose inner loop is
empty for K = K init , then letting jouter denote the jump in the outer loop for the innermost
such dimension on that processor, we replace the local initial seed on that processor by

seed [i]← seed [i] ∗ a
(jinit−jouter)
i mod mi (i = 1, 2)

We do this because in fact the original jinit will never be used in this case. The first compu-
tation will happen with seed [i] multiplied by ajouter where jouter is the jump in the innermost
loop described above. This modification adjusts seed [i] so that after this multiplication, we
arrive at the value of jinit.

Case II. Any other case. We don’t feel it is worth the trouble to try to precompute jumps for
this case at compile time. (And we also feel that this case will seldom if ever occur.) So in
this case, we revert to the initial implementation. The jumps and their associated auxiliary
variables can be memoized in a run-time array as they are computed to save recomputation.
But this case will certainly not run as efficiently as the other cases.

Resetting the seed

In the case of a CYCLIC(n) distribution, we have to allow for the fact that the expression (14.2)
in section 14.4.2 (page 162) implicitly contains expressions for LBloc

j and UBloc
j that depend on
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the outer loop variable. (Let us call that variable outerj .) At the time the loops have exited, this
variable does not hold the last used value in the loop iterations.

We solve this problem as follows:

For each CYCLIC(n) loop, we create a privatized variable saved outer j . This variable is initialized
before entry to the loop nest as follows:

saved outer j ← K init
j −K incr

j

(where in the notation used in Chapter 12, K init
j and K incr

j represent the initial bound and increment
of the outer loop).

In each inner CYCLIC(n) loop, we insert the assignment

saved outer j ← outer j

In this way, the privatized variable saved outer j contains the last used value of the outer loop
variable outer j .

Then after the loop nest has exited, but before the evaluation of the expression (14.2) referred to
above, we insert an assignment

outer j ← saved outer j

This will cause LBloc
j and UBloc

j to be evaluated correctly in expression (14.2).

14.4.6 The RANDOM SEED intrinsic

Our implementation depends on the values of the random seed being the same on every processor.
For this reason, the intrinsic function RANDOM SEED is punted. What happens is this:

• If the SEED array passed to RANDOM SEED is explicitly mapped, it is copied to a replicated
temporary. This temp is then passed through to the RANDOM SEED intrinsic routine on
each processor.

(It would seem counterproductive to distribute the seed for a random-number computation,
but we have actually seen one benchmark test that did exactly this. We have no idea why. It
certainly can’t speed things up.)

• When RANDOM SEED is called without any arguments, the meaning is that a seed should
be picked from the clock time of the current processor. Of course this gives in general different
seeds on different processors. So after the call returns, we pick the seed from processor 0, and
propagate that to the other processors.

In this way, we guarantee that we have a consistent random seed on each processor.



Chapter 15

STRIP: Nearest Neighbor
Computations

We define a nearest-neighbor computation to be a statement with the following properties:

• The statement is a vector assignment. Such an array assignment could have appeared in the
source expressed using Fortran array syntax; or it could have come from a FORALL construct,
provided the rest of the restrictions below are satisfied. Let us say the statement is of the form

A(:, :, :) = expr(:, :, :)

where the expression on the right-hand side contains array references to any number of arrays,
possibly including A.

• There are no vector-valued subscripts in the statement. Equivalently, there are no complex
data subspace uses in any array reference in the statement.

• The statement is not completely computable locally; that is, motion is necessary at the root
of the statement.

• Each array referred to in the statement is distributed either BLOCK or serially in each di-
mension. (Different dimensions can be distributed differently, however.)

• There are no completion or replicated cells anywhere in the statement. (This constraint could
be weakened, but we don’t think it is worth the trouble at this point.)

• For each array reference on the right-hand side (call it C), corresponding iteration subspaces
of C and A satisfy all the conditions for being in the same region, with the exception that the
effective lower bounds may differ. That is, the corresponding iteration subspaces

1. are identically distributed (e.g. if A’s first dimension is allocated BLOCK, then the same
must be true for C’s first dimension).

2. have the same strip length.

3. have the same multiplier.

4. have the same effective stride.

169
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Furthermore, the effective lower bounds differ by at most some pre-set bound β. A typical value
for β might be 3. We provide a command-line switch -nearest_neighbor [width], whose
optional parameter sets the value of β, and there is a default value in case no parameter is
specified. In any case, the arrays in the statement each have to satisfy the following conditions:
for each distributed dimension j,

β ≤ num foldsj

This condition insures that corresponding elements of array references in the statement will
occur on processors at most 1 away from the processor holding the element on the left-hand
side, which is why we call this a nearest-neighbor computation.

In case the compiler cannot verify this (i.e., at compile-time), this constraint is regarded as
not having been fulfilled, and the nearest-neighbor optimization is suppressed. This typically
happens when the extents of an array are not known at compile-time; this is a common
occurrence.

The compiler switch -assume bigarrays (which is also implied by the -fast switch) asserts
that this condition is satisfied, so that the compiler does not make this check. If a small array
is mistakenly used in a program compiled with either of these two switches and the compiler
generates nearest-neighbor code for this array, the program will generally fail.

• Finally, the iteration allocation functions in the statement are all increasing, and the iteration
strides are also all positive. (It is enough to check that the data allocation functions of all the
arrays in the statement are all increasing—which simply means that the alloc stride values are
all positive—and that the source strides in the statement are all positive.)

This restriction is imposed simply to make the formulas below simpler; we think that it
is unlikely to be violated in any real case. It could be eliminated however, at the cost of
implementing somewhat more complicated addressing computations.

For example, the ordinary “4-point average” computation

A(2 :N−1, 2:N−1) = 0.25 ∗ (A(1 :N−2, 2:N−1)

+ A(3 :N, 2:N−1)

+ A(2 :N−1, 1:N−2)

+ A(2 :N−1, 3:N))

is a nearest-neighbor computation, so long as A is distributed either BLOCK with effective stride 1
or serially in each dimension: β = 1 would suffice.

If the statement is a nearest-neighbor computation, then we have each processor send “shadow edges”
(sometimes also referred to as a “guard wrapper”, or as “ghost cells”) to each other processor that
needs them before executing the computation. For instance, in the example above, if the array A is
allocated (BLOCK,BLOCK) on a machine with 16 processors, then the array can be thought of as
laid out as follows:
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where that part of the array in each small square is allocated to the memory of one of the 16
processors.

The storage for A in each processor can be thought of as having a shadow area surrounding it
which holds storage for those array elements in the neighboring processors which are needed by the
computations in that processor. The shadow in the memory of one of the processors in this example
looks like this:

Counting corners, the shadow region of an n-dimensional array can include components in up to
3n − 1 neighboring processors.

We actually allocate space in the memory of each processor to hold shadow edges of arrays that
need them. This changes the addressing computations for the arrays in the statement. It also
means that if an array is used in a nearest-neighbor computation and is a passed parameter or in
common, then the array must be remapped on entry to a subroutine. This remapping does not
involve interprocessor communication, however.

Each array that needs shadow edges (either as determined by the compiler or because of an explicit
SHADOW directive) is classified as a nearest-neighbor array by means of the NEAR NEIGHBOR
handy bit.
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15.1 Original version

When STRIP encounters a vSTORE operator which has been tagged by DIVIDE as a nearest-
neighbor computation, it first creates a data structure to hold information about the shadow edges:

1. Let n = rankA. (n is of course known at compile time.)

2. Create an array shadow[−1:1,−1:1, . . . ,−1:1] of rank n. Each element of this array is itself
a 1-dimensional integer array of extent n (giving the dimensions of the corresponding shadow
edge). Initialize this array to 0.

3. Let L denote the occurrence of A on the left-hand side of the statement. For i = 1 to n, let
LBloc

j denote the localized lower iteration bound of L in the jth dimension. Let φL
j denote the

iteration allocation function for L.

For each occurrence R of A on the right-hand side, let φR
j denote the iteration allocation

function for R.

(a) For i = 1 to n, let δj = φR
j (LBloc

j )− φL
j (LBloc

j ). Let αj = sign(δj).

(b) Invoke process shadow bounds(1, α1, α2, . . . , αn).

where the recursive procedure process shadow bounds() is defined in Figure 15.1. This pro-
cedure enumerates all subsets of {1 . . . n}, and for each subset, fills in information concerning
the corresponding shadow edge for the given array occurrence.

procedure process shadow bounds(index, λ1, λ2, . . . , λn)

begin
if index = n + 1 then begin

for i = 1 to n do begin
if λi = 0 then continue;
if λi = 1 then

shadow[λ1, . . . , λn][i]← max{shadow[λ1, . . . , λn][i], δi};
else if λi = −1 then

shadow[λ1, . . . , λn][i]← min{shadow[λ1, . . . , λn][i], δi};
end for

else
begin

process shadow bounds(index + 1, λ1, λ2, . . . , λn);
if λindex �= 0 then begin

λindex ← 0;
process shadow bounds(index + 1, λ1, λ2, . . . , λn)

end if
end

end if
end

Figure 15.1: Definition of the recursive procedure process shadow bounds().
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When this has been done, we know that the absolute value of each entry of the shadow array
is ≤ β. There is no communication in a given dimension i if and only if

shadow[α1, α2, . . . , αn][i] = 0

for all choices of the numbers {αj : 1 ≤ j ≤ n}.
Note also that the sign of shadow[α1, α2, . . . , αn][i] is the same as the sign of αi.

Each shadow edge now corresponds to an element

shadow[α1, . . . , αn][1 : n]

which is not �0. (By “element” here we mean a choice of the n-tuple [α1, . . . , αn].)

A similar computation is carried out for each array name B occurring on the right-hand side of the
statement. Thus, there is a separate shadow data structure constructed for each distinct array used
in the statement. In constructing the shadow array for B, li is always determined by the occurrence
of A on the left-hand side, while ri is determined by a particular occurrence of B on the right-hand
side.

For each array B used in the nearest-neighbor computation, space will have to be allocated in each
processor to hold not only that part of B which lives on the processor, but also to hold space for
the shadow edges. We do this as follows. The dimensions of B which are allocated serially, or
which are distributed BLOCK but whose corresponding data cell has a strip length of 1, do not
need any additional space, and are addressed normally. Each remaining dimension of B (which
must be distributed BLOCK with strip length > 1), instead of contributing a factor of num foldsj

to the storage reserved locally for B, contributes a factor of

num foldsj + 2 ∗ β.

That is, we reserve a space of width β “on each side” of the normal space reserved for B in each of
these dimensions.

The addressing in each of these dimensions then has to be offset by

offj = β.

In particular, in any statement which is not a nearest-neighbor computation, the local addressing
computation for an occurrence of B is modified by adding offj in the jth dimension.

After having enumerated the shadow edges in this manner, the strip miner performs the following
actions:

• it generates loops to load the shadow edges, and then

• it performs regular strip mining on the statement itself.

First, we show how to perform regular strip mining on the statement itself:

The strip loops are generated in the usual fashion. To localize subscripts, we use a slight variant of
the ordinary formula for BLOCK dimensions on page 132

v̂j = fj(sj)−
⌊

φj(LBloc
j )

num foldsj

⌋
∗ num foldsj .
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as follows:

For each triple on the array reference on the left-hand side, we define

Lj = num foldsj ∗
⌊

φj(LBloc
j )

num foldsj

⌋
.

(Note that for a serial dimension this value is 0.)

Now we could just write v̂j = offj + fj(sj)− Lj, except that we are assuming we are starting with
a TRIPLE, not a scalar subscript. Therefore, we use the fact that fj(sj) = φj(Ij). We have to be
careful to note, however, that here Ij denotes the normalized value of the loop index, as computed
on page 130. In addition, φj differs for different references to the same array—this reflects the fact
that the differenct references do not strictly align, but may differ by a value bounded by the shadow
width. This allows us to generate addressing that references elements in the shadow edges.

Thus for each corresponding triple LBj : UBj : Sj in any array reference in the statement, the
localized address becomes

v̂j = offj + φj(Ij)− Lj

where, as just explained, this φj differs for different array references.

It is interesting to note that this expression, which originates as an optimization of the regular
BLOCK addressing computation involving a MOD operator, is actually necessary for nearest-
neighbor computations, because it enables us to address the shadow edges. The MOD computation
would actually be incorrect in this case.

Next, to load the shadow edges, we have to

• calculate the processor that the shadow edge comes from,

• calculate the addresses in that processor holding the shadow edge, and

• calculate the addresses in the current processor into which the shadow edge will be loaded.

In calculating these addresses, we use the φj of the left-hand side, offsetting the result by the
computed shadow widths.

We let Δj denote the data allocation stride in the jth dimension (i.e. the alloc stridej obtained
from data space). Δj is the increment in virtual processor space of successive elements in the jth

dimension. As a consequence, shadow[α1, . . . , αn][j] is automatically a multiple of Δj .

Now each shadow edge corresponds to a choice of [α1, . . . , αn]. If as usual v̄ = [v̄1, . . . , v̄n] designates
the current processor, the processor holding the shadow edge is given by

[v̄1 + α1, . . . , v̄n + αn].

Using the computations indicated for localizing subscripts, we calculate LBloc
j and UBloc

j for the
left-hand side array reference for each dimension j. The quantity Lj is calculated as indicated above.
If j is a BLOCK dimension, the addresses in the source processor of the shadow edge are given by
the triple

v̂loc
low : v̂loc

high : v̂loc
str
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(we suppress including j as a subscript here)

where if αj > 0
v̂loc
low = offj + (φj(LBloc

j )− Lj) mod Δj

v̂loc
high = v̂loc

low + shadow[α1, . . . , αn][j]−Δj

v̂loc
str = Δj

and if αj < 0
v̂loc
low = v̂loc

high + shadow[α1, . . . , αn][j] + Δj

v̂loc
high = offj + φj(UBloc

j )− Lj +

⌊
num foldsj − (φj(UBloc

j )− Lj)
Δj

⌋
∗Δj

v̂loc
str = Δj

and if αj = 0
v̂loc
low = offj + φj(LBloc

j )− Lj

v̂loc
high = offj + φj(UBloc

j )− Lj

v̂loc
str = Δj

There is an additional point to be noted here: In computing the localized values LBloc
j and UBloc

j

in these formulas, the values LBj and UBj have to be adjusted as follows:

LBj ← LBj − shadow[α1, . . . , αn][j]

UBj ← UBj − shadow[α1, . . . , αn][j]

The reason for this is that we may need to receive values from processors that are beyond the end
of the array on the left-hand side; we need to have the localized bounds on those processors set
meaningfully. This greatly complicates the computations; this is one reason why we do not in fact
use this method, but use a simplified procedure to be discussed in the next section.

If j is a BLOCK dimension, the addresses in the target processor into which the shadow edge will
be loaded are given by the triple

v̂loc
low : v̂loc

high : v̂loc
str

where if αj > 0

v̂loc
low = offj + φj(UBloc

j )− Lj +

⌊
num foldsj − (φj(UBloc

j )− Lj)
Δj

⌋
∗Δj + Δj

v̂loc
high = v̂loc

low + shadow[α1, . . . , αn][j]−Δj

v̂loc
str = Δj

and if αj < 0
v̂loc
low = v̂loc

high + shadow[α1, . . . , αn][j] + Δj

v̂loc
high = offj + (φj(LBloc

j )− Lj) mod Δj −Δj

v̂loc
str = Δj

and if αj = 0
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v̂loc
low = offj + φj(LBloc

j )− Lj

v̂loc
high = offj + φj(UBloc

j )− Lj

v̂loc
str = Δj

For each shadow edge, the strip miner packages up all the elements in that edge (in the source
processor) into a buffer and sends that buffer to the target processor. Each target processor generates
a receive for that information and assigns the data in that message in the same order to the shadow
edge in its memory.

Actually, this is not quite true: processors holding elements on the edge of the array do not generate
sends or receives to or from processors which would be nonexistent or holding elements not in the
array. Therefore, a test has to be performed in each processor for each shadow edge, as follows:

For each dimension of an array reference containing a triple, and distributed BLOCK with strip lengthj >

1, we have

v̄j,low =
⌊

φj(LBj)
num foldsj

⌋

v̄j,high =

⎢⎢⎢⎣φj

(
LBj + Sj ∗

⌊
UBj−LBj

Sj

⌋)
num foldsj

⎥⎥⎥⎦

For each shadow edge given by [α1, . . . , αn],

• For each αj = −1,

The SEND of that edge is suppressed unless

v̄j,low ≤ v̄j < v̄j,high

(This corresponds to motion in the positive direction along the j axis.)

• For each αj = 1,

The SEND of that edge is suppressed unless

v̄j,low < v̄j ≤ v̄j,high

(This corresponds to motion in the negative direction along the j axis.)

• For each αj = −1,

The RECEIVE of that edge is suppressed unless

v̄j,low < v̄j ≤ v̄j,high

(This corresponds to motion in the positive direction along the j axis.)
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• For each αj = 1,

The RECEIVE of that edge is suppressed unless

v̄j,low ≤ v̄j < v̄j,high

(This corresponds to motion in the negative direction along the j axis.)

Regular strip mining is then performed on the statement itself, using the addressing indicated above.

In addition, STRIP has to change the addressing computations for these arrays when they are used
in non-nearest-neighbor computations. For these statements, STRIP adds offj to each value of v̂j .

15.2 Simplified version

We have actually implemented a modified version of these nearest-neighbor algorithms. The modified
version in in some respects simplified, although in accomodating different actual sizes of shadow
edges it is slightly more general. It may well be that this modified version is better than the original
design in general. It has the advantage that in general, fewer sends and receives are generated
(although in the most typical cases, there will be no difference), and it has the disadvantage that in
general more data is moved.

The simplifications we have made are as follows:

• The storage allocated to each shadow edge has effective width βj in both directions (positive
and negative) in the jth coordinate of the iteration space. This is somewhat more general
than the original design, in which all the βj are equal. (Note that not all of this storage may
be moved in a particular computation, however. Only that part of the shadow edge that is
actually needed is moved.)

• Instead of 3n− 1 moves being needed, we generate at most 2n moves, by moving larger strips.
Each strip which is sent to a neighboring processor consists of the elements of the array which
will become part of that neighbor’s shadow edge, plus all other elements from that array’s
shadow edges which have images in the neighbor’s shadow edges and which have already
received values from other processors. This way, each processor only has to send and receive
from its two “orthogonal” neighbors in each dimensional direction—there is no “diagonal”
motion.

As before, in calculating these addresses, we use the φj of the left-hand side, offsetting the result
by the computed shadow widths.

The recursive procedure to compute the shadow array is no longer needed, because the shadow array
itself is no longer needed—we already know the size of the shadow in every direction.

The rest of this section describes how the formulas for computing and moving shadow edges are
modified.

An index j (or k, etc.) in these formulas is interpreted as follows:

• If the field being fetched is from the data space, j is the index of a subspace in the data space.
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• If the field being fetched is from the iteration space, j refers to the index of the subspace of
the iteration space that corresponds to the j subspace of the data space.

In general (and unless specifically stated otherwise below), all data and iteration spaces are those
of the left-hand side.

As before, v̄ = [v̄1, . . . , v̄n] designates the current processor. For each k from 1 to n, this processor
will send shadow edge data to the processor [v̄1, . . . , v̄k +1, . . . , v̄n] (we call this a positive send) and
also to the processor [v̄1, . . . , v̄k − 1, . . . , v̄n] (we call this a negative send).

Let us use Δj to stand for the data allocation stride in the jth dimension (i.e. alloc stridej obtained
from data space).

Now to compute the values of v̂j being sent and received, we use data space, rather than iteration
space. We derive the formulas in the same way as the formulas for BLOCK distribution were
derived in Chapter 12 for localizing iteration space bounds, but this time we apply them to data
space bounds.

The formulas become simpler in this case, because there is no equivalent of iteration stride. Each
coordinate of an array varies over a contiguous set of values. Therefore, instead of considering

φj(Sj ∗ i + LBj) where 0 ≤ Sj ∗ i + LBj ≤
⌊

UBj−LBj

Sj

⌋
, we simply consider fj(i), where DLBj ≤

i ≤ DUBj .

In this way, for each dimension distributed BLOCK, we get local lower and upper bounds of the
array on the left hand side in each dimension j. Let us call these bounds dLBj and dUBj . The
formulas we derive for these values are

dLBj =

⎧⎪⎪⎨
⎪⎪⎩

max
{

DLBj ,

⌈
num foldsj ∗ v̄j − alloc offsetj

alloc stridej

⌉}
if fj ↑

max
{

DLBj ,

⌊
num foldsj ∗ (v̄j + 1)− alloc offsetj

alloc stridej

⌋
+ 1
}

if fj ↓

dUBj =

⎧⎪⎪⎨
⎪⎪⎩

min
{

DUBj ,

⌈
num foldsj ∗ (v̄j + 1)− alloc offsetj

alloc stridej

⌉
− 1
}

if fj ↑

min
{

DUBj ,

⌊
num foldsj ∗ v̄j − alloc offsetj

alloc stridej

⌋}
if fj ↓

Note that the quantities alloc stridej and alloc offsetj in these formulas refer to the data allocation
function fj of the array on the left-hand side.

Now while these formulas indicate the least and greatest array elements on a given processor, what
we are going to use them for is to specify a range of memory addresses. We want this range to go
from lower to higher. Therefore, in the case when f ↓, we must interchange dLBj and dUBj . That
is, we define “normalized versions” nLBj and nUBj as follows:
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nLBj =

⎧⎪⎪⎨
⎪⎪⎩

dLBj = max
{

DLBj ,

⌈
num foldsj ∗ v̄j − alloc offsetj

alloc stridej

⌉}
if fj ↑

dUBj = min
{

DUBj ,

⌊
num foldsj ∗ v̄j − alloc offsetj

alloc stridej

⌋}
if fj ↓

nUBj =

⎧⎪⎪⎨
⎪⎪⎩

dUBj = min
{

DUBj ,

⌈
num foldsj ∗ (v̄j + 1)− alloc offsetj

alloc stridej

⌉
− 1
}

if fj ↑

dLBj = max
{

DLBj ,

⌊
num foldsj ∗ (v̄j + 1)− alloc offsetj

alloc stridej

⌋
+ 1
}

if fj ↓

Defined in this way, we have fj(nLBj) ≤ fj(nUBj), unless the array is a 0-sized array.

When the strip length is 1, these formulas become much simpler. In fact, they describe what happens
in a serial dimension, of the array. We pull this out as a special case:

For serial dimensions, we make use (as on page 73) of the “normalized” lower and upper declared
bounds of the array on the right-hand side (i.e., the array whose shadow edges are being filled in):

NLBj =

{
DLBj if fj ↑
DUBj if fj ↓

NUBj =

{
DUBj if fj ↑
DLBj if fj ↓

Defined in this way, we have fj(NLBj) ≤ fj(NUBj), unless the array is a 0-sized array.

The formulas make use of two additional quantities that the compiler computes: The quantity β+
k

is the greatest effective positive send for a given array in the statement (or group of statements)
being processed, and β−

k is the corresponding greatest effective negative send. (Both β+
k and β−

k are
taken to be non-negative quantities.) For instance, in the statement

A(i, j) = B(i− 1, j − 2) + B(i− 3, j + 1) + A(i + 1, j − 2)

where B is aligned with A and the iteration allocation strides are all 1, we have

• For the array A:

β+
1 = 0 β+

2 = 2

β−
1 = 1 β−

2 = 0

• For the array B:

β+
1 = 3 β+

2 = 2

β−
1 = 0 β−

2 = 1

Now we are ready to compute the bounds of the shadow edges that are actually sent and received.
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For each array on the right-hand side, and for each BLOCK dimension k, we compute the values of
v̂j for the shadow edge being sent in the k direction as follows:

The values of v̂j in the source processor for the shadow information being sent are given by the
triple

v̂loc
low : v̂loc

high : v̂loc
str

The values of the elements in this triple are given by the following formulas. Everything in these
formulas except fj(nLBj), fj(nUBj), fj(NLBj) and fj(NUBj) refers to values from the data space
of the array on the right-hand side whose shadow edges are being filled in.

If k = j and the send is negative,

v̂loc
low = offj + fj(nLBj) mod num foldsj

v̂loc
high = v̂loc

low +

(⌊
β−

j

Δj

⌋
− 1

)
∗Δj

v̂loc
str = Δj

and if k = j and the send is positive,

v̂loc
low = v̂loc

high −
(⌊

β+
j

Δj

⌋
− 1

)
∗Δj

v̂loc
high = offj + fj(nUBj) mod num foldsj

v̂loc
str = Δj

and if k �= j,

v̂loc
low =

{
offj + fj(nLBj) mod num foldsj − h(k, j, β+

j ) if j is a BLOCK dimension
fj(NLBj) if j is a SERIAL dimension

v̂loc
high =

{
offj + fj(nUBj) mod num foldsj + h(k, j, β−

j ) if j is a BLOCK dimension
fj(NUBj) if j is a SERIAL dimension

v̂loc
str = Δj

where

h(k, j, β±
j ) =

⎧⎨
⎩
⌊

β±
j

Δj

⌋
∗Δj if j < k

0 otherwise (i.e., if j > k)

The use of the term h(k, j, β±
j ) implements a small optimization: a “corner” of a shadow edge only

has to be sent after something has been received into its preimage. h(k, j) is defined to make this
happen: successively larger shadow edges are sent as k increases.

(Note that while the quantity shadow (in the previous section of this chapter) can be positive or
negative, the numbers β±

j are always positive.)

The reason the terms offj and h(k, j, β±
j ) do not appear in the case that j is a serial dimension is

that such a dimension has no shadow edges.
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Next, for each BLOCK dimension k of an array on the right-hand side, we compute the values of
v̂j for the shadow edge being received in the k direction as follows:

The values of v̂j in the target processor for the shadow information being sent are given by the triple

v̂loc
low : v̂loc

high : v̂loc
str

The values of the elements in this triple are given by the following formulas. As before, everything
in these formulas except fj(nLBj), fj(nUBj), fj(NLBj) and fj(NUBj) refers to values from the
data space of the array on the right-hand side whose shadow edges are being filled in.

If k = j and we’re receiving a negative send,

v̂loc
low = offj + fj(nUBj) mod num foldsj + Δj

v̂loc
high = v̂loc

low +

(⌊
β−

j

Δj

⌋
− 1

)
∗Δj

v̂loc
str = Δj

and if k = j and we’re receiving a positive send,

v̂loc
low = v̂loc

high −
(⌊

β+
j

Δj

⌋
− 1

)
∗Δj

v̂loc
high = offj + fj(nLBj) mod num foldsj −Δj

v̂loc
str = Δj

and if k �= j,

v̂loc
low =

{
offj + fj(nLBj) mod num foldsj − h(k, j, β+

j ) if j is a BLOCK dimension
fj(NLBj) if j is a SERIAL dimension

v̂loc
high =

{
offj + fj(nUBj) mod num foldsj + h(k, j, β−

j ) if j is a BLOCK dimension
fj(NUBj) if j is a SERIAL dimension

v̂loc
str = Δj

where h(k, j, β±
j ) is defined as above.

Next, we compute Boolean expressions to determine which physical processors are actually involved
in sending and receiving. We compute these expressions mainly in terms of the array on the left-
hand side. So in the following formulas, all values are those of that array, with the exception of β±

j .
The Boolean expressions are computed as follows:

For any component j other than the component k corresponding to the direction of the motion, the
jth component of the virtual processors sending or receiving any shadow edge will lie in the interval

φj(LBj) : φj

(
LBj + Sj ∗

⌊
UBj − LBj

Sj

⌋)

and therefore, the actual component of the virtual processors sending or receiving any shadow edge
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lies in the interval v̄j,low : v̄j,high, where the bounds are given by the same formulas as on page 176:

v̄j,low =
⌊

φj(LBj)
num foldsj

⌋

v̄j,high =

⎢⎢⎢⎣φj

(
LBj + Sj ∗

⌊
UBj−LBj

Sj

⌋)
num foldsj

⎥⎥⎥⎦

For the components in the direction of the motion (i.e., for the k components), we have a different
set of formulas, which look at first rather strange. These formulas compute four send bounds and
four receive bounds:

actual processor
component bound direction send receive

low right v̄s+
k,low v̄r+

k,low

high right v̄s+
k,high v̄r+

k,high

low left v̄s−
k,low v̄r−

k,low

high left v̄s−
k,high v̄s−

k,high

The send bounds can then be computed as follows:

v̄s+
k,low =

⌊
φk(LBk)− β+

k

num foldsk

⌋
v̄s+

k,high =

⎢⎢⎢⎣φk

(
LBk + Sk ∗

⌊
UBk−LBk

Sk

⌋)
num foldsk

⎥⎥⎥⎦− 1

v̄s−
k,low =

⌊
φk(LBk)

num foldsk

⌋
+ 1 v̄s−

k,high =

⎢⎢⎢⎣φk

(
LBk + Sk ∗

⌊
UBk−LBk

Sk

⌋)
+ β−

k

num foldsk

⎥⎥⎥⎦

This can be understood as follows:

• When sending to the right, the lower bound in the kth coordinate of the set of virtual sending
processors is φk(LBk)− β+

k .

• On the other hand, the upper bound in the kth coordinate of the set of physical sending
processors is just 1 less than the upper bound of the receiving processors.

• When sending to the left, the reasoning is similar, but the role of upper and lower bounds is
interchanged.

Now the receive bounds can be computed as follows: we must have

v̄r+
∗ = v̄s+

∗ + 1

v̄r−
∗ = v̄s−

∗ − 1
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and so

v̄r+
k,low =

⌊
φk(LBk)− β+

k

num foldsk

⌋
+ 1 v̄r+

k,high =

⎢⎢⎢⎣φk

(
LBk + Sk ∗

⌊
UBk−LBk

Sk

⌋)
num foldsk

⎥⎥⎥⎦

v̄r−
k,low =

⌊
φk(LBk)

num foldsk

⌋
v̄r−

k,high =

⎢⎢⎢⎣φk

(
LBk + Sk ∗

⌊
UBk−LBk

Sk

⌋)
+ β−

k

num foldsk

⎥⎥⎥⎦− 1

We note as a check that if v̄s+
k,low = v̄r+

k,high, then v̄s+
k,low > v̄s+

k,high, so no positive send will in fact be
generated—this will be enforced by the Boolean expressions computed immediately below. For the
same reason, in such a case no positive receive will be generated, and similar considerations apply
to negative sends and receives.

Finally, we can define the promised Boolean expressions, which enable us to determine which pro-
cessors actually send and which receive. First define

Ak =
k−1∧
i=1

(v̄i,low ≤ v̄i ≤ v̄i,high)

Bk =
n∧

i=k+1

(v̄i,low ≤ v̄i ≤ v̄i,high)

(By convention, A1 = Bn = TRUE.)

Then for k = 1 to n (in that order), SENDs and RECEIVEs are generated, subject to the following
restrictions:

• A positive SEND is generated if and only if

Ak ∧ (v̄s+
k,low ≤ v̄k ≤ v̄s+

k,high) ∧Bk

• A negative SEND is generated if and only if

Ak ∧ (v̄s−
k,low ≤ v̄k ≤ v̄s−

k,high) ∧Bk

• A RECEIVE of a positive SEND is generated if and only if

Ak ∧ (v̄r+
k,low ≤ v̄k ≤ v̄r+

k,high) ∧Bk

• A RECEIVE of a negative SEND is generated if and only if

Ak ∧ (v̄r−
k,low ≤ v̄k ≤ v̄r−

k,high) ∧Bk
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15.3 COMMON arrays and parameter passing

The changes in addressing outlined in this chapter apply most straightforwardly to arrays which are
declared locally to a routine.

Non-local arrays that are used in nearest-neighbor contexts in a subroutine need to be remapped on
entry (and possibly on exit) from that subroutine unless the compiler can determine that they are
already equipped with appropriate shadow edges. The SHADOW directive is used for this purpose.
The rest of the discussion below describes how we handle the case when the compiler has no such
information, or when the compiler can determine that a remapping is needed in any case.

COMMON arrays without shadow edges that are used in nearest-neighbor computations must be
remapped to provide for shadow edges at the beginning of the routine and remapped back on exit
from the routine.

We now show what has to be done to handle parameters without shadow edges. All the motion
which is necessary to support these parameters is introduced by the DIVIDE phase.

First we consider data which is passed in to a called subroutine:

If an array is a passed parameter, or is in COMMON, does not have shadow edges, and is used in a
nearest-neighbor computation, that array must be remapped on entry (i.e. at the beginning of the
routine). This remapping takes the form of a local statement—it does not involve interprocessor
communication. Before the subroutine exits, the array must be restored to its original position.

Now we consider data which is to be passed to a called subroutine:

Before calling a subroutine, every array which is used in a nearest-neighbor computation and is an
actual parameter to the call, and also every array in COMMON which is used in a nearest-neighbor
computation in the calling routine, is remapped to eliminate the shadow edges before calling the
routine; and it is restored to its original mapping when the subroutine returns. (Of course this
does not happen if there is an explicit interface that indicates that the corresponding dummy has
equivalent shadow edges.) This remapping and restoring is done by the calling routine, so that
the subroutine can be ignorant of this consideration. Of course, if the array is used within the
subroutine in nearest-neighbor computations, then the subroutine itself will again remap the array
on entry to provide the shadow edges, and will restore the array on exit, as described earlier.

It would certainly be better if an array which was used in a routine and in a called routine in
nearest-neighbor computations could just be passed with no remapping, even without an explicit
interface. However, this would require interprocedural information, which we do not have. In any
case, all the required remapping discussed in this section is a purely local computation involving no
interprocessor communication.

The local remapping described above is implemented as follows: To remap a nearest-neighbor array
A so that it can be passed to a subroutine (i.e. to get rid of the shadow edges), a nest of local DO
loops is created on each processor around the statement

A = A.

On the right-hand side, each v̂j is given by

v̂j = offj + φj(Ij)− Lj.

On the left-hand side, each v̂j is given by

v̂j = φj(Ij)− Lj.
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These loops have no strip mining obstacles in them.

The restoring remap is carried out similarly except that the right and left hand sides of the equation
are interchanged, and all the loops are run backwards to avoid introducing strip mining obstacles.

While the remapping statements are set up by the DIVIDE phase, these addressing changes are
implemented in STRIP.

15.4 Post processing

At the end of the STRIP phase, the num folds attribute of every data cell that is distributed
BLOCK and used in an array tagged as a nearest-neighbor array is replaced by its original value
plus 2 ∗ offj . This ensures that enough space will be allocated for the array plus the shadow edges
when storage allocation is performed, and also ensures that the addressing of the array will be
correct when the subscript expressions are linearized.

15.5 Nearest-neighbor computations on NUMA machines

This section could properly belong in Chapter 16, but we place it here because nearest-neighbor
processing is so complex that it makes sense to keep all the variations of it in one place. We assume
without additional comment all the discussion in Chapter 16, however. For this section, we assume
that we are compiling a program for a NUMA machine.

Since nearest-neighbor handling, involving the introduction of shadow edges, is based on the distributed-
memory model, we only classify an array as nearest-neighbor (via the NEAR NEIGHBOR handy
bit) if the array is specified as an element granularity array.

For each array A having shadow edges, we know that the array is distributed over separate memories,
just as in a distributed-memory machine. We create modified versions of num foldsj and num folds
for A as follows:

num folds∗j = num foldsj + 2βj

num folds∗ =
n∏

j=1

num folds∗j

where βj is as usual the shadow width in dimension j, which may be 0.

DTR2CIR then describes the array as having bounds

0:num folds∗j − 1

in dimension j.

Now we show how to deal with subscripts of references to A. First, if A is not a local stack array,
we modify slightly the computation of nf round, by defining it (by either Method 3 or Method 1 of
Chapter 16, as appropriate) in terms of num folds∗, rather than num folds.

If A is a local stack array, the increment added to OtsNumaCurrentTos and specified in item 7c on
page 230 is similarly changed by replacing num folds by num folds∗.
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Now we discuss how to localize the subscripts of references to A. Each array reference has a Boolean
numa_local attribute which is set as described on page 215 below. To handle nearest-neighbor
arrays, we make one change to that processing:

Array references inside NUMA parallel loops that refer either to local array elements or to array
elements in shadow edges are classified as numa_local. (That is, they might technically be remote
references, but because the only remote elements referred to are actually in shadow edges, we classify
them as numa_local. Shadow edges for these arrays are filled in in the usual manner before the
entry to the loop.

Using this classification we can localize subscripts for nearest-neighbor arrays:

1. If the array reference is not numa_local, then the normal non-numa_local processing takes
place—that is, the subscripts are localized using the data space of A. Since A is classified as a
nearest-neighbor array (via the NEAR NEIGHBOR handy bit), the appropriate offset is also
added to each subscript.

2. If the array reference is numa_local, then we treat A almost exactly as we do in an HPF
program. The subscripts are lowered exactly as described previously for HPF arrays. After
this lowering, the numa adjustment term, which is either

• v̄ ∗ nf round, as in expression 16.1 (page 194), or

• v̄ ∗@A extent + @A base, as in 16.4 (page 228), if A is a local stack variable,

is added to the first subscript. (We don’t have to use kp +kr ∗P instead of v̄ in these formulas,
because we are assuming that there are no replication or completion cells.)

The message passing needed to fill in the shadow edges is replaced by loop nests containing ordinary
assignment statements. This is done as follows:

Each SEND/RECEIVE pair is replaced by an assignment statement of the form

received section of A = sent section of A

We generate each such assignment as a “pull”, rather than a “push”. That is, the processor owning
the received section of A is the processor that executes the statement. The sections are then
computed as follows:

• The received section of A is computed exactly as specified by the equations for received data
on page 181.

• The sent section of A is computed exactly as specified by the equations for sent data on
page 180, with the following changes, which are needed in order that the expressions will
evaluate to the correct values when evaluated by the receiving processor. (The original HPF
version has them evaluated by the sending processor, for which the value of v̄ is different.)

– If the send is positive, then replace v̄j in nLBj and nUBj by v̄j − 1.

– If the send is negative, then replace v̄j in nLBj and nUBj by v̄j + 1.

Following this, a parallel loop nest is generated to implement the assignment, and the numa adjust-
ment term is added to the first subscript of each array reference. This term is just v̄ ∗ nf round or
v̄∗@A extent+@A base as above, and is modified for sends (i.e., for the right-hand array references)
in the same way as above; namely:
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• If the send is positive, then replace v̄j in v̄ by v̄j − 1.

• If the send is negative, then replace v̄j in v̄ by v̄j + 1.



Chapter 16

Support for Shared-Memory
NUMA Machines

16.1 Introduction

TRANSFORM has been adapted to support extensions to OpenMP Fortran [4] that allow data
mapping when a NUMA machine is targeted. This design is based on the following assumptions:

• The machine consists of a number of networked smaller machines. Each smaller machine,
which is referred to in this design as an “hpf processor”, contains one memory and a number
of physical processors. These are examples of what the operating system calls a rad , or
“Resource Allocation Domain”. We generally do not use the term rad in this discussion
(except in some of the pseudocode below), however, because a rad can be a more general
collection of processors and/or memories, not necessarily containing even one of each. (On
the Wildfire machine, the hpf processors are referred to as “quads”, since each hpf processor
contains four physical processors.)

An hpf processor is also called a memory.

• Each available physical processor generally corresponds to an OMP thread. The number of
threads per hpf processor is denoted by threads per memory.

• The machine as a whole has a single address space. However, access by a processor to local
memory (i.e., memory on the same hpf processor) is faster than to non-local memory. For this
reason, mapping large arrays over the hpf processors can be important in generating efficient
code. This data mapping is expressed in the source program by HPF mapping directives.

• The TRANSFORM phases of the compiler generate code that is in principle parametrized by
calls to my processor(), where my processor() returns the number of the hpf processor on
which it is called.

• The reason for the phrase “in principle” in the previous assumption is that we assume that
there is a well-defined map from thread number to hpf processor number. In fact, we will
assume that the threads are assigned to the hpf processors in a block fashion. For instance, if

188
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threads per memory = 4, then threads 0-3 are assigned to hpf processor 0, threads 4-7 to hpf
processor 1, and so on. In general,

my processor() =
⌊

my thread()
threads per memory

⌋

16.2 Language issues

The language we support is OpenMP Fortran with the HPF mapping directives added. For con-
venience, in this chapter, we will call this language simply “NUMA”. The semantics of the HPF
mapping directives is, unless specified otherwise, that of the HPF language.

There are, however, a few instances in which the mapping directives have a somewhat different
semantics:

• SEQUENCE is compatible with mapped objects in NUMA. SEQUENCE causes the compiler
to interpret the mapping of the objects with “page granularity” (see below).

• In HPF, SEQUENCE and NOSEQUENCE may be applied only to data objects and common
blocks. In NUMA, these directives may also be applied to fields of derived types.

• In HPF, mapped arrays in common must be declared identically (except for trivial name
changes) in each place the common block is declared. This continues to be the case for
“element granularity” common blocks (see below).

However for page granularity common blocks (these are common blocks declared with the
default SEQUENCE directive), this restriction is relaxed. Of course, if two inconsistent map-
pings are specified for an array in such a common block, the compiler will simply pick one of
them and ignore the other. This will not lead to incorrect code, although in general it will
lead to inefficient code.

• In NUMA, mapping may be applied to an assumed-size object, provided

1. it has the SEQUENCE attribute, and

2. the last dimension is mapped serially.

However, such an object may not be replicated or partially replicated.

The reason for this is simply that the compiler does not know the size of an assumed-size array.
(It does not know the size of an assumed-shape array, either, but it can create an expression
for this size from dope vector information.) In our implementation, the replicated copies of
the array are stored consecutively in memory. Without knowing the size of the array, the
compiler has no way of knowing where each successive replicated copy of the array starts in
memory.

Note that since the last dimension of a mapped assumed-size object is mapped serially, the
compiler can use the mapping information to infer an iteration space when it needs to.

• In HPF there is no effective distinction between descriptive and prescriptive mappings on
dummy arguments. In both HPF and NUMA, the callee may assume that a descriptively
mapped dummy is mapped as the directive specifies. In HPF it is the responsibility of the
caller to ensure that this is so, remapping the actual if necessary. However, in NUMA, the
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caller is under no obligation to enforce this. In other words, in NUMA, a descriptive directive
is an assertion by the programmer that the actual already conforms to the indicated mapping.
If it does not, the program will still be semantically correct (since the machine is a shared-
memory machine), but performance will no doubt be degraded.

As a consequence, since STRIP cannot be sure (in NUMA) that a descriptively mapped dummy
actually is mapped as specified, it cannot know for certain when an array or array element is
local (really numa_local; see page 215 below). Therefore, iteration space cannot be used in
localizing subscripts for such an array reference—only data space may be used.

(As a matter of historical interest, this was the original intended interpretation of descriptive
mappings in HPF. Of course, in a distributed-memory system, a violation of the assertion
would in general cause the program to be non-conforming.)

16.3 Interpretation of the mapping directives

The HPF mapping directives are also often referred to in the NUMA context as “data layout
directives”.

There are two ways the compiler can treat these directives:

• Preserve the HPF interpretation of the mapping directives. This breaks sequence and storage
association, but gives a mapping of array elements to hpf processors that exactly honors the
mapping directives specified by the programmer.

We call this method element granularity .

• Preserve sequence and storage association. This does not exactly honor the HPF mapping
specified by the programmer, but it does make it possible to compile code whose correctness
depends on sequence association.

We call this method page granularity.

The default mapping for the NUMA compiler is serial, restricted to hpf processor 0. This is in
contrast to the default mapping for HPF, which is also serial but is replicated over all hpf processors.

The default granularity for the NUMA compiler is page granularity. For ease of explanation, how-
ever, we discuss element granularity first.

The analysis that TRANSFORM performs in the HPF compiler is used in three ways in generating
code for such a NUMA machine:

1. We determine, based on the HPF mapping directives, how the data is to be allocated to virtual
pages in memory, and how those pages are allocated to the physical memory of specific hpf
processors.

2. In some cases, we adjust the subscripts of mapped arrays in the program to support the
allocation in item 1.

3. We distribute iterations of parallel loops over hpf processors for a NUMA machine exactly as we
distribute them over processors for distributed memory. We do this by parametrizing the loop
bounds and increment by calls to my processor() so they are different on each hpf processor. If
the programmer has done a good job of inserting mapping directives, the iterations that execute
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on an hpf processor will mainly or entirely address data whose pages have been allocated to
that hpf processor.

We start out by describing data layout support. Later, in Section 16.7, we describe how loop
iterations are distributed.

We use the standard notation used everywhere else in this report. To make this chapter somewhat
self-contained, we repeat some of the main notation and concepts used:

Say we are given an n-dimensional array reference A(s1, s2, . . . , sn) (s stands for “subscript”) that
is mapped onto a processors arrangement P (sl1, sl2, . . . , sln) of the same rank. (sl stands for “strip
length”, an archaic term in this context.) Further, suppose that each dimension of the array A is
laid out along the corresponding dimension of P .

• num foldsi denotes the local extent of the ith dimension of the array on each hpf processor.
Thus, the total local extent of the array on each hpf processor is given by

num folds =
n∏

i=1

num foldsi

• v̂i denotes the contribution to the local address due to the ith subscript si. The entire local
address (i.e., the offset from the base address of the array) is given by

v̂ =
n∑

i=1

(
v̂i ∗

i−1∏
j=1

num foldsj

)

• v̄i denotes the ith coordinate of the abstract processor holding this array reference. Thus, the
abstract processor is

〈v̄1, v̄2, . . . , v̄n〉
and the actual hpf processor number will typically be given by

v̄ =
n∑

i=1

(
v̄i ∗

i−1∏
j=1

slj

)

Previous chapters in this report contain formulas for computing these quantities.

We will use a running example: for simplicity, we assume that our machine consists of

• 4 hpf processors, each with its own linear memory.

• 4 threads per hpf processor; i.e., threads per memory = 4.

• a page size that holds 4 integer values.

We will consider how to lay out the array A, declared as follows:

integer A(5, 5)
!hpf$ distribute A(block, block)

We will consider this array as being distributed over an abstract 2× 2 processor arrangement.
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16.4 Element granularity: mappings with the HPF interpre-

tation

Figure 16.1 shows how array A would be distributed over the four hpf processors, using the HPF
interpretation.

proc 0 proc 1 proc 2 proc 3

(1,1) (4,1) (1,4) (4,4)

(2,1) (5,1) (2,4) (5,4)

(3,1) — (3,4) —

(1,2) (4,2) (1,5) (4,5)

(2,2) (5,2) (2,5) (5,5)

(3,2) — (3,5) —

(1,3) (4,3) — —

(2,3) (5,3) — —

(3,3) — — —

Figure 16.1: The array A(5, 5) distributed (block, block) over 4 hpf processors, using the HPF
interpretation

For this example, we have

sl1 = 2 num folds1 = 3

sl2 = 2 num folds2 = 3

Here are the values of v̂i and v̄i, together with the values of v̂ and v̄ as computed by the formulas
above, for some representative array elements:

v̂1 v̂2 v̄1 v̄2 v̂ v̄

A(1, 2) 0 1 0 0 3 0

A(3, 5) 2 1 0 1 5 2

A(5, 4) 1 0 1 1 1 3

If we make the pages in each hpf processor’s memory visible, we get the picture in Figure 16.2.

The next three subsections describe three methods of achieving the HPF interpretation of the
mapping directives. We actually generally use Method 1; we use Method 3 when we do not know
the element size of the array at compile time. Method 2 is presented to show an alternative approach
that was previously considered, and to aid in understanding the issues involved.
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proc 0 proc 1 proc 2 proc 3

(1,1) (4,1) (1,4) (4,4)

(2,1) (5,1) (2,4) (5,4)

(3,1) — (3,4) —

(1,2) (4,2) (1,5) (4,5)

(2,2) (5,2) (2,5) (5,5)

(3,2) — (3,5) —

(1,3) (4,3) — —

(2,3) (5,3) — —

(3,3) — — —

— — — —

— — — —

— — — —

Figure 16.2: The array A(5, 5) distributed (block, block) over 4 hpf processors, using the HPF
interpretation, with page boundaries indicated.

In reading this, note that Method 1 gives us exactly the HPF memory layout shown above, while
Method 2 gives us a memory layout that is not quite the same, but in which each element is still on
the same hpf processor, as the HPF interpretation specifies. The data layout in Method 3 is similar
to that in Method 1, differing only in what might be thought of as a different initial offset on the
memory of each hpf processor.

16.4.1 Method 1: fill out num folds

We turn the pair 〈v̂, v̄〉 into a linear address. We do this by padding the physical memory allocated
to each local section of the array up to a common multiple of the page size and the array element
size. That is, letting esize denote the size in bytes of an element, and letting page size denote the
size in bytes of a physical memory page, we need to increase num folds if necessary to a quantity
nf round so that nf round ∗ esize is a multiple of page size. We do this as follows: first define

aux page size =
page size

gcf(page size, esize)

Then in terms of this quantity, define

nf round =
⌈

num folds
aux page size

⌉
∗ aux page size

NF round = nf round ∗ esize
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so nf round is the size (in units of array elements) just referred to, and NF round is the physical
size in bytes that this corresponds to. (NF round is thus a multiple of page size.) Now we manage
to have the array reference A(s1, s2, . . . , sn) generate the address (that is, the offset from the base
address of A) given by

v̂ + v̄ ∗ nf round

(in units of the array element size, as usual). We can do this by replacing A(s1, s2, . . . , sn) by

(16.1) A(v̂1 + v̄ ∗ nf round, v̂2, . . . , v̂n)

The reason this works is that when the subscripts of A are linearized, the first subscript is left
alone. Thus, in effect we allocate the pages corresponding to the physical offsets 0 : NF round−1 to
processor 0, the pages corresponding to the physical offsets NF round : 2∗NF round−1 to processor
1, and so on.

We refer to the term v̄ ∗nf round as the numa adjustment term. (In the code in stp_loc.c it is the
variable numa_adjust.)

16.4.2 Method 2: fill out the first dimension

There is a second way of achieving the HPF interpretation for the data mapping. This way has
the advantage that the subscripts are modified less drastically than in method 1, but has the
disadvantage that additional gaps are introduced in the sequence of array elements on each hpf
processor.

We round up the first local dimension to a multiple of the page size. Figure 16.3 shows how this
works, with the pages in the memories of these four hpf processors made visible.

To do this, we change the declaration of the array A so that it is A(8, 5). The new extent 8 of
the first dimension is produced as follows: num folds1 is 3. We round this up to a multiple of the
page size—in this case, to 4—and then multiply by sl1 (which is 2), giving 8. In general, all the
dimensions except the right-most one have to be adjusted in this manner.

Then we adjust the addressing so that in this case, with a (block, block) distribution onto a 2× 2
processor array, A(i, j) is replaced by A(i+�i/3�), j). If the statement is known to be local (so that
each element is accessed only by the hpf processor that owns it), then this even becomes simpler:
A(i, j) is replaced by A(i + (myprocessor mod 2), j), and the added term (myprocessor mod 2) is
an invariant of any loops containing the array A.

Precisely, it works like this:

• With the same notation as in Method 1, redefine num folds1 by

num folds∗1 =
⌈

num folds1

aux page size

⌉
∗ aux page size ∗ esize

This is the smallest number greater than or equal to num folds1 such that num folds∗1 ∗ esize
is a multiple of page size.

• Then alter the extent of A in dimension 1 to be consistent with this. In general, how this is
done depends on the alignment of A. In the common case when the alignment is trivial, the
new extent of A in dimension 1 will be num folds∗1 ∗ sl1.
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proc 0 proc 1 proc 2 proc 3

(1,1) (4,1) (1,4) (4,4)

(2,1) (5,1) (2,4) (5,4)

(3,1) — (3,4) —

— — — —

(1,2) (4,2) (1,5) (4,5)

(2,2) (5,2) (2,5) (5,5)

(3,2) — (3,5) —

— — — —

(1,3) (4,3) — —

(2,3) (5,3) — —

(3,3) — — —

— — — —

Figure 16.3: (Method 2) The array A(5, 5) distributed (block, block) over 4 hpf processors, using
the HPF interpretation, with the first array dimension filled out and with the pages on each hpf
processor shown

• Then define the excess added in dimension 1 by

e1 = num folds∗1 − num folds1

In the example we have been using, e1 = 1.

• The array reference A(s1, s2, . . . , sn) is then replaced by

A(s1 + v̄1e1, s2, . . . , sn)

Note that only the first subscript is changed. In the example we have been using, e1 is 1, and
A(4, 1) and A(5, 1) get replaced by A(5, 1) and A(6, 1), respectively.

16.4.3 Comparison of these two methods, and a third method (Method
3)

Either of these two methods of mapping data to conform with the HPF interpretation has the
disadvantage that we have to adjust the array bounds and subscripts. Enlarging the array in either
case might cause problems with memory allocation. In addition to this, each method has its own
peculiarities:

Method 1 has the disadvantage that comparatively more complex subscript expressions are generated
than in Method 2. On the other hand, these expressions are no more complicated than the compiler
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generates for distributed-memory code, and this has not been a problem in the efficiency of such
code.

Method 2 has the disadvantage that it allocates more unused memory than Method 1 does. In
addition, it does this in such a way that there may be many physical pages with no array elements
allocated to their higher addresses. This could well cause cache problems.

Method 2 also has the disadvantage that the assignment of physical pages to hpf processors is much
harder to describe. The assignment in Method 1 is quite simple (see section 16.6 on page placement).

When we are sure that the array element size esize divides the page size, we use Method 1, for the
above reasons.

When esize does not divide the page size, however, the formulas for both Method 1 and Method 2
can lead to a gross overallocation of wasted space. In such a case, gcf(page size, esize) can be 1, and
NF round will be a multiple of page size ∗ esize, which in general is much too big (e.g., by a factor
of esize). That is, this method can in the worst case waste num folds ∗ page size ∗ (esize− 1) bytes
on each hpf processor; equivalently, it can waste num folds ∗ (esize− 1) pages on each hpf processor.
The same problem occurs in Method 2. For this reason, we cannot use either Method 1 or Method
2 when we cannot prove that esize divides page size.

Because we are addressing shared memory, however, we can modify Method 1 to give acceptable
behavior, as follows: in both Method 1 and Method 2 we implicitly assumed that each local section
started on a page boundary. This is actually not necessary1. We can modify Method 1 by defining

nf round = num folds +
⌈
page size

esize

⌉

This ensures that each local section starts on a page that is different from the page on which the
previous local section ended. The starting position, however, may not be at the beginning of the
page.

This method, which we call Method 3, wastes at most 2 pages on each hpf processor. This is the
method we use when are not certain that the array element size divides the page size.

Note that when we use Method 1 (so esize divides page size), the formula for nf round becomes

nf round =

⌈
num folds
page size

esize

⌉
∗ page size

esize

Since
num folds

page size/esize
≤
⌈

num folds
page size/esize

⌉
<

num folds
page size/esize

+ 1

we see that the value of nf round computed when we use Method 1 is always less than

num folds +
page size

esize

which would be the value if we used Method 3. Therefore it is an advantage to use Method 1 when
we can.

1We owe this observation to Bill Noyce.
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16.4.4 Completion and replicated cells

We now indicate how to extend Method 3 to handle completion cells (this pertains to data that is
not mapped to all of the hpf processors) and also partially replicated data.

Each cell in the data space of an array is classified as either primary, completion, or replicated. Let
us say there are π primary cells, κ completion cells, and ρ replicated cells for a particular array A.
The cell places corresponding to these three kinds of cells will be denoted as follows:

primary:
{〈strip lengthp

j ,multiplierp
j 〉 : 1 ≤ j ≤ π

}
completion:

{〈strip lengthc
j ,multiplier c

j〉 : 1 ≤ j ≤ κ
}

replicated:
{〈strip lengthr

j ,multiplier r
j〉 : 1 ≤ j ≤ ρ

}

Note that multiplierp
j does not generally equal

∏j−1
i=1 strip lengthp

j (and similarly for the completion
and replicated parameters).

For convenience, however, let us define the quantities

μp
j =

j−1∏
i=1

strip lengthp
j (1 ≤ j ≤ π)

μc
j =

j−1∏
i=1

strip lengthc
j (1 ≤ j ≤ κ)

μr
j =

j−1∏
i=1

strip lengthr
j (1 ≤ j ≤ ρ)

Note that μp
1 = μc

1 = μr
1 = 1.

Now each hpf processor number v̄ has a representation 〈v̄1, v̄2, . . . , v̄n〉, where each component v̄j is
a component in either a primary, completion, or replicated cell. Let us denote these components by

v̄p
i (1 ≤ i ≤ π)

v̄c
i (1 ≤ i ≤ κ)

v̄r
i (1 ≤ i ≤ ρ)

respectively—each v̄j is one of these. We can imagine the entire vector v̄ being projected onto the
three subspaces spanned by the primary cells, the completion cells, and the replicated cells. These
three projections have coordinates

〈v̄p
1 , v̄p

2 , . . . , v̄p
π〉

〈v̄c
1, v̄

c
2, . . . , v̄

c
κ〉

〈v̄r
1 , v̄

r
2 , . . . , v̄

r
ρ〉



198 CHAPTER 16. SUPPORT FOR SHARED-MEMORY NUMA MACHINES

In terms of these coordinates, we can define three auxiliary vectors

v̄p =
π∑

j=1

v̄p
j ∗multiplierp

j

v̄c =
κ∑

j=1

v̄c
j ∗multiplier c

j

v̄r =
ρ∑

j=1

v̄r
j ∗multiplier r

j

We then have v̄ = v̄p + v̄c + v̄r. Note that v̄c is constant, since each v̄c
j is itself constant.

In particular, there are
∏π

j=1 strip lengthp
j values for the π-tuple 〈v̄p

1 , v̄p
2 , . . . , v̄p

π〉 of primary coordi-
nates. Let us denote the value of this product by P . We call P the primary multiplicity There are
thus P values taken on by v̄p. However, these values are scattered—they do not in general form a
contiguous interval of integers starting at 1.

We would like to index these possible values as such a contiguous range of integers. We do this as
follows: The π-tuple

〈v̄p
1 , v̄p

2 , . . . , v̄p
π〉

is assigned the index

kp =
π∑

j=1

v̄p
j ∗ μp

j

kp then takes on all integer values between 0 and P − 1. Further, the π-tuple can be retrieved from
kp by the formulas

v̄p
j =

⌊
kp

μp
j

⌋
mod strip lengthp

j

The factor v̄ in formula (16.1) then is replaced by kp. Note that

• kp can always be computed from the set {si} of subscripts.

• If the array reference is known to be local, kp can also be computed from v̄ = my processor(),
which is generally a simpler computation.

No special handling is needed for completion cells—the completion cell guard that is ordinarily
generated continues to work in the same way.

As far as replicated cells go, we can create kr and R in the same way as we created kp and P for
the primary cells (although of course kr cannot be computed from the set of subscripts).

A partially replicated data object can be thought of as R separate copies of that data object. (For
this reason, we call R the replication multiplicity of the array A.) Therefore, we will allocate R

times the number of pages that would be allocated in the absence of replication. This is calculated
as follows:

Without accounting for replication, the memory (in units of array element size) allocated to the
array A is just nf round ∗P . Thus, allowing for replication, we allocate R times this much memory,
or nf round ∗ P ∗R.
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Now when addressing an element of a partially replicated object, we modify the subscripts as follows:
Let v̄ denote as usual the processor storing to or fetching from its local element. The projection of v̄
on the replicated subspace of the data space is just the ρ-tuple 〈v̄r

1 , v̄
r
2 , . . . , v̄

r
ρ〉, as mentioned above.

We compute kr from this ρ-tuple as before, and add kr ∗ nf round ∗ P to the address. (This is all
measured in units of the size of 1 array element). The way we do this is simply to add that quantity
to the first subscript. Thus, formula (16.1) is finally transformed as follows: the array reference
A(s1, s2, . . . , sn) is rewritten as

(16.2) A
(
v̂1 + (kp + kr ∗ P ) ∗ nf round, v̂2, . . . , v̂n

)
where kp and kr are both computed as described above. Here the numa adjustment term is (kp +
kr ∗ P ) ∗ nf round.

If the reference to A is being fetched, there are two possibilities:

1. The reference to A is local. In this case, the same analysis applies; each thread will fetch from
elements that it owns as above.

2. The reference to A is not local. In this case, kp has to be computed from the set {si} of
subscripts, as mentioned above. kr could continue to be computed from v̄ = my processor(),
but since the reference is a remote one in any case, any kr would work just as well. (That
is, any kr yields a correct address; the only question is to find the best one. In a non-local
reference there is most likely not a best one.) Therefore, for non-local references, we will
simply set kr = 0 in the above formula. This at least makes the addressing as simple as
possible.

To recapitulate: if we are generating code for a fetch of an array reference, there are two possibilities:

• The reference is local. This is always true for references that are being stored to. In this case,
kp and kr are both computed from v̄.

• The reference is remote. In this case, kp is computed from the set {si} of subscripts, and kr

is set to 0.

Stores to array references are somewhat more complex. The complete story is given below in
Section 16.8.

16.4.5 Storage allocated to element granularity arrays

Based on the formulas given above, the storage allocated for an element granularity array is

nf round ∗ P ∗R

where as above P is the primary multiplicity and R is the replication multiplicity. nf round is
computed as described above in Section 16.4.3.

16.5 Page granularity: for sequence and storage association

If we want to honor sequence and storage association, then
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• The data allocation function of the array in each dimension must have alloc offset 1.

• We cannot use the data (or iteration) distribution function to compute subscripts.

The effect of this is that when the subscripts of the array are localized in STRIP, each subscript
is simply fed through the data allocation function, which at most offsets that subscript by some
constant value. We can, in fact, arrange matters so that this makes the first element of the array
map to virtual processor 0; this is certainly the default in any case.

Note that it is still true for page granularity arrays that the iteration space must conform with the
data space—this is because strip loops are always computed from iteration space, while data space
is used for addressing, so clearly we can’t change one independently of the other.

To handle replication of page granularity arrays, we allocate R copies of each page of the array,
where R is the replication multiplicity, as defined above, and we add kr ∗ nf round to the first
subscript of each array reference. (Note that this means that the first elements of the replicated
copies of the array may well not start on page boundaries. This is something we just live with.)

Beyond that, the only thing we are allowed to do is assign pages to hpf processors, and we want to
do that in a manner that gives a result that is reasonably close to what we would have got with the
HPF mapping directive interpretation. We do this in the following way:

1. Conceptually distribute the array as in Figure 16.1. This assigns each array element to a hpf
processor.

2. List the array elements in array element order and break them up into virtual pages in that
order. This is the way the array will actually be assigned to pages in memory. Figure 16.4
shows how this is done for the array A in our example.

3. Assign each page from step 2 to the hpf processor determined by step 1 to own the first array
element on that page.

The result of this is the array layout shown in Figure 16.5. (Of course, this picture does not reflect
any completion or replicated cells.)

Mapping data to honor sequence and storage association has the advantage that modifications to the
array bounds and array subscripts are minimal. It has the disadvantage, however, that individual
array elements may not be mapped to the expected hpf processor. For instance, in the case we
have considered here, 12 out of the 25 array elements are mapped to an hpf processor that differs
from what the programmer would have expected based on a strict adherence to a (block, block)
distribution (as in Figure 16.1). The problem of elements not being mapped to the expected hpf
processor will likely lead to inferior run-time performance.

In this case, the compiler could have been more clever in assigning pages to hpf processors. Perhaps
a better method for assigning virtual pages to hpf processors would be to use a middle element of
that page to decide which hpf processor that page will be allocated to. For instance, if either the
second or third array element on a page in this example were used to determine the mapping of
pages to hpf processors, 9 array elements (rather than 12) would be mapped to the wrong page. This
is an improvement, but a significant number of array elements are still on the wrong hpf processors.
(If we used the fourth element on each page, 14 array elements would be mapped incorrectly.)

Another possibility is to map each page to the hpf processor that wants to own the majority of its
array elements. In this example, this would still leave 9 array elements mapped incorrectly. Also,
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(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

—

—

—

Figure 16.4: The array A(5, 5), in array element order, showing how array elements get allocated
to pages when sequence and storage association are honored.
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proc 0 proc 1 proc 2 proc 3

(1,4) (2,3) (4,5) —

(5,3) (1,3) (3,5) —

(4,3) (5,2) (2,5) —

(3,3) (4,2) (1,5) —

(4,1) (3,2) (5,4) —

(3,1) (2,2) (4,4) —

(2,1) (1,2) (3,4) —

(1,1) (5,1) (2,4) (5,5)

Figure 16.5: The array A(5, 5) distributed (block, block) over 4 hpf processors, but now with
sequence and storage association honored, showing how pages are allocated to hpf processors. The
12 shaded array elements are assigned to hpf processors that are not those specified by the HPF
directive.

in general it is not known at compile time exactly which array elements will be assigned to each hpf
processor by the HPF mapping directives, and therefore there would be a run-time cost associated
with this. This might be acceptable, however.

This problem does become less significant as the array size increases. What we are really seeing
here is an edge effect. The fraction of mis-mapped elements decreases as the array becomes larger,
so for very large arrays, the layout would be a reasonable approximation to the true (block, block)
mapping. On the other hand, the page size is already quite large, and if an array has 2 or three
distributed dimensions, it would have to be truly huge to make these edge effects negligible.

16.5.1 Storage allocated to page granularity arrays

The amount of storage that has to be allocated to a page granularity array is

nf round ∗R

where as before, R is the replication multiplicity of the array, and now nf round is computed as
follows:

nf round =
n∏

j=1

extentj +
⌈
page size

esize

⌉

where extentj is just the storage needed in dimension j, i.e.,

extentj = fj(DUBj)− fj(DLBj) + 1
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where as usual DUBj and DLBj are the declared bounds in dimension j and fj is the data allocation
function for dimension j.

In the usual case when R = 1, the last term on the right-hand side in the expression for nf round
can be eliminated.

Further, when R > 1 and we know that esize divides page size, we can reduce the storage allocated
somewhat, just as we did above in Section 16.4.3 for element granularity arrays. In such a case we
have

nf round =

⌈∏n
j=1 extentj
page size

esize

⌉
∗ page size

esize

16.6 Page placement

The previous discussion has shown how we map array elements to pages and pages to hpf processors.
The compiler must ensure that a page really does wind up in the memory of its associated hpf
processor. Let us use number of processors to refer to the number of hpf processors in the machine.
We have to tell the operating system where to put each page. We do this by specifying one offset
from the base address of each array for each page allocated to that array, and for each such offset,
we specify the associated hpf processor that the page in question must be assigned to.

16.6.1 Element granularity

The algorithm for page placement in the case of element granularity (remember that we are using
Method 1) can be specified succinctly. In the following formula R is the multiplicity of replication,
as defined above, and k is derived from n

for n = 0 to number of processors− 1 do
Compute kp and kr from n (which is v̄).
if v̄ satisfies the completion constraints then

Addresses in the range
low: base address + (kp + kr ∗ P ) ∗NF round
high: low + (num folds − 1) ∗ esize
stride: page size

go on hpf processor n.
end if

end for

Actually, we implement this in a manner that is only slightly different:
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Compute v̄c.
for kp = 0 to P − 1 do

for kr = 0 to R− 1 do
Compute v̄p from kp.
Compute v̄r from kr.
Compute rad number = (v̄p + v̄r + v̄c) mod number of rads
Addresses in the range

low: base address + (kp + kr ∗ P ) ∗NF round
high: low + (num folds − 1) ∗ esize
stride: page size

go on hpf processor rad number.
end for

end for

16.6.2 Page granularity

Say our array is declared as having declared lower and upper bounds DLBj and DUBj in dimension
j. Let us set

ej = DUBj −DLBj + 1

so ej is the extent in dimension j.

The array element A(s1, . . . , sn) then has index (or “position”)

p =
n∑

i=1

(si −DLBi)
i−1∏
j=1

ej

in (0-based) array element order. That is, p = 0 corresponds to the first element of A, p = 1 to the
second, and so on. We can solve this to get each of the subscripts si in terms of p as follows:

(16.3) si = DLBi +

⎢⎢⎢⎢⎢⎢⎣
p mod

i∏
j=1

ej

i−1∏
j=1

ej

⎥⎥⎥⎥⎥⎥⎦

We create a table of pairs
〈offset, HPF processor number〉

that contains exactly one offset from the base address of the array for each physical page allocated
to the array. Since with page granularity we are not allowed to adjust the size of the array, the first
element of the array must occur at the base address of the array. We further make the assumption
that the base address of each array is at a page boundary.

The table has to be big enough to hold

R ∗
⌈

esize ∗ |alloc stride1| ∗
∏n

j=1 ej

page size

⌉

pairs as above.
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All the following computations assume that esize ∗ alloc stride1 ≤ page size. Equivalently, we are
assuming that listing the addresses of the elements of the array in array element order does not
cause us to skip any physical pages.

In the following, we use the symbol ω to denote a physical offset from the base address.

We give two versions of the table:

1. In the first version, we simply pick one element on each page, without being concerned about
the position of the element on that page. We give two algorithms for this method, the second
one being a simplified form of the first that can be used in most cases.

2. In the second version, we pick our elements so that they are all in the same relative position
on the page. This results in a more complicated algorithm. Again, we give two algorithms,
the second being a simplified form that can be used in most cases.

We use the following convention in the algorithms below: Assignment statements in which the
assignment operator is written as “←” denote assignments in the generated code. Assignment
statements in which the assignment operator is written as “=” denote the computation of expressions
in the generated code that are used subsequently but are not actually assigned to variables.

First version: relatively simple algorithms

In this version, we pick one element of the array on each page. The elements chosen are roughly
“one page apart”, but the positions on the pages shift as we pass from one element to the next:
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Compute v̄c. -- This is a constant computed from the completion cells.
Compute R. -- This is a constant, computed from the replicated cells.

for p = 0 to
n∏

i=1

ei − 1 step/
⌊

page size
esize ∗ |alloc stride1|

⌋
ω = p ∗ esize ∗ alloc stride1

abs ω ← |ω|
if
⌊

abs ω

page size

⌋
changes then

address = base address + ω
Compute {si} from p by (16.3)
Compute v̄p from {si}
for kr = 0 to R− 1

Compute v̄r from kr

Compute rad number = (v̄p + v̄c + v̄r) mod number of rads
Enter 〈address + kr ∗ nf round ∗ esize, rad number〉 in the table.

end for
end if

end for
-- Enter the last element of the array, if necessary:

ω =
(

n∏
i=1

ei − 1
)
∗ esize ∗ alloc stride1

abs ω ← |ω|
if
⌊

abs ω

page size

⌋
changes then

address = base address + ω

Compute v̄p from {DUBi}
for kr = 0 to R − 1

Compute v̄r from kr

Compute rad number = (v̄p + v̄c + v̄r) mod number of rads
Enter 〈address + kr ∗ nf round ∗ esize, rad number〉 in the table.

end for
end if

In the case that esize ∗ alloc stride1 divides page size, which we expect to happen frequently, this
algorithm can be simplified:
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Compute v̄c. -- This is a constant computed from the completion cells.
Compute R. -- This is a constant, computed from the replicated cells.

for p = 0 to
n∏

i=1

ei − 1 step/
page size

esize ∗ |alloc stride1|
ω = p ∗ esize ∗ alloc stride1

abs ω ← |ω|
address = base address + ω

Compute {si} from p by (16.3)
Compute v̄p from {si}
for kr = 0 to R − 1

Compute v̄r from kr

Compute rad number = (v̄p + v̄c + v̄r) mod number of rads
Enter 〈address + kr ∗ nf round ∗ esize, rad number〉 in the table.

end for
end for
-- Enter the last element of the array, if necessary:

ω ←
(

n∏
i=1

ei − 1
)
∗ esize ∗ alloc stride1

abs ω ← |ω|
if
⌊

abs ω

page size

⌋
changes then

address = base address + ω

Compute v̄p from {DUBi}
for kr = 0 to R − 1

Compute v̄r from kr

Compute rad number = (v̄p + v̄c + v̄r) mod number of rads
Enter 〈address + kr ∗ nf round ∗ esize, rad number〉 in the table.

end for
end if

Second version: fancier algorithms

We now give methods to pick the elements in (roughly) the same position on each page. We need
some more notation:

We will let α be a real number in the interval [0, 1] that specifies the position in the physical page
that we use for determining the HPF processor owning that page. That is, α = 0 denotes the
first possible position in the page, α = 1 denotes the last possible position, and α = 1/2 denotes a
position about halfway into the page. For convenience in the following pseudo-code, we let β denote
the index of the element in the first page that is at the position determined by α. So

β =
⌊
α ∗
⌊

page size− 1
esize ∗ |alloc stride1|

⌋⌋

Our algorithm then looks like this (the lines marked (*) and (**) are modified when we are generating
“touch loops”, as explained below):
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Compute v̄c. -- This is a constant computed from the completion cells.
Compute R. -- This is a constant, computed from the replicated cells.
p← β

while p ≤
n∏

i=1

ei − 1 do

ω = p ∗ esize ∗ alloc stride1

abs ω ← |ω|
if
⌊

abs ω

page size

⌋
changes then

p← p−
⌊

abs ω mod page size
esize∗|alloc stride1|

⌋
+ β

if p >
n∏

i=1

ei − 1 then

Exit the loop.
end if
(*)ω = p ∗ esize ∗ alloc stride1

(*)abs ω ← |ω|
(*)address = base address + ω

Compute {si} from p by (16.3)
Compute v̄p from {si}
(**)for kr = 0 to R− 1

(**)Compute v̄r from kr

(**)Compute rad number = (v̄p + v̄c + v̄r) mod number of rads
(**)Enter 〈address + kr ∗ nf round ∗ esize, rad number〉 in the table.

(**)end for
end if

p← p +
⌊

page size
esize ∗ |alloc stride1|

⌋
end while
-- Enter the last element of the array, if necessary:

ω =
(

n∏
i=1

ei − 1
)
∗ esize ∗ alloc stride1

abs ω ← |ω|
if
⌊

abs ω

page size

⌋
changes then

(*)address = base address + ω

Compute v̄p from {DUBi}
(**)for kr = 0 to R− 1

(**)Compute v̄r from kr

(**)Compute rad number = (v̄p + v̄c + v̄r) mod number of rads
(**)Enter 〈address + kr ∗ nf round ∗ esize, rad number〉 in the table.

(**)end for
end if

We may implement this in such a way that each hpf processor computes the pages it needs (by this
method) and generates a separate call to place those pages. That is, each hpf processor executes
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the above code in parallel and builds its own table, consisting only of those pages that it owns.

Another option is to have each hpf processor execute the code above in parallel and generate code
that touches one element on each page that it owns. We refer to this as generating “touch loops”.
When we do this, the lines marked (*) are deleted, and the first for loop marked (**) is replaced
by the following code:

if ((v̄p = (v̄)p)and(v̄c = (v̄)c)) then
Touch (and mark as local) A(s1, s2, . . . , sn)

end if

Here (v̄)p and (v̄)c denote the accumulated components of my processor() in the primary and
completion cells. That is,

(v̄)p =
π∑

j=1

(⌊
my processor()

multiplierp
j

⌋
mod strip lengthp

j

)
∗multiplierp

j

(v̄)c =
κ∑

j=1

(⌊
my processor()

multiplier c
j

⌋
mod strip lengthc

j

)
∗multiplier c

j

The expression (v̄c = (v̄)c) is also known as the cc_guard (“completion cell guard”) in the imple-
mentation.

Note that since the array reference is marked as local, the term kr ∗nf round is automatically added
to the first subscript s1 when the array reference is localized; therefore, we don’t have to do it here.

The second for loop marked (**) is replaced similarly by

if ((v̄p = (v̄)p)and(v̄c = (v̄)c)) then
Touch (and mark as local) A(DUB1,DUB2, . . . ,DUBn)

end if

There is a problem with this algorithm in the case of a replicated or partially replicated array:
unless α = 0, it may be that the first page of one or more of the replicated versions of the array is
left unmapped by this algorithm. We are not going to worry about this initially.

As before, in the case that esize∗alloc stride1 divides page size, which we expect to happen frequently,
this algorithm can be simplified (we omit the changes for touch generating touch loops):
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Compute v̄c. -- This is a constant computed from the completion cells.
Compute R. -- This is a constant, computed from the replicated cells.

for p = β to
n∏

i=1

ei − 1 step/
page size

esize ∗ |alloc stride1|
ω = p ∗ esize ∗ alloc stride1

abs ω ← |ω|
address = base address + ω

Compute {si} from p by (16.3)
Compute v̄p from {si}
for kr = 0 to R − 1

Compute v̄r from kr

Compute rad number = (v̄p + v̄c + v̄r) mod number of rads
Enter 〈address + kr ∗ nf round ∗ esize, rad number〉 in the table.

end for
end for
-- Enter the last element of the array, if necessary:

ω =
(

n∏
i=1

ei − 1
)
∗ esize ∗ alloc stride1

abs ω ← |ω|
if
⌊

abs ω

page size

⌋
changes then

address = base address + ω

Compute v̄p from {DUBi}
for kr = 0 to R − 1

Compute v̄r from kr

Compute rad number = (v̄p + v̄c + v̄r) mod number of rads
Enter 〈address + kr ∗ nf round ∗ esize, rad number〉 in the table.

end for
end if

16.7 Distributing loop iterations on NUMA machines: ex-

amples

Now we describe how loop iterations are distributed in a NUMA machine.

The work that Transform does in lowering OMP parallel loops has conceptually two stages.

1. Distribute iterations over hpf processors.

2. Distribute the iterations in each hpf processor over the threads allocated to that hpf processor.
There is a function my thread() that returns the number of the thread that is executing.

We can think of these two stages as occurring one after the other. In the actual implementation
however, they occur simultaneously.
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16.7.1 Stage 1: distributing iterations over hpf processors

In the first stage, the loop bounds are localized so that they are parametrized by my processor().
This is done in exactly the same way as if we were compiling for a distributed-memory machine. In
addition, the subscripts of the arrays are altered in some appropriate manner.

To take a simple example, suppose we have a 3-dimensional array A, and suppose we start with the
parallel loop nest in Figure 16.6.

!$omp parallel do numa
do i3 = LB3,UB3,S3

!$omp parallel do firstprivate(T ), numa
do i2 = LB2,UB2,S2

!$omp parallel do numa
do i1 = LB1,UB1,S1

A(i, j, k) = A(i, j, k) + T
end do

end do
end do

Figure 16.6: Example of nested parallel loops.

Then after stage 1, this loop nest will appear as in Figure 16.7.

!$omp fe workshare
do i3 = LBloc

3 , UBloc
3 , Sloc

3

!$omp fe workshare firstprivate(T )
do i2 = LBloc

2 , UBloc
2 , Sloc

2

!$omp fe workshare
do i1 = LBloc

1 , UBloc
1 , Sloc

1

A(λ1, λ2, λ3) = A(λ1, λ2, λ3) + T
end do

end do
end do

Figure 16.7: Parallel loop nest after stage 1.

Here the localized bounds (LBloc
3 and so on) depend on the mapping (that is, the distribution and

alignment) of the loop nest iteration space. The modified subscripts (λj) depend on the mapping
of the array A and on whether we are using element granularity or page granularity. For instance,
suppose we have a Wildfire machine consisting of 30 hpf processors (i.e., 30 “quads”), and suppose
the array A is declared as follows:

real, dimension(0:199, 0:239, 0:299) :: A

!$omp processors P (2, 3, 5)
!$omp distribute(block,block,block) onto P :: A

We have made the subscripts in the array 0-based for convenience, but obviously this is not necessary.
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In any case, the extents of the dimensions of this array are 200, 240, and 300. If we assume that the
iteration space of this loop nest is inferred from the distribution of the array A (as would certainly
be the case in this example), then, the local iteration bounds are computed as follows:

LBloc
1 = (my processor() mod 2) ∗ 100 UBloc

1 = (my processor() mod 2 + 1) ∗ 100− 1 Sloc
1 = 1

LBloc
2 =

(
my processor()

2
mod 3

)
∗ 80 UBloc

2 =
(

my processor()
2

mod 3 + 1
)
∗ 80− 1 Sloc

2 = 1

LBloc
3 =

my processor()
6

∗ 60 UBloc
3 =

(
my processor()

6
+ 1
)
∗ 60− 1 Sloc

3 = 1

The modified subscripts, assuming element granularity, are

λ1 = i1 − v̄1 ∗ num folds1 + v̄ ∗ nf round

λ2 = i2 − v̄2 ∗ num folds2

λ3 = i3 − v̄3 ∗ num folds3

With page granularity, the subscripts are merely pushed through the data allocation function, which
typically (for 1-based arrays) will simply subtract 1 from each subscript:

λ1 = i1 − 1

λ2 = i2 − 1

λ3 = i3 − 1

Of course, all these formulas depend on the particular mapping. For instance, if the mapping of A
were (block, cyclic, cyclic(10)), or if A were given a non-trivial alignment, the formulas would look
quite different. In addition, in order to manage cyclic(n) distributions, an additional loop would be
generated for each dimension distributed cyclic(n). But there is nothing new in this—it is exactly
what is done for distributed memory, with slight modifications only in how subscripts are treated.

16.7.2 Stage 2: Distributing iterations in an hpf processor over threads

Let us denote the number of threads per hpf processor by threads per memory. (In a typical case,
threads per memory = 4.) We will assume that the hpf processor number—the number returned by
my processor()) is given by

my processor() =
⌊

my thread()
threads per memory

⌋

For instance, if threads per memory = 4, then threads 0-3 are assigned to hpf processor 0, threads
4-7 to hpf processor 1, and so on.

In our implementation all the threads in an hpf processor are distributed at one loop level (rather
than having the threads conceived as a multi-dimensional space whose dimensions are parceled out
over various loop levels). Let us call this process “threadizing”.
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!$omp fe workshare
do i3 = LBloc

3 , UBloc
3 , Sloc

3

!$omp fe workshare firstprivate(T )
do i2 = LBloc

2 , UBloc
2 , Sloc

2

!$omp fe workshare
do i1 = LB

loc

1 , UB
loc

1 , S
loc

1

A(λ1, λ2, λ3) = A(λ1, λ2, λ3) + T
end do

end do
end do

Figure 16.8: Parallel loops after stage 2: inner loop threadized.

Figure 16.8 shows the generated code in our running example when the inner loop is threadized.

The new quantities LB
loc

1 , UB
loc

1 , and S
loc

1 can be computed in two different ways: (We will use tpm
in the following formulas to denote threads per memory.)

The first way is to distribute the iterations on an hpf processor in a block fashion over the threads
assigned to that processor:

LB
loc

1 = LBloc
1 + (my thread() mod tpm) ∗

⎡
⎢⎢⎢
⌊

UBloc
1 −LBloc

1
Sloc

1

⌋
+ 1

tpm

⎤
⎥⎥⎥ ∗ Sloc

1

UB
loc

1 = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UBloc
1

LBloc
1 +

⎛
⎝(my thread() mod tpm + 1) ∗

⎡
⎢⎢⎢
⌊

UBloc
1 −LBloc

1
Sloc

1

⌋
+ 1

tpm

⎤
⎥⎥⎥− 1

⎞
⎠ ∗ Sloc

1

S
loc

1 = Sloc
1

The second way is to distribute the iterations on an hpf processor in a cyclic fashion over the threads
assigned to that processor:

LB
loc

1 = LBloc
1 + Sloc

1 ∗ (my thread() mod tpm)

UB
loc

1 =

⎧⎪⎨
⎪⎩

LB
loc

1 +
⌊

UBloc
1 −LBloc

1
tpm∗Sloc

1

⌋
∗ tpm ∗ Sloc

1 if my thread() mod tpm ≤
⌊

UBloc
1 −LBloc

1
Sloc

1

⌋
mod tpm

LB
loc

1 +
(⌊

UBloc
1 −LBloc

1
tpm∗Sloc

1

⌋
− 1
)
∗ tpm ∗ Sloc

1 otherwise

S
loc

1 = tpm ∗ Sloc
1

The code in the case that the outer loop is threadized is entirely similar. The only difference is that
the bounds of the outer loop are modified, rather than those of the inner loop.
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No modification of this needs to be made to handle non-tight loop nests. The design handles such
loop nests as is.

We decide which loop to threadize as follows: In general, the outermost NUMA loop is threadized.
However, the programmer can specify that a loop has the “shortloop” attribute. Shortloops will
not be threadized unless there is no alternative, and the compiler searches for the outermost non-
shortloop to threadize. Since the NUMA loops form a forest, each tree has to be handled separately,
and since shortloop declarations can be scattered throughout this tree, some care has to be taken
in the compiler to handle this correctly. The actual algorithm used is as follows:

1. Perform a depth-first walk of each numa loop tree. Some of the loops are marked S (“short-
loop”).

On each path down from the root, mark the first non-S loop as M (“go multiple”), and don’t
continue the walk further down the tree at that node.

On the way back up the tree, mark each ancestor of an M node as A (“above M”).

2. Perform a second depth-first walk of each numa loop tree. For each node N,

a) if N is an M node, stop the recursion at this point.

b) if N is an A node (and so in particular not an M node), recurse.

c) if N is an S node but not an A node, mark it as M and stop the recursion at this point.

There are no other possibilities. For the root of the tree must be either an S node (and possibly also
an A node) or an M node. If any other node N is unmarked, then it must not have been reached in
the first walk, which means that there is an M loop above it, and this in turn means that it is not
reached in the second walk.

16.8 Generating NUMA code for array and scalar assign-
ments

We consider assignments, including FORALL and WHERE constructs. Except when specifically
stated, the term “subspace” or “cell” refers to an iteration subspace or cell. We distinguish between
two kinds of iteration subspaces:

NUMA subspaces: These are subspaces that correspond to OMP PARALLEL DO NUMA loops.

Non-NUMA subspaces: all other subspaces. Such subspaces may correspond to named or un-
named dimensions in the source.

STRIP generates loops based on iteration space. STRIP generates addressing based on data space,
and optionally may use iteration space as well to implement some optimizations. Generating loops
and generating addressing are taken up in the next two subsections.
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16.8.1 Generating loops

Assignments inside a NUMA region: default processing

If any of the non-NUMA subspaces are not already serial, DIVIDE reclassifies this region as not
NUMA.

These non-NUMA serial subspaces in NUMA regions are then automatically turned into serial loops
by STRIP.

The iteration space for the NUMA loop is composed solely of the single corresponding primary sub-
space of the iteration space of its home_ref. This iteration space is saved in the independent_ispace
attribute of the loop.

If the target of the assignment contains a replicated cell in its iteration space, the statement is
classified by DIVIDE as a STMT NUMA REPLICATED STORE. This causes STRIP to generate
a serial do loop for each such replicated cell.

If the target of the assignment contains one or more completion cells, those completion cells are not
included in the iteration space of the NUMA loop.

Array references within NUMA loops have a Boolean attribute numa_local; see Section 16.8.2 for
details.

Assignments inside a NUMA region: optimized processing

The default processing described above can lead to inefficient code in some cases. For example, the
code in Figure 16.9 might be a reasonable thing to write in HPF:

real,dimension(n, n) :: b
real,dimension(n) :: a
!hpf$ distribute(block,block) :: b
!hpf$ align a(i) with b(i, ∗)

!hpf$ independent
do i = 1, n

a(i) = . . .
!hpf$ independent
do j = 1, n

b(i, j) = . . . a(i) . . .
end do

end do

Figure 16.9: HPF code with array a partially replicated over a dimension of array b.

Figure 16.10 shows the corresponding code in OMP. There is an important difference in how code is
generated for these two examples: In HPF, all the processors are active at all levels of the loop nest.
Therefore, the assignment to all the replicated instances of a(i) happens locally and in parallel. In
OMP, however, since b is of necessity chosen to be the home_ref, only one processor holding each
a(i) has a thread that executes the assignment to a(i). Therefore, this assignment has to be enclosed
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real,dimension(n, n) :: b
real,dimension(n) :: a
!dec$ distribute(block,block) :: b
!dec$ align a(i) with b(i, ∗)

!$omp parallel do numa
do i = 1, n

a(i) = . . .
!$omp parallel do numa
do j = 1, n

b(i, j) = . . . a(i) . . .
end do

end do

Figure 16.10: OMP code with array a partially replicated over a dimension of array b.

in a serial do loop by STRIP. (This happens, as described above, because the assignment to a(i) is
classified as a STMT NUMA REPLICATED STORE.) Thus the assignments happen serially, and
most of the references are non-local. It would most likely have been better in this case for the OMP
programmer to have written something like the code in Figure 16.11. In that figure, the assignment
to a(i) could in fact be done in parallel.

real,dimension(n, n) :: b
real,dimension(n) :: a
!dec$ distribute(block,block) :: b
!dec$ align a(i) with b(i, ∗)

!$omp parallel do numa
do i = 1, n

a(i) = . . .
end do

!$omp parallel do numa
do i = 1, n

!$omp parallel do numa
do j = 1, n

b(i, j) = . . . a(i) . . .
end do

end do

Figure 16.11: OMP code with array a partially replicated over a dimension of array b; improved
version.

As an optimization, our compiler generates code in the “HPF manner” where it is safe to do so.
What this means is that our compiler may create a team at a given loop level containing all the
threads for that loop and one or more loops below it, provided only that the compiler can prove that
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this leads to no visible change in the output of the program. So if for instance the programmer had
included a call to omp_get_num_threads(), or to a non-intrinsic function in this code somewhere,
the compiler would not perform this optimization. In addition, this optimization is suppressed when
the program is compiled -O0 (i.e., with optimization turned off).

In the example in Figure 16.10, introducing this optimization would mean that the compiler gen-
erates a team consisting of all the available threads at the outermost loop level (and introduces no
new threads for the inner loop).

Figure 16.12 shows another example in which our compiler allocates an entire team of threads,
even though in principle it should not need to. In this figure, a slice of b is being initialized. A

real,dimension(n, n) :: b
!dec$ distribute(block,block) :: b

!$omp parallel do numa
do i = 1, n

b(i, n) = 1
end do

Figure 16.12: OMP code initializing a slice of the array b.

1-dimensional team of threads could in principle be constructed to perform this initialization. The
problem is that the set of threads that have data local to them (let us call this the “natural” set
of threads for this loop) may not contain the initial (or “master”) thread that is executing when
this construct is reached, because the master thread may be bound to a processor on a memory not
containing any data in this slice.

This natural set of OpenMP threads therefore could not by itself constitute an OpenMP team of
threads because it does not include the master thread. So in this case, our compiler creates a team
consisting of all the threads, and guards the assignment statement so that only those threads that
live on hpf processors owning elements of the slice b(:, n) participate in the assignment statement.

To make things simple in our initial implementation of this optimization, we only generate this
HPF-style code when the compiler can prove that it is safe to (as specified above) and also when
the following conditions are satisfied:

Let H denote the home_ref of the loop nest. For each left-hand side array reference L in the loop
nest,

1. Each subspace of L has the same cell place and bounds as a primary subspace of H .

2. Any subspace of H not accounted for in item 1 has the same cell place as a replicated cell of
L.

3. Any replicated cell of L not accounted for in item 2 has the same cell place as a replicated cell
of H .

4. There are no replicated cells of H not accounted for in item 3.

5. There must be a 1-1 correspondence between the cell places of the completion cells in H and
the those of the completion cells of L. (The corresponding values do not have to be equal,
however.)
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Further, the following constraint must also be satisfied:

6. The HPF NUMA region (i.e., the region immediately containing the HPF NUMA loop must
not contain any non-NUMA loop whose loop index subscripts a mapped dimension of the
home_ref.

The reason for this last condition is that such a dimension in the home_ref would result in
a completion cell in the iteration space of the home_ref (which would then get propagated,
as explained below) to the independent_ispace of the loop. The value in this completion
cell would not be an invariant of the HPF NUMA loop; in fact it would be a function of the
loop variable of the inner (non-NUMA) loop. Thus, we would end up generating a cc_guard
around the HPF NUMA loop that depended on the value of an inner loop; this is obviously a
semantic error.

If these conditions are not all met, the HPF-style coding optimization is not performed.

Each array reference has a Boolean attribute numa_local. If the completion of L is not identical
with the completion of H , or if any of the iteration subspaces of L has no corresponding primary
data subspace (e.g., there is a complex data subspace), then the numa_local attribute of L is set
to FALSE. (See Section 16.8.2 below.)

If any completion cell in the iteration space of the home_ref has a value different from 0 (or
actually, has a value corresponding to a processor coordinate different from 0), then the set of
virtual processors corresponding to the iteration space of the home_ref will not include processor 0,
which is the processor assumed to hold the master thread on entry to the NUMA loop nest. For this
reason, we will turn such completion cells into replicated cells for the purpose of allocating threads,
and then guard the HPF NUMA loop with the set of values of those completion cells.

Thus, when the compiler can prove that it is safe to generate HPF-style code, the following processing
is performed:

1. The outermost NUMA loop is tagged as HPF NUMA. This tells strip to allocate all the threads
at that loop level. The iteration space that describes the totality of threads to be allocated is
that attached to the home_ref of the HPF NUMA loop.

2. Any completion cell in the iteration space of the home_ref that corresponds to a processor
coordinate different from 0 is turned into a replicated cell.

3. The independent_ispace attribute of the HPF NUMA loop is given a completion structure
composed precisely of those completion cells specified in the previous item. This will cause
STRIP to generate a cc_guard over the HPF NUMA loop restricting execution to those
processors on which the home_ref actually lives.

In this way we fix the home_ref and the independent_ispace so that

• The home_ref is used to generate the numa_config descriptor that describes the team of
threads that is started up on entry to the HPF NUMA loop.

• The independent_ispace is used to determine the loop bounds and also to build a cc_guard
around the loop if needed to disable some of the threads started up as just described.
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real,dimension(n) :: a
!dec$ template T (n, n)
!dec$ distribute(block,block) :: T
!dec$ align a(i) with T (i, 1)

!$omp parallel do numa
do i = 1, n

a(i) = a(i) + 1
end do

Figure 16.13: Ordinary OMP code; only one column of threads is started up.

Here are some examples that illustrate the constraints that are needed to perform this optimization:

First, Figure 16.13 shows a simple loop. There is no need for special treatment of this loop. Never-
theless, it is worth noting that in this example, not all threads will be active during the execution
of this loop—only those threads corresponding to the first column of the template T will be started
up on entry to this parallel loop.

Figure 16.14 is a slight variation of this in which the HPF-style optimization is useful. Here the iter-
ation space of the home_ref has a completion cell corresponding to a non-zero processor coordinate.

real,dimension(n) :: a
!dec$ template T (n, n)
!dec$ distribute(block,block) :: T
!dec$ align a(i) with T (i, n)

!$omp parallel do numa
do i = 1, n

a(i) = a(i) + 1
end do

Figure 16.14: OMP code needing threads starting up on a column different from the first column.

Therefore, this completion cell is turned into a replicated cell in the iteration space of the home_ref
and the original completion cell is placed in the independent_ispace attribute of the loop. What
we generate is similar to what might have been written somewhat like the code in Figure 16.15.

Figure 16.16 shows a somewhat more complicated example. In this loop, the home_ref is c(i, j).
Since the reference a(i) has a completion cell not represented in the iteration space of the home_ref,
this loop is not suitable for HPF-style optimization. In fact, one can see that if HPF-style opti-
mization were attempted, so that all the threads were started up on entry to the outer loop, the
following would happen:

1. If the assignment to a(i) were guarded, then a thread not participating in that assignment
could enter the inner loop and use a value of a(i) that had not yet been updated.

2. If on the other hand the assignment to a(i) were not guarded, then the assignment would be ex-
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real,dimension(n) :: a
!dec$ template T (n, n)
!dec$ distribute(block,block) :: T
!dec$ align a(i) with T (i, ∗)

!hpf$ on home(T (:, n)) begin
!$omp parallel do numa
do i = 1, n

a(i) = a(i) + 1
end do

!hpf$ end on

Figure 16.15: What TRANSFORM in effect generates for the code in Figure 16.14.

real,dimension(n) :: a
real,dimension(n, n) :: c
!dec$ template T (n, n)
!dec$ distribute(block,block) :: T
!dec$ align a(i) with T (i, 1)
!dec$ align c(i, j) with T (i, j)

!$omp parallel do numa
do i = 1, n

a(i) = a(i) + 1
!$omp parallel do numa
do j = 1, n

c(i, j) = a(i)
end do

end do

Figure 16.16: OMP code not admitting HPF-style optimized code generation. If a is partially
replicated over the second dimension of T , however, this optimization can be performed.

ecuted redundantly by more than one thread, which is undoubtedly not what the programmer
intends.

Suppose, however, that the code in Figure 16.16 is altered so that the array a is replicated over the
second dimension of T :

!dec$ align a(i) with T (i, ∗)
In this case, the entire construct can be performed with HPF-style optimization. Now all the threads
are active at each point. While more than one thread participates in the assignment to a(3), for
instance, it is updating (and reading from) a separate instance of the partially replicated array, so
that each instance of a(3) is updated exactly once. No thread enters the inner loop before the value
of a(i) that it will use in that loop has its new value.
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Figure 16.17 contains a still more complicated example. The HPF-style optimization can be used

real,dimension(n) :: a, b
real,dimension(n, n) :: c
!dec$ template T (n, n, n)
!dec$ distribute(block,block,block) :: T
!dec$ align a(i) with T (i, ∗, 1)
!dec$ align b(i) with T (i, ∗, 2)
!dec$ align c(i, j) with T (i, j, 2)

!$omp parallel do numa
do i = 1, n

a(i) = a(i) + 1
b(i) = a(i)
!$omp parallel do numa
do j = 1, n

c(i, j) = b(i)
end do

end do

Figure 16.17: OMP code susceptible to HPF-style optimized code generation.

for this code. Note that again in this code, each assignment to each of the replicated versions of
a(i) is performed exactly once (i.e., not redundantly by more than one thread), just as one would
expect. (However, note also that the numa_local attributes of the array references a(i) are all set
to FALSE.) Further, the assignment to each instance of b(i) happens on each participating thread
only after the value a(i) on the right-hand side has been updated. And finally, each thread enters
the inner parallel loop only after its values of a(i) and b(i) have been computed.

If the compiler can prove that the completion value in the iteration space of the home_ref corre-
sponding to the constant 2 in the alignment of c(i, j) specifies a processor coordinate of 0, then
there is nothing special to be done in this case. If it cannot prove this, however, that completion
cell will have to be turned into a replicated cell in the iteration space of the home_ref, and the
original completion cell will be put as the only element of the independent_ispace attribute of the
outermost loop.

Finally, in Figure 16.18, we add a new innermost loop. Since the home_ref is now d(i, j, k), the
constraint on completion cells inhibits HPF-style code generation from being performed.

Assignments inside a NUMA region: a further optimization

In the loop in Figure 16.19, the processing indicated in the previous section would (assuming a(i, 1)
is the home_ref) create a team of threads living on the hpf processors owning elements of a(:, 1).
The references to b(i, n) would all be remote references.

However, there is really no need for this to happen: in this case, we could certainly start up all the
threads, and simply guard each statement so that only the threads appropriate for each statement
executed it.
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real,dimension(n) :: a, b
real,dimension(n, n) :: c
real,dimension(n, n, n) :: d
!dec$ template T (n, n, n)
!dec$ distribute(block,block,block) :: T
!dec$ align a(i) with T (i, ∗, 1)
!dec$ align b(i) with T (i, ∗, 2)
!dec$ align c(i, j) with T (i, j, 2)
!dec$ align d(i, j, k) with T (i, j, k)

!$omp parallel do numa
do i = 1, n

a(i) = a(i) + 1
b(i) = a(i)
!$omp parallel do numa
do j = 1, n

c(i, j) = b(i)
!$omp parallel do numa
do k = 1, n

d(i, j, k) = c(i, j) + k
end do

end do
end do

Figure 16.18: The new innermost loop inhibits HPF-style code generation.

real,dimension(n, n) :: a, b
!dec$ distribute(block,block) :: a, b

!$omp parallel do numa
do i = 1, n

a(i, 1) = 1
b(i, n) = 1

end do

Figure 16.19: OMP code needing threads starting up on a column different from the first column.

The only thing that could go wrong with this is if there were two statements in a single loop iteration
which were executed by different threads, and in which the second statment depended on the results
of the first. So if we can guard against this possibility, we can perform this further variant of HPF
style optimization.

We do this by looking for the following conditions:

• A loop nest is suitable for HPF NUMA optimization as described in the previous section.

• There are at least two statements in the loop whose iteration spaces contain completion cells
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with different values.

• The compiler can determine that there are no loop-independent dependences within the loop
nest.

In such a case, the optimization described in the previous section can be modified in the following
way:

• The independent_ispace attribute of the HPF NUMA loop is not given any completion cells.

• Each statement in the loop is guarded by a guard representing the completion cells for that
statement.

Thus in the loop in Figure 16.19, we can start up all the threads, and guard each statement in the
loop so that only those threads that own elements of a(i, 1) or b(i, n), respectively, execute those
statements. With this further optimization, both these array references can be marked numa_local.

Assignments outside a NUMA region

DIVIDE ensures that the completion structure of any iteration space outside a NUMA region must
be empty. (DIVIDE can do this simply by wiping out any non-empty completion structure.) This is
needed because only one thread is executing, and the compiler has no control over thread allocation.

DIVIDE also changes the distribution of each subspace if necessary so that it is serial. STRIP will
then generate serial loops for each subspace, removing obstacles if necessary. (If all the arrays in the
statement having primary cells in the assignment are page-granularity arrays, then STRIP could
avoid generating loops, and just “localize” each triple. However, it is easier to just let STRIP treat
both cases in a consistent manner.)

As a result of these actions by DIVIDE, the normal correspondence between iteration and data
space mappings may be lost. However, STRIP will generate the loops in any case according to the
iteration space.

If the target of an assignment is totally or partially replicated, STRIP generates serial do loops to
handle the replicated store. To set up for this, such a statement is classified as before by DIVIDE
as a STMT NUMA REPLICATED STORE.

16.8.2 Generating addressing

All assignments are classified by DIVIDE as STMT LOCAL ASSIGN except for those classified as
STMT NUMA REPLICATED STORE.

In either case, each array reference in the statement has a BOOLEAN numa_local attribute, with
the following semantics:

numa_local is TRUE iff the array reference would actually be a local reference in a distributed
memory implementation, and it is FALSE iff the array reference would actually be a remote reference
in distributed memory. To be precise, the DIVIDE routine same region() compares the iteration
space of the array reference to

• the iteration space of the root of the statement if the statement is not in a NUMA PARALLEL
DO construct;



224 CHAPTER 16. SUPPORT FOR SHARED-MEMORY NUMA MACHINES

• a copy of the iteration space of the home_ref, modified so that the completion values are set
equal to 0 if the statement is in a NUMA PARALLEL DO but not in an HPF NUMA loop.

(Note that in this case the iteration space of the home_ref may be multi-dimensional. We
can’t use the iteration space of the loop (i.e. the independent_ispace) because in this case
it will be 1-dimensional, while the array reference itself will in general be multi-dimensional.)

• the independent_ispace attribute of the DO loop if the statement is in a NUMA PARALLEL
DO tagged as HPF NUMA.

(Note that in this case the independent_ispace will be multidimensional, and will also have
completion cell information, so we can use it for this purpose. The iteration space of the
home_ref, on the other hand, has had its completion cells turned into replicated cells, so we
cannot use it for this purpose.)

Then numa_local is TRUE iff same region() returns TRUE.

Thus, if numa_local is TRUE, STRIP may make use of iteration space to optimize the addressing
computations. If on the other hand numa_local is FALSE, then STRIP uses only data space in
generating the addressing computations.

The numa_local attribute of the left-hand side of a STMT NUMA REPLICATED STORE state-
ment is always FALSE, since a single thread must assign to all the replications of each element of
the array, and these replicated elements of necessity lie on different hpf processors.

As indicated above on page 199 (see particularly expression 16.2), the normal code generated for a
array reference that is not numa_local will be of the form

A
(
v̂1 + (kp + kr ∗ P ) ∗ nf round, v̂2, . . . , v̂n

)
(this is just expression 16.2), where now actually kr = 0, so the last term in the first subscript is miss-
ing. If the reference is the left-hand side of a statement classified as STMT NUMA REPLICATED STORE,
STRIP builds a loop around this statement. The loop index is kr; it runs from 0 to R− 1, and the
term kr ∗ nf round ∗P then appears in the first subscript of the array reference. In this way, all the
replicated instances of each array element are assigned to.

Array references outside a NUMA loop always have their numa_local attribute set to FALSE.

Some of the preceding discussion can be summarized in the following table:

HPF NUMA loop NUMA but not HPF NUMA outside NUMA construct

numa config
descriptor
computed from

home ref with com-
pletions → replicated
(multi-dimensional)

independent ispace
(has no completion cells) —

cc guard
computed from

independent ispace
(has completion cells)

independent ispace
(has no completion cells;
no cc guard)

—

numa local
computed from

independent ispace
(multi-dimensional;
has completion cells)

home ref with completion
values set to 0 (multi-
dimensional)

root of the
statement
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16.8.3 Generating NUMA code for intrinsic functions and subroutines

Any procedure with one or more array arguments that falls into one of the following categories:

• a transformational intrinsic function not inlined by TRANSFORM, or

• a non-elemental intrinsic subroutine not inlined by TRANSFORM

is punted, as follows:

Such procedures are raised to the statement level. Each mapped argument that is not either serial
or page granularity is pulled out and copied into a page granularity temporary. This temporary
is passed to the procedure, after which the temporary is copied back to the original argument, if
appropriate.

The resulting procedure is then classified as STMT IGNORE and simply passed through to the
middle end. Since all its arguments are now page granularity, the rest of the compiler can generate
whatever addressing is needed in lowering the procedure.

This punting is performed simply because no part of the compiler after TRANSFORM
has knowledge of element-granularity data layout. In the future, we plan to do a better
job with these intrinsics.

16.8.4 Actual arguments to user defined functions and subroutines

Here are the rules we follow in deciding whether to create a temporary for an actual at a call site:

No explicit interface:

Without an explicit interface, any actual argument containing a mapped object will cause the
Front End to generate a diagnostic, unless the actual argument is a whole array. Thus, if the
Front End does not already generate a diagnostic, there are only two possibilities:

• The actual argument contains no mapped objects. In this case, the Middle End can
handle any needed generation of temporaries.

• The actual argument is a mapped whole array. In this case, the ordinary HPF rule states
that (since there is no explicit interface), no temporary is required.

So in either case, TRANSFORM does not generate a temporary in this case.

Explicit interface:

• If the actual is a “whole scalar”, i.e., a TMPTOK, CONTOK, or scalar SYMTOK, then
do nothing.

• Else if the dummy is a scalar SYMTOK (note that a dummy can never be a TMPTOK
or a CONTOK), then do nothing.

• Else if the actual is an expression or a section (i.e., anything that is not a whole array),
we make a temporary.
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We do this not to enforce language rules, but for an implementation reason: we know the
dummy must be an array. If the Middle End decides to make a temporary, it would exe-
cute a call-back to ask us how to fill in the dope vector. But the current implementation
for the call-back routines only handles symbols, not expressions.
Further, at this point, it is legal for us to create a temporary—since there is an explicit
interface, we know that the shapes of the actual and the dummy agree. (Without an
explicit interface, the programmer could pass a single element of an array, like A(1), with
a dummy that is an array.)

• Else (now we know that the actual and the dummy are both whole arrays) if both the
actual and the dummy are page granularity, do nothing.

• Else (the actual and the dummy are both whole arrays and the mapping is element
granularity) compare the mappings.

– If the mappings are compatible, do nothing.
– If the mappings are not compatible,
∗ If the mapping on the dummy is prescriptive, remap the actual.
∗ If the mapping on the dummy is descriptive, do nothing.

There is an optimization that we can make, based on the fact that we are generating code for
a shared-memory machine. In general, if a proper section of an array is passed to a subroutine
and there is an explicit interface in which the corresponding dummy has anything other than an
INHERIT mapping, we remap the entire actual argument into a temporary and pass a section of that
temporary; this just follows HPF rules for parameter passing. However, in certain circumstances,
we do not need to make a temporary. Suppose all the following conditions are satisfied:

• The actual argument is a scalar array reference (i.e., if it contains no sections).

• The actual is mapped serially in the first dimension.

• There is an explicit interface.

• The dummy is explicit shape.

• The size of the dummy is less than or equal to the extent of the first dimension of the actual.

• The dummy is effectively serial in every dimension (this will be true in our NUMA compiler
for unmapped arrays).

In such a case, no temporary is needed—we can legally just pass the address of the first element of
the passed section. This is because the actual section being passed is guaranteed to be contiguous,
as is the dummy being received.

These conditions could be relaxed if needed. We will do that if there is demand for it.

Now the actual argument is modified as follows by STRIP:

page-granularity arrays

• Each scalar subscript is just pushed through the data alignment function. This is normal
localization for page-granularity scalar subscripts.
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• Each triple has its bounds pushed through the data alignment function. This just keeps
the vector argument looking like a whole array to the middle end.

element-granularity arrays

• Each scalar subscript is localized as usual for element-granularity scalar subscripts.

• Each triple is replaced by 〈0 : num foldsj : 1〉. (Since DTR2CIR specifies that these are
the bounds of the array, this keeps the array looking like a whole array, and thus the
Middle End does not create a temporary for it.)

16.8.5 Actual arguments to I/O routines

ARG always needs to make a temporary for the actual argument to an I/O routine if the original
actual argument is a vector with element granularity. In any other case, no special processing by
ARG is needed.

STRIP then treats such actuals exactly the same as actuals to user-defined functions, as above.

16.9 Allocation of element-granularity mapped local arrays

16.9.1 Overview

Let us call an array declared in a subprogram that is not a dummy argument a local array. Thus, all
automatic arrays are local arrays, but a local array might have constant bounds and therefore not be
automatic. Unfortunately, this definition of “local” conflicts with the standard Fortran definition,
but we use it only here.

Mapped local arrays have to be allocated on entry to the subprogram in which they are defined,
and deallocated on exit from that subprogram. Such arrays are typically allocated on the stack.
Thus, on entry to the subprogram, code has to be generated to map the the virtual pages of the
stack to the appropriate hpf processors based on the mapping of the local variables. Furthermore,
if two different subprograms contain local variables with different mappings, the virtual stack pages
will have to be remapped on each entry. This is a time-consuming process. There is, however, a
way that we can overcome this problem, at least in the case of element-granularity local arrays:

At the start of the program (or actually, at the start of any user thread that will create an outermost
NUMA parallel region), some storage is allocated on each hpf processor. We can think of this as
a collection of “local” stacks that together constitute a separate TRANSFORM-managed stack.
Note that these separate “local” stacks are in global memory, not in thread-local storage; an array
allocated over these stacks needs to be globally visible to all threads in the subprogram. For
convenience in addressing, this collection of local stacks can be allocated as a continuous range of
global addresses.

On entry to each subprogram, each element-granularity mapped local array will have storage reserved
for it in each of these local stacks. Only as much storage will be reserved in each local stack as is
necessary to hold the local section of the array. (Well, actually, we reserve num folds on each hpf
processor.) Since the array is assumed to be element-granularity, we do not have to be concerned
about the fact that the pages allocated to an array are not in array element order, or in fact that
an array may not use up all of a page before skipping to a page on another hpf processor.
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Mapping directives are not honored for arrays in a scope that is entered from within a parallel
region. This constraint means that each such stack will only be manipulated by one thread (i.e.,
the single thread that initially starts executing the program, or any explicitly user-created thread),
and as a result, there will be no problem maintaining the integrity of these stacks.

The main advantage of this technique is that the pages never have to be remapped. Once the
original allocation has been done, the operating system is never involved in this stack management.
Since we are managing this memory as a stack (or a set of stacks), allocation and deallocation are
quite efficient.

A secondary advantage of this technique is that we do not waste any memory. These arrays are
allocated even more efficiently than element-granularity mapped arrays that could not be placed on
the stack.

16.9.2 The details

1. Each symbol designating a mapped local array is given the NUMA_STACK handy bit. For each
such array A, symbols @A base and @A extent are created by DAT and installed in the base
and extent fields of the dope for A. (Thus, assignments to @A base and @A extent assign to
those fields in the dope.)

The stack described in the previous section is called the numa stack. @A base, which will be
given its value at run-time, represents the base offset of A in the numa stack. @A extent, which
also gets its value at run-time, holds offset in the stack from one hpf processor’s memory to
the next. Thus, @A extent conceptually represents the memory in the numa stack allocated to
one processor. However, as shown below, both @A base and @A extent have to be calculated
with some adjustments, due to the fact that the element size of the array may not be a factor
of the local numa stack size.

2. STRIP modifies the representation of references to elements of A so that

(a) the value @A extent is used for nf round, and in addition,

(b) the value @A base is added to the first subscript of the array.

The base address of the array is still represented as A after STRIP, however.

Thus, the reference to A looks like this:

(16.4) A
(
v̂1 + (kp + kr ∗ P ) ∗@A extent + @A base, v̂2, . . . , v̂n

)
where kp and kr are derived from the hpf processor number corresponding to the array element
being referenced, which is not necessarily the number of the processor performing the reference.
Therefore, kp and kr are computed exactly as for arrays not allocated on the numa stack. In
particular, if the reference is not numa_local then kr = 0.

Note that, because the first subscript is multiplied by the element size of the array by the
Middle End, the values of @A base and @A extent have to represent the “base” and “extent”
values divided by esize. Since esize may not be a factor of either of these values, they first have
to be rounded up to a multiple of esize (and of course, this has to be done on an array-by-array
basis, since esize differs for each array. This is why @A extent, which in principle has nothing
to do with A, is actually a property of the symbol A.
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For arrays which are passed through—these are whole array actual arguments—STRIP re-
places the array by the scalar array reference

A
(
@A base + DLB1,DLB2, . . . ,DLBn)

3. If the array reference is the left-hand side of a STMT NUMA REPLICATED STORE state-
ment, then as described above on page 224, STRIP builds a loop around this statement. Again,
the reference ends up looking like this:

A
(
v̂1 + (kp + kr ∗ P ) ∗@A extent + @A base, v̂2, . . . , v̂n

)
but here kp is actually a loop index running from 0 to R− 1.

Here the numa adjustment term is (kp + kr ∗ P ) ∗@A extent + @A base.

4. The Middle End, when processing an array reference whose base symbol (A, say) has the
NUMA_STACK handy bit set, replaces the base address by OtsNumaStackBase, and tags the
array reference as having the (original) base symbol A. This creates the correct addressing,
and tells GEM to regard the array reference as a reference to an element of A, even though it
doesn’t look that way.

When the array reference is a whole array, this has the effect that the address passed is

OtsNumaStackBase + @A base ∗ esize

In addition, the NUMA_STACK handy bit is a signal to the Middle End to treat the symbol A in
such a way that no memory is allocated to it. (Since TRANSFORM is handling allocation and
deallocation explicitly, the ordinary memory allocation and deallocation that would otherwise
be performed for local arrays has to be inhibited.)

It thus remains to be shown how the stack is manipulated, and how the values @A base and
@A extent are determined, at run-time.

5. An environment variable OMP NUMA STACKSIZE is used to determine the total amount of
memory (in bytes) in the numa stack that will be allocated to each hpf processor. This amount
is rounded up (if necessary) to a multiple of number of processors ∗page size and stored in the
variable OtsNumaStackSize. Then the amount of the stack allocated to each hpf processor is
stored in the variable

OtsNumaStackLocalSize← OtsNumaStackSize
number of processors

6. At user thread startup time (the main program is considered a user thread in this context),
the thread allocates on the heap OtsNumaStackSize bytes of contiguous memory. The pages
of this memory are mapped in a block fashion to the number of processors hpf processors that
will be started up under this user thread. The base address of the memory thus allocated is
stored in the variable OtsNumaStackBase.

In addition, there is an integer variable OtsNumaCurrentTos that holds the position of the
top of the local stack (i.e., the position of the top of the stack on processor 0). This variable
is initialized to 0 at the start of the program.
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7. On entry to a subprogram, the executing thread first saves the value of OtsNumaCurrentTos
in a variable @LocalStackTop on the (global) stack of the subprogram. That thread then
allocates the element-granularity mapped local arrays for that subprogram. For each such
array (call it A, say), the thread does the following:

(a) The current value of OtsNumaCurrentTos is first rounded up to the next highest multiple
of the element size esize of the array. Its value divided by esize is then assigned to the
variable @A base.

@A base←
⌈

OtsNumaCurrentTos
esize

⌉

OtsNumaCurrentTos← @A base ∗ esize

(b) In a similar fashion, the variable @A extent is assigned a value as follows:

@A extent←
⌈

OtsNumaStackLocalSize
esize

⌉

(c) Then OtsNumaCurrentTos is incremented by

num folds∗esize+(number of processors−1)∗(@A extent∗esize− OtsNumaStackLocalSize)

8. On exit from the subprogram, the value of the variable OtsNumaCurrentTos is restored to
the saved value that it had on entry to the subprogram.

This design makes no provision for exception handling; we assume that all exceptions are unrecov-
erable.



Chapter 17

Examples

17.1 A Fortran DO loop nest

We consider code for an LU decomposition, without pivoting. Actually, only the outermost loop
needs to be serial—the other loops should be characterized as INDEPENDENT, or written as
FORALL constructs. So in the example here, where we do not indicate such parallelism in the
source code, the generated code will be very poor. Nevertheless, it is a useful example in showing
how our data structures work in practice.

do K = 1, N
do I = K + 1, N

A(I, K) = A(I, K)/A(K, K)
do J = K + 1, N

A(I, J) = A(I, J)−A(I, K) ∗A(K, J)
end do

end do
end do

17.1.1 CIR2DTR

The dotree for the innermost statement looks like this:

231
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“A”

“I”

FETCH

ARRAY

[ , ] vSUBS

STORE

“J”

FETCH

“A”

“I”

FETCH

ARRAY

FETCH

[ , ] vSUBS

MINUS

“A”

“J”

FETCH

“I”

FETCH

ARRAY

FETCH

[ , ] vSUBS

“K”

FETCH

TIMES

“A”

“K”

FETCH

ARRAY

FETCH

[ , ] vSUBS

“J”

FETCH

I J

scl scl

I J

I K

scl scl

I

K J

scl scl

J

I J

where arrows point to iteration space structures, and each data space structure is next to its cor-
responding ARRAY node. All the data subspaces are local scalar subspaces, and are labeled scl
(scalar). All the iteration subspaces are part of the completion structure.

17.1.2 ITER

If the array A is laid out serially in the first variable, then communication is only necessary to bring
A(I, K) in the second statement over to the processor holding the J column of A, where it is needed
for the rest of the computation.

This is reflected in the following processing: When DIVIDE reaches the TIMES node, it looks at
its two children. The right-hand child, a FETCH node, is being spread into a dimension which is
allocated serially, and hence no motion is needed. Motion is needed at the left-hand child, however,
and so DIVIDE computes it into a temp. Since the spread is into the J dimension, DIVIDE can
allocate the temp immediately before the J loop and deallocate it immediately after.

Thus, after DIVIDE, the loop nest looks (in a source representation) like this:
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do K = 1, N
do I = K + 1, N

A(I, K) = A(I, K)/A(K, K)
Allocate T (K + 1 : N)
do J = K + 1, N

T (J) = A(I, K)
A(I, J) = A(I, J)− T (J) ∗A(K, J)

end do
Deallocate T (K + 1 : N)

end do
end do

where now the only motion happens at the assignment to T (J). The allocation and deallocation of
T actually happen in the prolog and epilog blocks of the J loop.

17.1.3 STRIP

STRIP now localizes the subscripts and exposes the motion:

do K = 1, N
do I = K + 1, N

if A(I, K) is local then
A(I, K) = A(I, K)/A(K, K)

Allocate T (K + 1 : N)
do J = K + 1, N

if A(I, K) is local then
SEND A(I, K) to pr(T (J))

if T (J) is local then
RECEIVE T (J)

if A(I, J) is local then
A(I, J) = A(I, J)− T (J) ∗A(K, J)

end do
Deallocate T (K + 1 : N)

end do
end do

17.2 Examples with replicated data

17.2.1 Orthogonal replicated cells

Here is an example which demonstrates the technique we use to handle replicated data:
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!hpf$ template t(n, n, n, n)
!hpf$ distribute t(block, block, block, block)

real a(n, n), b(n), c(n, n, n)
!hpf$ align a(l, m) with t(l, ∗, m, ∗)
!hpf$ align b(n) with t(∗, n, ∗, ∗)
!hpf$ align c(l, m, n) with t(l, m, n, ∗)

forall (i = 1:n, j = 1:n, k = 1:n)
c(i, j, k) = a(i, k) + b(j)

The dotree looks like this:

1

“c”

2

vINDEX

vARRAY

3

vINDEX

[ , , ] vSUBS

vSTORE

1

vINDEX

“a”

vINDEX

vARRAY

vFETCH

2

[ , ] vSUBS

vINDEX

vPLUS

“b”

3

vARRAY

vFETCH

vINDEX

[ ] vSUBS

j r r r

j r r r

i k r r

i k r r

i j k r

i j k r

2

2

1 3

1 3
1 2 3

1 2 3

i k j

1 3 2

where replicated cells are denoted by the letter r. The numbers next to the cells are the template
indexes associated with primary subspace uses. The iteration subspace structure is determined
by primary and replicated cell constraints. Now the DIVIDE phase can in effect synthesize the
matching up of the rest of the cells (using the rules in Section 10.4), as follows:
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1
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2 1 3 4

2 1 3 4

1 3 2 4

1 3 2 4
1 2 3 4

1 2 3 4

i k j r

1 3 2 4

We see that in this statement no motion is necessary.

17.2.2 Globally replicated data

Here is a second code fragment:

!hpf$ template t(n, n)
real a(n, n), ramp(n)

!hpf$ distribute t(∗, block)
!hpf$ align a(l, m) with t(l, m)
!hpf$ align ramp(l) with t(l, ∗)

do i = 1, n
ramp(i) = float(i− 1)

end do

forall (i = 1:n)
a( : , i) = ramp( : ) ∗ a( : , i)

In this code, the array ramp is replicated across all the processors. The dotree looks like this:
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1 2

Again, the two children of the vTIMES node mesh perfectly, and there is no data motion.

If there were no alignment directive for the array ramp, then it would be distributed by default in
the same manner anyway. The cell structure for the data and iteration spaces of the ramp array
reference would look the same, except that the template name would not be t—it would be some
other (default, compiler-generated) template. Nevertheless, the compiler would know that cell 2
(the replicated cell) represented all the processors, and that cell 1 had strip length = 1. Hence
the algorithm again will generate the same iteration structure for the vTIMES node, and no data
motion will be inserted.

The same code fragment could also be written as follows:

!hpf$ template t(n)
real a(n, n), ramp(n)

!hpf$ distribute t(block)
!hpf$ align a(∗, i) with t(i)
!hpf$ align ramp(∗) with t(∗)

do i = 1, n
ramp(i) = float(i− 1)

end do

forall (i = 1:n)
a( : , i) = ramp( : ) ∗ a( : , i)

Now the dotree looks like this:
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We see that no motion is necessary using this representation. Again, if no alignment directive had
been given for the array ramp, the same considerations as outlined above would give the same
iteration structure for the vTIMES node, again with no data motion inserted.

17.2.3 A disappearing primary cell

Here is a fragment which illustrates how a cell can disappear when iteration information is synthe-
sized from children to parents:

!hpf$ template t(n)
real a(n), b(n)

!hpf$ distribute t(block)
!hpf$ align a(i) with t(i)
!hpf$ align b(∗) with t(∗)

forall (i = 1:n)
a(i) = b(i) + a(i)

The dotree looks like this:
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Again, no motion is necessary.

17.2.4 Factoring a replicated cell

In this example, which is a variant of the previous one, the array b is implicitly replicated over all
the processors, because of our definition of default data layout.

!hpf$ template t(n, n)
real a(n, n), b(n, n)

!hpf$ distribute t(block, block)
!hpf$ align a(l, m) with t(l, m)

forall (i = 1:n, j = 1:n)
a(i, j) = b(i, j) + a(i, j)

Note that even if we had a different definition of default data layout, we could achieve the same
result by adding the following directives:

!hpf$ template e(n, n, n)
!hpf$ distribute e(∗, ∗, block)
!hpf$ align b(l, m) with e(l, m, ∗)

The dotree looks initially like this:



17.2. EXAMPLES WITH REPLICATED DATA 239

“a”

vARRAY

vINDEX
1

[ , ] vSUBS

vSTORE

vINDEX
2

“b”

vARRAY

vFETCH

vINDEX
1

[ , ] vSUBS

vINDEX
2

vPLUS

“a”

vARRAY

vFETCH

vINDEX
1

[ , ] vSUBS

vINDEX
2

i j

1 2

i j

1 2

i j r

i j r

i j

1 2

i j

1 2

Now the replicated cell of b does not have the same place as either of the cells of a. However, it can
be factored into two cells which have those places (i.e. it can be thought of as the union of those
two cells—cf. the algorithm on page 104). Hence we factor it into two replicated cells having those
cell places, and the rest of the processing is similar to what happens in the previous example; the
two primary cells of b with strip length 1 go away. Again, no motion is necessary, and the dotree
looks like this:

“a”

vARRAY

vINDEX
1

[ , ] vSUBS

vSTORE

vINDEX
2

“b”

vARRAY

vFETCH

vINDEX
1

[ , ] vSUBS

vINDEX
2

vPLUS

“a”

vARRAY

vFETCH

vINDEX
1

[ , ] vSUBS

vINDEX
2

i j

1 2

i j

1 2

i j r r

i j r r

i j

1 2

i j

1 2

i j

1 2



Chapter 18

Some Low Level Notes

18.1 Special operators

The strip mining formulas in Chapter 12 contain some expressions with if tests in them. There is
no reason to expose this flow of control in the IR at this point; in fact it could only complicate the
processing that the Transform phase has to do. For this reason, these expressions are abstracted
into special operators which are then lowered separately in the Middle End. These operators are
specified here:

vaUCOND_EXP: VC3 scalar DefIntType

child1: bool_exp scalar dtLOG4
child2: true_exp scalar DefIntType
child3: false_exp scalar DefIntType

if (bool_exp)
return(true_exp);

else
return(false_exp);

This operator is used in constructing the loop bounds for a loop corresponding to an iteration
dimension distributed BLOCK or CYCLIC(n). Such loop bounds are expressions whose value
depends on whether the effective iteration stride is positive or negative. That test is expressed in
bool_exp. This operator corresponds to the GEM operator SELU. That is, both child1 and child2
may be evaluated.
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vaCOND_EXP: VC3 scalar DefIntType

child1: bool_exp scalar dtLOG4
child2: true_exp scalar DefIntType
child3: false_exp scalar DefIntType

if (bool_exp)
return(true_exp);

else
return(false_exp);

This operator is the same as vaUCOND_EXP, except that it corresponds to the GEM operator SELC.
That is, child1 must be evaluated first, and then based on its value, either child2 or child3 is
evaluated. This operator is used to protect against division by 0. It is only used in Transform
in guarding expressions that might involve zero-sized arrays or array sections. Such expressions
can be suppressed by the -assume nozsize switch, which is also implied by the -fast, when the
programmer knows that no array sections in the code have size 0; this greatly increases the efficiency
of the generated code.

vaFLOOR_DIV: VC2 scalar DefIntType

child1: numerator scalar DefIntType
child2: denominator scalar DefIntType

This expression evaluates to the floor of the fraction

numerator/denominator

This is different from the operator vaOVER, which implements Fortran semantics: the fraction is
always rounded towards 0. vaFLOOR_DIV, in contrast, always rounds down.

This operator is used throughout in implementing the strip mining formulas, wherever a floor
is indicated in this report. It is also used in computing the value Lj used in nearest-neighbor
computations, in Chapter 15.
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vaCEIL_DIV: VC2 scalar DefIntType

child1: numerator scalar DefIntType
child2: denominator scalar DefIntType

This expression evaluates to the ceiling of the fraction

numerator/denominator

This is similar to the operator vaFLOOR_DIV, except that it always rounds up.

This operator is used throughout in implementing the strip mining formulas, wherever a ceiling is
indicated in this report.

The identity

⌈a
b

⌉
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌊
a− 1

b

⌋
+ 1 if b > 0

⌊
a + 1

b

⌋
+ 1 if b < 0

which is valid when a and b are integers, relates vaFLOOR_DIV and vaCEIL_DIV.

18.2 CSHIFT and EOSHIFT

Here we give the details of how CSHIFT and EOSHIFT are inlined in ARG. These functions are first
brought up to the statement level (i.e. they are made the complete right-hand side of an assignment
statement, if they are not already). Then the iteration space of that statement is normalized, as
outlined in Section 10.7 (page 108). (If it is normalized again by DIVIDE, no harm is done, since
normalization is idempotent.)

Then the statements are inlined as outlined below. In the following, all bounds refer to the normal-
ized iteration bounds.

18.2.1 CSHIFT

The expression we have to lower is

RESULT = cshift(ARRAY, SHIFT, DIM)

or, for simplicity in the following pseudocode,

RESULT = cshift(A, Δ, d)
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We first perform the following preprocessing:

• If the DIM argument d is missing, it is taken to be 1.

We distinguish two cases. Case I is transformed and ultimately handled in terms of Case II.

Case I N = rank(A) > 1 and Δ is an array. We generate the following code. The notation 〈Id〉
indicates a missing subscript (that is, in the particular array reference there are only N − 1
subscripts, as in fact the array Δ has rank N − 1):

do I1 = LB1, UB1

do I2 = LB2, UB2

. . . -- omitting Id

do IN = LBN , UBN

RESULT(I1, . . . , LBd :UBd :Sd, . . . , IN )
= cshift(A(I1, . . . , LBd :UBd :Sd, . . . , IN ),

Δ(I1, . . . , 〈Id〉, . . . , IN ),
1)

end do
. . .

end do
end do

Case II Δ is a scalar. N = rank(A) may still be > 1, however. We generate the following code:

size← UBd−LBd

Sd
+1

if (size = 0) then
T ← 0

else
T ←modulo (Δ, size)

end if
-- We know T ≥ 0
if T = 0 then

RESULT = A

else -- T > 0
begin
RESULT(LB1 :UB1 :S1, . . . , LBd :UBd−T ∗ Sd :Sd, . . . , LBN :UBN :SN )
← A(LB1 :UB1 :S1, . . . , LBd+T ∗ Sd :UBd :Sd, . . . , LBN :UBN :SN )

RESULT(LB1 :UB1 :S1, . . . , UBd−(T−1) ∗ Sd :UBd :Sd, . . . , LBN :UBN :SN)
← A(LB1 :UB1 :S1, . . . , LBd :LBd+(T−1) ∗ Sd :Sd, . . . , LBN :UBN :SN )

end
end if

The initial computation of T is simplified in the usual case when the compiler is told on the
command line to assume that all array sections in the program have size > 0. In this case, it
just becomes
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size← UBd − LBd

Sd
+ 1

T ←modulo (Δ, size)

18.2.2 EOSHIFT

Here the expression is

RESULT = eoshift(ARRAY, SHIFT, BOUNDARY, DIM)

or, for simplicity in the following pseudocode,

RESULT = eoshift(A, Δ, B, d)

We first perform the following preprocessing (virtually the same as that for CSHIFT):

• If the DIM argument d is missing, it is taken to be 1.

• If the rank of A (call it N) is > 1, then the BOUNDARY argument B can either be a scalar
or an array of rank N − 1. If it is a scalar, it is treated as if it were an array of rank N − 1
each of whose elements has value B.

• If the BOUNDARY argument B is missing, then its shape is defined as above, and its value
is taken to be some version of 0, as specified in the Fortran Language Standard.

Again, we distinguish two cases. Case I is transformed and ultimately handled in terms of Case II.

Case I N = rank(A) > 1 and Δ is an array. We generate the following code:

do I1 = LB1, UB1

do I2 = LB2, UB2

. . . -- omitting Id

do IN = LBN , UBN

RESULT(I1, . . . , LBd :UBd :Sd, . . . , IN )
= eoshift(A(I1, . . . , LBd :UBd :Sd, . . . , IN ),

Δ(I1, . . . , 〈Id〉, . . . , IN ),
B(I1, . . . , 〈Id〉, . . . , IN ),
1)

end do
. . .

end do
end do

Case II Δ is a scalar. N = rank(A) may still be > 1, however, and B may be an array. In line
with the “preprocessing” outlined above, we will assume that B is in fact an array, for the
purposes of this pseudocode. We generate the following code:
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size← UBd−LBd

Sd
+1

if (Δ = 0 or size = 0) then
RESULT = A

else if |Δ ∗ Sd| > |UBd−LBd| then
RESULT(LB1 :UB1 :S1, . . . , LBd :UBd :Sd, . . . , LBN :UBN :SN)
← spread(B(LB1 :UB1 :S1, . . . , 〈LBd :UBd :Sd〉, LBN :UBN :SN ),

dim = D, ncopies = |UBd−LBd|+1)
else if Δ > 0 then

begin
RESULT(LB1 :UB1 :S1, . . . , LBd :UBd−Δ ∗ Sd :Sd, . . . , LBN :UBN :SN )
← A(LB1 :UB1 :S1, . . . , LBd+Δ ∗ Sd :UBd :Sd, . . . , LBN :UBN :SN )

RESULT(LB1 :UB1 :S1, . . . , UBd−(Δ−1) ∗ Sd :UBd :Sd, . . . , LBN :UBN :SN )
← spread(B(LB1 :UB1 :S1, . . . , 〈LBd :UBd :Sd〉, . . .LBN :UBN :SN ),

dim = D, ncopies = Δ)
end

else -- Δ < 0
begin
RESULT(LB1 :UB1 :S1, . . . , LBd−Δ ∗ Sd :UBd :Sd, . . . , LBN :UBN :SN )
← A(LB1 :UB1 :S1, . . . , LBd :UBd+Δ ∗ Sd :Sd, . . . , LBN :UBN :SN )

RESULT(LB1 :UB1 :S1, . . . , LBd :LBd−(Δ+1) ∗ Sd :Sd, . . . , LBN :UBN :SN )
← spread(B(LB1 :UB1 :S1, . . . , 〈LBd :UBd :Sd〉, . . .LBN :UBN :SN ),

dim = D, ncopies = −Δ)
end

end if
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