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Abstract

This purely expository paper was written as part of the HPF project at Digital. We needed

a good dependence analyzer, and I wrote this both to provide a good description of what

dependence analysis consists of and to see what the state of the art was at that time. I

concluded that Pugh’s Omega test was really the method of choice

The discussion in most places follows the original papers quite closely, although the exposition

of many topics has been cleaned up quite a bit.
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1 Introduction

We are given as input a loop nest and two array references in that nest. We want to determine

• if a dependence exists between those two references or not, and

• if such a dependence exists, the nature of the dependence; that is,

1. whether it is a true, anti, or output;

2. the direction and distance vectors.
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Two matters we ignore in this initial report are:

1. scalar dependences. The techniques for this will be dealt with separately.

2. array aliasing. We assume that such aliasing has been handled so that the dependence
analyzer sees arrays with the same name.

1.1 Restrictions

We are only going to consider dependence tests that consider affine subscript expressions. Any
other form of subscript expression will be presumed to involve all possible dependences. In practice,
this seems to be justified. The other kinds of subscript expressions that might occur are

• expressions involving non-linear terms in the loop variables, such as i ∗ i or i ∗ j;

• expressions involving indirection arrays; i.e., vector-valued subscripts;

• expressions involving function calls.

It does not seem profitable to spend the large amount of compilation time that would be needed
to analyze the first two of these kinds of expressions for dependence. In the vast majority of cases,
a dependence can always be assumed to exist in either of these cases.

Function calls are a different matter. In many important cases they do not lead to dependences.
Discovering this, however, requires some form of interprocedural analysis. Although this report
does not concern itself with interprocedural issues, the techniques presented here become consid-
erably more valuable when such interprocedural information is available, as has been strikingly
demonstrated in the work of Monica Lam and her students at Stanford.

Interprocedural analysis is also important in another respect: in many cases, parameters such
as loop bounds are passed in to a procedure. If interprocedural analysis can detect that these
parameters are really compile-time constants, the dependence analyzer will execute much more
quickly, and give much more useful results.

1.2 The Approach We Take

There are two approaches one might take to the problem of dependence testing:

1. Construct a sequence of simple filter tests. Each such test will recognize a small class of
commonly occurring patterns. Any dependence problem encountered by the compiler for
which there is no filter test provided will be assumed to have a dependence.

2. Construct a general method that can be used on any dependence problem.

The filter test approach (as exemplified in Goff, Kennedy, and Tseng’s work at Rice) works well

because most dependence problems really are pretty simple. Filter tests catch nearly all of them,
and filter tests are easy to implement. The issues that have to be confronted when using this
approach are:
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• What do you do with the dependence problems that are missed by the filter tests?

• How do you organize the implementation so that it is robust and extensible?

The other technique—constructing a general method—is more in the spirit of modern compiler
technology. Its advantage is that, if it is well implemented, it is pretty certain to give excellent
results. Its disadvantage is that general techniques can be inefficient. For this reason, it is only
recently that general techniques for dependence analysis have become popular, even in the world
of academic research compilers.

In fact, these two methods as commonly implemented are not as completely opposed as I have
indicated. People who implement a series of filter tests commonly also include a general purpose
test at the end to try to mop up the tests that got away. And a general-purpose implementation
typically includes a number of reductions and special purpose tests in the beginning that could be
thought of in some cases as filter tests. Nevertheless, it is fair to say that the spirit of these two
approaches is quite different.

My own preference is the second method. I think it will lead to a cleaner, more understandable,
and more maintainable implementation. For this reason, I propose to follow in the main the ideas
of Pugh in his work on the Omega test at the University of Maryland. In this report, I compare
his work with the similar work done about a year earlier by Maydan in his Stanford Thesis. I have,
of course, consulted other treatments on dependence analysis, at least enough to convince myself
that they would lead to no better results than are presented here. And I also want to express my
appreciation to Shin Lee for helpful discussions on this material.

1.3 Terms Used in this Report

Here is an example to illustrate some of the terminology we will be using:

Example 1

do i = 1, n

do j = i, m

a(i, j) = a(j, i−1) + 5

end do

end do

There are two array references here. Let us call the array reference on the left-hand side array
reference 1, and that on the right-hand side array reference 2. (There is no particular significance

to how we number the array references; we could have reversed the numbering.) A dependence

will exist between these two references if there are integers i1 and j1 (the values of i and j in array

reference 1) and i2 and j2 (the values of i and j in array reference 2) such that we have

Equations:

i1 = j2
j1 = i2 − 1

Constraints:
1 ≤ i1, i2 ≤ n
i1 ≤ j1 ≤ m
i2 ≤ j2 ≤ m
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That is, the equations come from the subscript expressions and express the fact that the two array
references refer to the same memory location. The constraints, on the other hand, come from the
loop bounds. We refer to the complete set of equations and constraints together as a dependence

problem.

We always write the constraints using “weak” inequalities (e.g., ≤ rather than <). In spite of the
terminology, this gives tighter results in our subsequent processing. Since all the constants and
variables in our equations and constraints are integers, we can turn any strong inequality into a
weak one: just replace a < b, for instance, by a + 1 ≤ b.

We distinguish between exact and inexact tests. An exact test is one that is guaranteed to give

an answer of yes or no. (That is, the test reports that either there is or is not a dependence.)
Since dependence problems can be arbitrarily complicated, there is no test which is exact for all
problems. However, there are tests that are exact for restricted classes of problems. Having an
exact test for a dependence problem is the ideal situation that we would like to have.

When an exact test is not available for a dependence problem, we may resort to an inexact test.
Such a test reports one of two possible outcomes:

• There is no dependence.

• There may be a dependence.

Of course, in case an inexact test reports that there may be a dependence, the compiler must assume
that there is a dependence, to be safe. That is, an inexact test gives a conservative approximation
to the dependence information.

A typical way that an inexact test may arise is this: We may be able to show that there is a
rational solution to the dependence problem, but we may not know if there is an integral solution.
In this case, the test would report that there may be a dependence.

1.4 Distance and Direction Vectors

Given two array references, which we denote as above by 1 and 2, and associated iteration variable
references i1 and i2, we define ∆i = i2 − i1. We will use this definition consistently in this report.

A direction vector from one array reference to another has the direction vector component < in the
position corresponding to the loop with variable i iff the value of i at the source of the dependence
vector is less than the value of i at the target. Similarly, the component of the direction distance
vector is

value of i at the source − value of i at the target

Thus:

• if the dependence is from reference 1 to reference 2, the dependence distance is −∆i, while

• if the dependence is from reference 2 to reference 1, the dependence distance is ∆i.

A dependence is meaningful if and only if its distance vector is either

• lexicographically positive, or
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• the zero vector, in which case the dependence has to be lexically in the forward direction.

Burke and Cytron refer to such dependences as plausible dependences. A plausible dependence is
further characterized as

• a true or flow dependence iff it is a def-use dependence; i.e., if the source is an assignment
to the array reference, and the target is a fetch of the value of the array reference.

• a anti dependence iff it is a use-def dependence.

• an output dependence iff it is a def-def dependence.

It is trivial but useful to note there is a 1-1 correspondence between plausible and non-plausible
dependences produced by switching the source and target of the dependence; this transformation
thus preserves output dependences and switches true and anti dependences. The transformation
has the effect of changing the sign of each component of the distance vector.

1.5 Overview of Processing—Maydan’s Approach

Maydan in his thesis proposes the following series of tests for dependence, to be carried out in
exactly this order:

SEPARATE Check for separability and reduce to smaller problems if possible. This step uses

both the equations and the constraints. (Actually, Maydan does not mention this step, but

it is an obvious one.)

GCD Use the “generalized gcd test”, partly as an initial filter test, but principally as a way of
reducing the equations to a minimal parametrized form. As a test, it is inexact, although it
does catch some cases in which there is no dependence. In the rest of the cases it performs
the extremely important parametrization step.

This step uses only the equations. After this step, the equations are no longer used, as they
have been eliminated by the parametrization.

SINGLE Use the “single variable per constraint test” as an exact test where applicable, and in
any case to compute tight bounds on the parameters.

ACYCLIC The acyclic test is an exact test for a small class of problems. It can be used here if
appropriate.

RESIDUE The simple loop residue test is an exact test for a small class of problems. It can be
used here if appropriate.

FOURIER Finally, if none of the previous tests have given a definitive answer, apply Fourier-
Motzkin elimination. This is not an exact test, but Maydan reports that in practice his series
of tests is effectively exact—that is, no spurious dependences are reported.

Thus, after the preliminary GCD reduction, Maydan uses a sequence of simple exact tests only

where appropriate—that is, each test is applied only where it is guaranteed to give an exact result
and no further testing will be necessary. Fourier-Motzkin elimination is used at the end to take
care of the problems that remain.
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1.6 Overview of Processing—Our Approach, Following Pugh

Pugh then showed that the problems for which the Acyclic and Residue tests are appropriate are
handled automatically (and equally efficiently) by Fourier-Motzkin elimination; furthermore, the

Single Variable Per Constraint Test is also subsumed by his implementation of Fourier-Motzkin
elimination. Thus, our final dependence testing algorithm looks like this:

SEPARATE Check for separability and reduce to smaller problems if possible. This step uses
both the equations and the constraints. (Pugh does not mention this step either, by the way.)

This step is not, strictly speaking, necessary. It would not change the results of any further
analysis if it were omitted. However, it reduces the problem size in some cases, and may
therefore lead to faster dependence processing.

GCD Use the “generalized gcd test”, exactly as described above.

FOURIER If dependence has not been ruled out by the GCD reduction, apply Fourier-Motzkin
elimination with Pugh’s “dark shadow” improvement. This subsumes along the way all the
rest of Maydan’s tests. It is still not an exact test, however, and so Pugh presents a technique
(which we call “penumbral calculations” below), amounting to exhaustive search, that can
be used to make this test exact. Pugh himself seems uncertain of the extent to which such
exhaustive techniques are really necessary; and as mentioned above, Maydan reports that
straightforward Fourier-Motzkin elimination has always been exact in practice. (He means

by this that in those cases in which it reported a possible dependence, there actually was

such a dependence, and it was easy to find.) This is probably at least partly due to the

extensive exact testing and/or preprocessing that both Pugh and Maydan perform prior to
or in the process of using this test.

We shall now present each of Maydan’s tests, and then show how Pugh takes account of each of
them in his rather simpler version.

2 SEPARATE

A dependence problem is said to be separable iff the set of equations and constraints can be
separated or divided into two or more disjoint sets in such a way that no two sets have any
variables in common. Example 1 is not separable. On the other hand, here is an example that is:

Example 2

do i = 1, 100

do j = 1, 50

a(3∗i+2, 2∗j−1) = a(5∗j, i+3)

end do

end do

In this example we have

Equations:

3i1 + 2 = 5j2
2j1 − 1 = i2 + 3
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Constraints:
1 ≤ i1, i2 ≤ 100
1 ≤ j1, j2 ≤ 50

and the problem separates into the two disjoint subproblems:

Subproblem A:

Equations:

3i1 + 2 = 5j2

Constraints:
1 ≤ i1 ≤ 100
1 ≤ j2 ≤ 50

Subproblem B:

Equations:

2j1 − 1 = i2 + 3

Constraints:
1 ≤ i2 ≤ 100
1 ≤ j1 ≤ 50

We have to give an algorithm to perform this analysis. Goff, Kennedy, and Tseng give one, but it
is flawed in two respects:

• It seems to ignore the constraints and deals only with the equations.

• It apparently does not differentiate between the variables from the two array references (e.g.,

it does not differentiate i1 from i2). So it would not see that Example 2 is separable.

In any case, the algorithm should be straightforward.

There is a trade-off here—the simplification in subsequent processing gained by separating the
problem into smaller problems has to be weighed against the cost of doing the separation itself.

Certainly an initial implementation can do without this initial step. (In fact, it probably would
actually be good to do without it initially, as this would tend to stress the remaining processing
and make the implementation more robust.)

3 GCD

3.1 Parametrization

This step, which deals only with the equations and ignores the constraints, has been called the
generalized GCD test, because it reduces to the Euclidean algorithm in simple cases. However, it
is much more important than just a test—it reduces the number of variables by expressing them
in terms of a smaller number of linearly independent parameters. Here is the idea:
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First, we write the equations in the form of a matrix equation. For instance, the equations from
Example 1 can be written as follows:

(

1 0 0 −1
0 −1 1 0

)









i1
i2
j1
j2









=

(

0
−1

)

In general, let us say that the equations of the dependence problem can be written as the matrix
equation

A~v = ~c

where ~v is the vector of loop indices (each index giving rise to two components of ~v), and ~c is a
constant vector ultimately derived from the constant parts of the array subscripts.

What is the shape of A? Most of the time, it will be at least as wide as it is high. This just says
that there will be at most as many equations as there are variables (where, as we have seen, each

loop index gives rise to two variables). There are, to be sure, cases in which this is not true. They
all look pretty strange. For instance, a pair of references of the form

a(i, 4∗i, 7∗i) and a(3∗i−1, 4∗i+4, 5∗i+9)

would lead to the matrix equation





1 −3
4 −4
7 −5





(

i1
i2

)

=





−1
4
9





Such an equation is solvable only if the number of linearly independent equations1 is no more than
the number of variables. In this case, that is what happens: the second equation is half the sum
of the first and the third.

So one could imagine a first step, which would be needed only if there are more equations than

there are variables, that consists of finding a maximal set S of independent equations2 and checking
to make sure that there are no more of these equations than there are variables. The remaining
equations can then be discarded—any solution of the equations in S will automatically be a solution
of the remaining equations.

Let us assume for the moment that such a procedure has been performed. (It will turn out that
we actually don’t need a separate procedure to do this—the processing we outline below handles
this as a side-effect.)

In any case, we assume temporarily that A is at least as wide as it is high. Let us suppose that A

1Corresponding to each equation with m variables, let us associate an (m + 1)-dimensional vector whose first m
coordinates are the coefficients of the variables in the equation and whose last coordinate is the constant term in
the equation. We say that a set of equations is linearly dependent if and only if the corresponding set of vectors is
linearly dependent.

2In this case, any two of the three equations are independent.
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is an n × m matrix, so it looks like this:

m columns

n
rows







a11 . . . a1m

...
. . . . . .

an1 . . . anm







where m ≥ n.

Next—and this is the key idea—we will show that either the equations have no solution or we can
find two auxiliary matrices U and D such that

• U is an m × m unimodular matrix, and in particular is invertible.

• D is an n × m lower triangular matrix. Thus, it looks like this:

m columns

n
rows











d11 0 . . . 0 0 . . . 0
d21 d22 . . . 0 0 . . . 0
...

...
. . .

...
...

...
dn1 dn2 . . . dnn 0 . . . 0











It has the same shape as A. Further, none of its diagonal elements are 0.

• AU = D.

We will present an algorithm below for constructing U and D. The algorithm fails if and only if
there is no solution to the equations. In this case, we refer to the processing of the algorithm as
the “GCD test”. If the algorithm succeeds, the equations have at least one solution, and we refer
to the processing of the algorithm as the “GCD parametrization”, or the “GCD reduction”, for
reasons that will become clear below.

Assuming then that we have performed this algorithm successfully and produced U and D as

above, we have A = DU−1. Therefore A~v = ~c ⇐⇒ DU−1~v = ~c, and this holds precisely when

there is a vector ~t such that ~v = U~t and D~t = ~c.

So the set of solutions ~v can be found if we can first find the set of all vectors ~t such that D~t = ~c;

the solutions ~v will then just be the vectors U~t, where ~t runs over this set. Since U is unimodular,

each such vector ~t corresponds uniquely to a solution ~v.

Now solving the equation D~t = ~c is easy because D is lower-triangular; the process is conventionally

called “forward substitution”. When we do this, the first n components of ~t will be uniquely
determined, but the last m−n will be arbitrary—this is clear by looking at the form of the matrix

D. Thus, ~t runs over an (m − n)-dimensional affine subspace of Rm, and so the vectors ~t (and ~v

in turn) are parametrized by m − n independent parameters.

So now how do we find the matrices D and U? The process is in essence that of Gaussian
elimination, except that we cannot divide because we want to stay in the domain of integer matrices.
We will perform a series of operations on A that will transform it into D. The operations that we

will use are operations on the columns of the matrix (they are called elementary column operations),
and have the following forms:
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interchange Interchange columns i and j.

shear Add an integral multiple of column i to column j.

These operations can be represented as operations on the right by m × m unimodular matrices:

interchange Interchanging columns i and j amounts to multiplying on the right by the matrix

column
i
↓

column
j
↓

row i →

row j →





























1
1

0 1
1

1
1

1
1 0

1





























shear Adding b times column i to column j amounts to multiplying on the right by the matrix

column
j
↓

row i →





























1
1

1 b
1

1
1

1
1

1





























Here then is what we do:

1. If the first row of A is all 0, then either the first entry of ~c is also 0 (in which case that row

of A and that entry of ~c can be discarded), or the equation is not solvable; i.e., there is no
dependence.

2. So now we assume that the first row of A is not all 0. Find the entry in the top row of
smallest absolute value. Call it α. Interchange columns if necessary so that α is in the
leftmost position (i.e., the (1, 1) position).

3. Add (or subtract) integer multiples of the first column from the other columns so that the

entries at the top of those other columns are each less in absolute value than |α|.
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There is a fine point here. There are in general two such possible values. For instance, if
α = 3 and the entry at the top of a column is 5, we could wind up with 2 or -1. We might
always choose the remainder with smallest absolute value, reasoning that this process is likely
to converge faster. It does in general, although not by much. And it is possible that the
result it leads to may be either better or worse from the point of further dependence tests.
We will see an example of this below. In any case, convergence is so quick, and the problems
are generally so trivial, that this doesn’t seem to be a significant consideration.

4. Repeat steps 2 and 3 until all entries in the first row except that in position (1, 1) are 0.

That concludes stage 1 of the algorithm. What we have in effect done is used the Euclidean
algorithm to find the greatest common divisor of the elements of the first row.

In stage 2, we consider the matrix obtained conceptually by deleting the first row and the first
column of our matrix, and repeat this process.

Thus, at the beginning of stage k, the first k−1 rows of the matrix have already been put in lower-
triangular form, and we are working on the lower-right submatrix composed of those elements
whose row and column numbers in the original matrix are each ≥ k. This is illustrated in Figure 1.

a1,1

an,1

a1,n

ak,k

an,n am,n

Figure 1: Stage k of the GCD algorithm. The gray area is the submatrix being transformed. The
row of elements to the right of ak,k will all become 0 by the end of this stage.

At the beginning of each stage of this process, if the top row of our (sub-) matrix is all 0, then either
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that row in the full matrix (together with the corresponding element of ~c) is a linear combination

of previous rows (in which case we delete it), or the original equation is not solvable, i.e., there is
no dependence.

Thus, when we have finished this process, we have reduced A to a lower triangular matrix (as

illustrated above) all of whose diagonal elements are non-zero.

Notice that if there were more equations than there were variables (so A was higher than it

was wide; i.e., n > m), then in the process outlined above, either we would have thrown away

enough redundant equations (i.e., made n smaller) so that n ≤ m, or we would have discovered an

inconsistency in the equations so that we would know that no dependence is possible. Thus, we do
not actually have to start with a matrix in which n ≤ m.

In performing this reduction of A to D, we can keep track of the operations we have performed on
A by starting with the m×m identity matrix and performing the identical operations on it. That
is, we start with the pair 〈A, Im〉 and perform identical column operations successively on A and

Im until we arrive at two matrices 〈D,U〉. U is unimodular (since it is the product of unimodular

matrices), and by construction, AU = D. Thus, we have found U and D as specified.

The matrices D and U are not necessarily uniquely determined. (It is obvious, for one thing, that we have made

some arbitrary choices in the algorithm, and it is not obvious that these choices don’t lead to different results. In

fact, they may.)

However, we can apply some more elementary column operations to modify D if necessary so that

1. all the elements of D are ≥ 0, and

2. the largest element in each row is the diagonal element.

This is done as follows:

for i = 1 to n

if dii < 0 then

Multiply column i by −1. (This is also an elementary column operation.)

for j = 1 to i − 1

Add a multiple of column i to column j so that 0 ≤ dij < dii

end for

end if

end for

After this processing has been performed, D is said to be in Hermite normal form. It can be shown that the Hermite

normal form of a matrix is unique.

For our purposes, it is not necessary to put D in Hermite normal form, since it will not change any of the subsequent
computations.

Even if D is in Hermite normal form, however, U still does not have to be unique. That is, there may be two

unimodular matrices U1 and U2 such that

AU1 = D

AU2 = D

Of course this can’t happen if A is non-singular. However, in general A is singular, since it has more columns than

rows. In such a case U cannot be unique. We can see this as follows: Say we have AU = D. Since A is singular, D

must be also. Since D is in Hermite normal form and is singular, it must have more columns than rows, and hence

it has some columns that are all 0. Say D = (Nn|Z) where Nn is an n × n non-singular diagonal matrix and Z is
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an n × (m − n) zero matrix. That is, D looks like this:

D =

0

B

B

B

@

d11 0 . . . 0 0 . . . 0
0 d22 . . . 0 0 . . . 0
.
..

.

..
. . .

.

..
.
..

.

..
0 0 . . . dnn 0 . . . 0

1

C

C

C

A

Let P be a matrix which is the identity on the first n coordinates and is a non-identity unimodular matrix on the

last m − n coordinates. (For instance, it could be a non-trivial permutation of the last m − n coordinates.) So P

looks like this:

P =

0

B

B

B

B

B

B

B

B

B

B

B

@

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
..
.

..

.
. . .

..

.
..
.

..

.
0 0 . . . 1 0 . . . 0
0 0 . . . 0 p1,1 . . . p1,m−n

..

.
..
.

..

.
..
.

. . .
..
.

0 0 . . . 0 pm−n,1 . . . pm−n,m−n

1

C

C

C

C

C

C

C

C

C

C

C

A

Then

AUP = DP = D

so UP is a unimodular matrix satisfying the same conditions as U but not equal to it; that is, U is not unique.

In Sections 4.3 and 4.4 below, we will see an example of the non-uniqueness of U.

3.2 Normalization

After U and D have been found, the original constraints can be rewritten in terms of the new

variables ~t. Each constraint can be written as an inequality of the form

a ≤ f
(

~t
)

≤ b

where f is a linear function (i.e., it contains no constant term) with integral coefficients, and a and

b are also integers. (It may be that only one of the inequalities is present.)

Now suppose that g is the greatest common divisor of the coefficients of f , chosen so that g >

0. Then if f ′ denotes the function whose coefficients are found by dividing the corresponding
coefficients of f by g, we certainly have

a/g ≤ f ′
(

~t
)

≤ b/g

Now it may be that a/g or b/g are not integers. Since in any case f ′
(

~t
)

is an integer, we must

have

da/ge ≤ f ′
(

~t
)

≤ bb/gc

This process is called normalization, and we apply it to each constraint.

In practice, the gcd of the coefficients of f will be 1, and so normalization will really do nothing.
Nevertheless, it is worth looking for since it is so cheap to perform. An example of normalization
occurs in the analysis of Example 5 (page 21) below.
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3.3 Example: GCD as a Parametrization Tool

We’ll give two examples of how the GCD test is used. The first example is the triangular loop nest
of Example 1. As we have already noted, the equations for this example can be written as the
matrix equation

(

1 0 0 −1
0 −1 1 0

)









i1
i2
j1
j2









=

(

0
−1

)

That is, A~v = ~c, with ~v = 〈i1, i2, j1, j2〉, ~c = 〈0,−1〉, and A being the matrix on the left. Now
starting with A and I4, we perform successive elementary column operations as follows:

A I4

„

1 0 0 −1
0 −1 1 0

«

0

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

Add column 1 to column 4:

„

1 0 0 0
0 −1 1 0

«

0

B

B

@

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

Add column 2 to column 3:

„

1 0 0 0
0 −1 0 0

«

0

B

B

@

1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

1

C

C

A

D U

Now we solve D~t = ~c. This gives
~t = 〈0, 1, t3, t4〉

Then we have ~v = U~t. That is,

i1 = t4

i2 = t3 + 1

j1 = t3

j2 = t4

and so the possible set of ~v solutions has been represented in terms of the two independent pa-
rameters t3 and t4. Any values of t3 and t4 yield values of ~v that satisfy the equations of this
dependence problem, and all such values of ~v are representable in this form.

3.4 Example: GCD as a Dependence Test

This example is from Zima and Chapman, page 168:
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Example 3

do i = 1, 100

a(i, i+1) = . . .

· · · = . . . a(i−1, i−2) . . .

end do

Equations:

i1 = i2 − 1
i1 + 1 = i2 − 2

Constraints:

1 ≤ i1, i2 ≤ 100

With the same conventions as before, we have

(

1 −1
1 −1

) (

i1
i2

)

=

(

−1
−3

)

As before, we compute

A I2

„

1 −1
1 −1

« „

1 0
0 1

«

„

1 0
1 0

« „

1 1
0 1

«

Now at this point we see that the only way we could have a consistent solution is if the vectors

〈1, 0,−1〉 and 〈1, 0,−3〉 were linearly dependent, which they clearly are not. Hence there is no
dependence.

In this case, the GCD test was actually used as a test. This is not too surprising: some dependence
problems are really quite simple and are caught immediately by the GCD test.

While the GCD test may seem like a large, computationally expensive algorithm, it really is not:
The data structures needed are simple, the typical amount of data to be analyzed is small, and

the computation is really nothing more than the Euclidean algorithm, which is quite efficient. (In
fact, it’s even better than this might indicate: in actual dependence problems, the absolute values
of the entries in the matrix are mainly ≤ 1, only sometimes 2, and very rarely greater than 2.)

4 SINGLE—Single Variable Per Constraint Test

Once we have finished with the GCD test, we have eliminated any further need to look at the equa-
tions of the dependence problem: all the information in them has been encoded in the parametriza-

tion in terms of the ~t components. Everything from this point on deals only with the constraints.

The Single Variable per Constraint Test, like the GCD test, serves two possible functions:
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• It may be used as an exact test in certain cases.

• In those cases in which it may not be used as an exact test, it still may be used to give tighter
bounds in the constraints. This makes later tests more likely to succeed.

The idea is quite simple. If each constraint involves only one variable, then it defines a upper or
lower bound for that variable. Each variable (tj , say) must be bounded above by the minimum of

these upper bounds (call it Uj), and similarly must be bounded below by the maximum of these

lower bounds (call it Lj). If for each j, Lj ≤ Uj , then each tj can be assigned a value that satisfies

all the constraints. Conversely, if there is such an assignment for each tj , then it must be true that

Lj ≤ tj ≤ Uj .

Thus, in the case in which there is only one variable per constraint, we have only to compute each
Lj and Uj and check to see if Lj ≤ Uj . This test is exact.

4.1 Example: SINGLE as an Exact Test; Finds Dependence

Consider Example 2 on page 7. As we saw, this problem separates into two sub-problems which
we have called A and B. The equation for Subproblem A is just

(

3 −5
)

(

i1
j2

)

= −2

The GCD algorithm looks like this:

A I2

`

3 −5
´

„

1 0
0 1

«

`

3 1
´

„

1 2
0 1

«

`

1 3
´

„

2 1
1 0

«

`

1 0
´

„

2 −5
1 −3

«

D U

Solving D~t = −2, we get ~t = 〈−2, t2〉, so 〈i1, j2〉 = U~t; i.e.,

i1 = −4− 5t2

j2 = −2− 3t2

Expressing the constraints in terms of the variable t2, they become

1 ≤ −4 − 5t2 ≤ 100
1 ≤ −2 − 3t2 ≤ 50
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That is,

−20 ≤ t2 ≤ −1
−17 ≤ t2 ≤ −1

So any value of t2 in the range −17 ≤ t2 ≤ −1 will serve to define values of i1 and j2 that satisfy
the equations and the constraints.

Now we do the same thing for Subproblem B. The equations are

(

−1 2
)

(

i2
j1

)

= 4

The GCD algorithm looks like this:

A I2

`

−1 2
´

„

1 0
0 1

«

`

−1 0
´

„

1 2
0 1

«

D U

Solving D~t = 4 yields ~t = 〈−4, t2〉 so 〈i2, j1〉 = U~t; i.e.,

i2 = −4 + 2t2

j1 = t2

and we have the constraints
1 ≤ −4 + 2t2 ≤ 100
1 ≤ t2 ≤ 50

Putting the bounds from these two constraints together, we get the final bounds 3 ≤ t2 ≤ 50, so
any t2 in this range will work to define i2 and j1 as needed to satisfy the problem. Thus both
Subproblems A and B have solutions and so a dependence exists in the original problem.

4.2 Example: SINGLE as an Exact Test; Finds No Dependence

Here is another example, from Goff, Kennedy, and Tseng:

Example 4

do i = 1, N

a(i+2∗N) = a(i+N) + C

end do

Equations:

i1 + 2N = i2 + N

Constraints:

1 ≤ i1, i2 ≤ N
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With the same conventions as before, we have

(

1 −1
)

(

i1
i2

)

= −N

The GCD algorithm looks like this:

A I2

`

1 −1
´

„

1 0
0 1

«

`

1 0
´

„

1 1
0 1

«

D U

Solving D~t = −N yields ~t = 〈−N, t2〉. Then 〈i1, i2〉 = U~t, i.e.,

i1 = −N + t2

i2 = t2

and the constraints are
1 ≤ −N + t2 ≤ N
1 ≤ t2 ≤ N

Equivalently,

N + 1 ≤ t2 ≤ 2N
1 ≤ t2 ≤ N

This leads immediately to the contradiction

N + 1 ≤ t2 ≤ N

Therefore, there can be no solution satisfying these constraints, and so there is no dependence.

4.3 SINGLE as a Method of Tightening the Constraints

Even in a situation in which not all the constraints involve a single variable, SINGLE can still be
useful. The idea is this: Divide the constraints into two groups:

SV (Single Variable Constraints) These are the constraints involving only a single variable.

MV (Multiple Variable Constraints) These are the constraints involving more than one vari-
able.

First we consider the SV constraints. As before, we use these constraints to get upper and lower
bounds for those variables. Following this step, the SV constraints can be discarded, as they are
equivalent to the upper and lower bounds thus obtained. The MV constraints, however, will not
be discarded or modified in the remainder of the processing.

At this stage, we have two pieces of information:
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• The upper and lower bounds.

• The MV constraints.

Next, we look to see if we can substitute the upper and lower bounds just found in the MV
constraints. Suppose for instance a particular MV constraint is of the form

∑

i

aiti ≤ u

and tj is one of the ti. Then we have

ajtj ≤ u −
∑

i6=j

aiti

Suppose that for each i 6= j there is a bound (from the SV constraints) of the form

ti ≤ bi if ai < 0
ti ≥ bi if ai > 0

Then we have

ajtj ≤ u −
∑

i6=j

aiti ≤ u −
∑

i6=j

aibi

which yields a further explicit bound for tj . This bound may be new, or it may be a tightening

of a previous bound from the SV constraints. In either case, we merge it with those bounds, and
we iterate this process until no further tightening of the bounds is obtained. Note again that the
MV constraints are never changed: at each stage in this process, successively tighter bounds are
substituted in the original MV constraints. One of two things will happen:

• Either a contradiction will emerge, or

• Tighter bounds will be found, which can be profitably used in later tests. (It may be, of
course, that the original bounds derived from the SV constraints cannot be tightened further

by this method. In this case, this process concludes in one step.)

For example, suppose we have the constraints

(1) 0 ≤ 2t1 + t2
(2) 3t1 + 4t2 ≤ 12

and suppose we know to begin with that

−5 ≤ t1

Substituting this bound in inequality (2) yields

t2 ≤ 6

Continuing in this manner, we get

−3 ≤ t1

t2 ≤ 5

−2 ≤ t1

t2 ≤ 4
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and after this point, no further progress can be made. Thus, we have arrived at the bounds

−2 ≤ t1

t2 ≤ 4

which we can store for later use. Figure 2 shows graphically how this successive approach to better
and better bounds works.

t1

t2

Figure 2: SINGLE as a method of refining upper and lower bounds.

Here is a rather contrived example from Banerjee, page 135. It is instructive in that it provides a
good workout for the GCD reduction and the Single Variable Per Constraint Test.

Example 5

do i = 0, 20

do j = 0, 20

a(3∗i−2∗j−1, 4∗i−2∗j−4) = . . .

· · · = . . . a(2∗i+2∗j+1, −3∗i−6∗j+3) . . .

end do

end do

Equations:

3i1 − 2j1 − 1 = 2i2 + 2j2 + 1
4i1 − 2j1 − 4 = −3i2 − 6j2 + 3

Constraints:

0 ≤ i1, i2 ≤ 20
0 ≤ j1, j2 ≤ 20
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The problem is not separable. The equations become

(

3 −2 −2 −2
4 3 −2 6

)









i1
i2
j1
j2









=

(

2
7

)

Figure 3 shows the GCD processing for this problem.

Solving D~t = ~c amounts to solving the equations

t1 = 2

7t1 + t2 = 7

So we have
~t = 〈2,−7, t3, t4〉

and then ~v = U~t is the general solution. That is,

i1 = 2 + 2t4

i2 = 23 + 8t3 + 6t4

j1 = −7 − 3t3 + t4

j2 = −14− 5t3 − 4t4

The constraints then become

(SV1) 0 ≤ 2 + 2t4 ≤ 20
(MV1) 0 ≤ 23 + 8t3 + 6t4 ≤ 20
(MV2) 0 ≤ −7 − 3t3 + t4 ≤ 20
(MV3) 0 ≤ −14− 5t3 − 4t4 ≤ 20

and after normalization these are

(SV1) −1 ≤ t4 ≤ 9
(MV1) −11 ≤ 4t3 + 3t4 ≤ −1
(MV2) 7 ≤ −3t3 + t4 ≤ 27
(MV3) 14 ≤ −5t3 − 4t4 ≤ 34

(Notice the tightening of the bounds in MV1 due to the application of the floor and ceiling in the

normalization.)

Constraint SV1 is the only SV constraint. It provides upper and lower bounds for t4. Substituting
these bounds in the remaining MV constraints yields

−38 ≤ 4t3 ≤ 2
−2 ≤ −3t3 ≤ 28
10 ≤ −5t3 ≤ 70
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A I4

„

3 −2 −2 −2
4 3 −2 6

«

0

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

Interchange columns 1 and 2:

„

−2 3 −2 −2
3 4 −2 6

«

0

B

B

@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1

C

C

A

Add column 1 to column 2; subtract it from columns 3 and 4:

„

−2 1 0 0
3 7 −5 3

«

0

B

B

@

0 1 0 0
1 1 −1 −1
0 0 1 0
0 0 0 1

1

C

C

A

Interchange columns 1 and 2:

„

1 −2 0 0
7 3 −5 3

«

0

B

B

@

1 0 0 0
1 1 −1 −1
0 0 1 0
0 0 0 1

1

C

C

A

Add 2 times column 1 to column 2:

„

1 0 0 0
7 17 −5 3

«

0

B

B

@

1 2 0 0
1 3 −1 −1
0 0 1 0
0 0 0 1

1

C

C

A

Interchange columns 2 and 4:

„

1 0 0 0
7 3 −5 17

«

0

B

B

@

1 0 0 2
1 −1 −1 3
0 0 1 0
0 1 0 0

1

C

C

A

Add 2 times column 2 to column 3; subtract 6 times column 2 from column 4:

„

1 0 0 0
7 3 1 −1

«

0

B

B

@

1 0 0 2
1 −1 −3 9
0 0 1 0
0 1 2 −6

1

C

C

A

Interchange columns 2 and 3:

„

1 0 0 0
7 1 3 −1

«

0

B

B

@

1 0 0 2
1 −3 −1 9
0 1 0 0
0 2 1 −6

1

C

C

A

Subtract 3 times column 2 from column 3; add column 2 to column 4:

„

1 0 0 0
7 1 0 0

«

0

B

B

@

1 0 0 2
1 −3 8 6
0 1 −3 1
0 2 −5 −4

1

C

C

A

D U

Figure 3: GCD processing for Example 5
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That is,

−9 ≤ t3 ≤ 0
−9 ≤ t3 ≤ 0
−14 ≤ t3 ≤ −2

and so we have

−9 ≤ t3 ≤ −2

Now we go back and substitute these bounds into constraints MV1, MV2, and MV3. After sim-
plification, we get

−1 ≤ t4 ≤ 7

We continue this process, getting successively

−8 ≤ t3 ≤ −2

−1 ≤ t4 ≤ 6

−7 ≤ t3 ≤ −2

−1 ≤ t4 ≤ 5

−6 ≤ t3 ≤ −2

−1 ≤ t4 ≤ 4

−5 ≤ t3 ≤ −2

−1 ≤ t4 ≤ 2

−4 ≤ t3 ≤ −2

−1 ≤ t4 ≤ 1

−3 ≤ t3 ≤ −2

−1 ≤ t4 ≤ 0

−2 ≤ t3 ≤ −3

which is impossible. Therefore there is no dependence in this problem. This derivation can be seen
graphically in Figure 4. In that figure, two of the three constraint pairs are almost parallel; this is
part of what causes the procedure to take so long.

4.4 Same Problem, Modified Computations

When performing the GCD reductions in the previous problem, we adopted the technique of using
the remainder of smallest absolute value at each step. Now let us perform the same algorithm, but
use the smallest positive remainder at each step. The computation is shown in Figure 5.

The number of steps here was the same as in the original calculation—nothing was really lost by
not taking the remainder with the least absolute value.

Now we continue: As before, the solution to D~t = ~c is

~t = 〈2,−7, t3, t4〉



4.4 Same Problem, Modified Computations 25

t3

t4

Figure 4: SINGLE computations arriving at a contradiction. The upper and lower bounds for t3
cross after 15 iterations.

and the general solution is ~v = U~t. That is,

i1 = 2 + 2t4

i2 = 23 + 8t3 + 14t4

j1 = −7 − 3t3 − 2t4

j2 = −63− 5t3 − 5t4

The constraints then become

(SV1) 0 ≤ 2 + 2t4 ≤ 20
(MV1) 0 ≤ 23 + 8t3 + 14t4 ≤ 20
(MV2) 0 ≤ −7 − 3t3 − 2t4 ≤ 20
(MV3) 0 ≤ −63− 5t3 − 5t4 ≤ 20

Again, constraint SV1 is the only SV constraint. As before, it becomes

−1 ≤ t4 ≤ 9

Now substituting these bounds in the MV constraints yields

−18 ≤ t3 ≤ 1
−15 ≤ t3 ≤ −2
−25 ≤ t3 ≤ −12

so we have
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A I4

„

3 −2 −2 −2
4 3 −2 6

«

0

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

Interchange columns 1 and 2:

„

−2 3 −2 −2
3 4 −2 6

«

0

B

B

@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1

C

C

A

Add column 1 to column 2; subtract it from columns 3 and 4:

„

−2 1 0 0
3 7 −5 3

«

0

B

B

@

0 1 0 0
1 1 −1 −1
0 0 1 0
0 0 0 1

1

C

C

A

Interchange columns 1 and 2:

„

1 −2 0 0
7 3 −5 3

«

0

B

B

@

1 0 0 0
1 1 −1 −1
0 0 1 0
0 0 0 1

1

C

C

A

Add 2 times column 1 to column 2:

„

1 0 0 0
7 17 −5 3

«

0

B

B

@

1 2 0 0
1 3 −1 −1
0 0 1 0
0 0 0 1

1

C

C

A

Interchange columns 2 and 4:

„

1 0 0 0
7 3 −5 17

«

0

B

B

@

1 0 0 2
1 −1 −1 3
0 0 1 0
0 1 0 0

1

C

C

A

Same computation up to here.

Add 2 times column 2 to column 3; subtract 5 times column 2 from column 4:

„

1 0 0 0
7 3 1 2

«

0

B

B

@

1 0 0 2
1 −1 −3 8
0 0 1 0
0 1 2 −5

1

C

C

A

This is the step that differs.

Interchange columns 2 and 3:

„

1 0 0 0
7 1 3 2

«

0

B

B

@

1 0 0 2
1 −3 −1 8
0 1 0 0
0 2 1 −5

1

C

C

A

Subtract 3 times column 2 from column 3 and 2 times column 2 from column 4:

„

1 0 0 0
7 1 0 0

«

0

B

B

@

1 0 0 2
1 −3 8 14
0 1 −3 −2
0 2 −5 −9

1

C

C

A

D U

Figure 5: Modified GCD processing for Example 5
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−15 ≤ t3 ≤ −12

Another substitution gives us

6 ≤ t4 ≤ 8

Yet another substitution gives us

−14 ≤ t3 ≤ −19

so as before, we get a contradiction. This time, however, we only had to substitute 3 times, instead
of 15. Figure 6 shows graphically what happens. Here the three constraint pairs form three regions
that are quite distinct, and we can see how the process arrives quickly at a contradiction.

t3

t4

Figure 6: SINGLE computations arriving at a contradiction. The upper and lower bounds for t3
cross after 3 iterations.

Thus, the “optimized” modulus used in the first GCD reduction did not actually lead to a quicker
solution for U and D, and it actually led to worse performance in the following Single-Variable
Constraint Test. Of course, this was a pretty strange test to begin with; I don’t expect such
behavior to occur in practice.

Again, the point is simply that optimizing the modulus operation in the GCD reduction doesn’t
seem to be worth worrying about.

5 ACYCLIC—The Acyclic Test

If we have got to this point, then the set MV of constraints containing more than one variable is
not empty. In addition, each variable may or may not have upper or lower bounds derived from
the single-variable constraints. Let us call this set of bounds B. As we have noted, solutions of the
MV constraints that also satisfy the bounds B correspond exactly to the solutions of the original
problem.

We may now try to apply the Acyclic Test. This test applies if and only if there is a variable that
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is only constrained in one direction by the constraints in MV. What this means is this: for any
variable (ti, say), we can write all the constraints in MV that involve ti in the form

a1iti ≤ f1

(

~t
)

a2iti ≤ f2

(

~t
)

. . .

ariti ≤ fr

(

~t
)

where each fj

(

~t
)

is an affine function not involving the component ti. If when we do this all the

coefficients aji have the same sign, then we say that ti is constrained in only one direction3.

So say ti is constrained in only one direction. Let us first assume that all aji > 0. Let us also

assume that there is a lower bound lbi for ti in B.

Now rewrite the constraints above, substituting lbi for ti. Certainly if there is a solution to these
new constraints that satisfies the rest of the constraints in MV and the bounds in B, then this
solution satisfies the original set of constraints. And conversely, if there is any solution to the
original set of constraints, then since it satisfies the inequalities above, it also must satisfy those
same inequalities with ti replaced by lbi.

If ti has no lower bound in B, then the inequalities above can be simply discarded from the set
MV—a solution to the problem without these constraints can always be extended to a solution to

the complete problem by making ti sufficiently small (i.e., sufficiently negative).

If all the aji are < 0, the same procedure can be used, except that now we use the upper bound of

ti from B, if it exists.

Thus in any case we have replaced our problem by a new one with at least some constraints
containing fewer variables, and having a solution if and only if the original problem has one.

Now it may be that this reduced problem has some single-variable constraints in it. We can thus
iterate the Single Variable per Constraint Test with the Acyclic Test. We do this until

• SINGLE shows that solution either does or does not exist, or

• No further improvement can be made, and there remains at least one constraint in MV.

Maydan gives the following example of the use of the Acyclic Test:

(SV1) 1 ≤ t1 ≤ 10
(SV2) 1 ≤ t2 ≤ 10
(SV3) 0 ≤ t3 ≤ 4

(MV1) t2 ≤ t1
(MV2) t1 ≤ t3 + 4

t2 is only constrained above by the MV constraints, and it has a lower bound of 1 from the SV
constraints. Therefore we can replace MV1 by 1 ≤ t1. This is now a single-variable constraint; it is
actually subsumed by SV1, although in general it might be added to or modify the SV constraints.

3Again, note that this pertains only to the MV constraints. There may well be—and usually are—SV constraints
that constrain ti in the other direction
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(Note that the SV constraints are really what we have been denoting by B, since they are solved

for their respective variables.) Thus we have a reduced problem

(SV1) 1 ≤ t1 ≤ 10
(SV2) 1 ≤ t2 ≤ 10
(SV3) 0 ≤ t3 ≤ 4

(MV2) t1 ≤ t3 + 4

Now in this problem, t1 is only constrained above by the MV constraints, and it has a lower bound
of 1 from the SV constraints. Therefore, we can replace MV2 by 1 ≤ t3 + 4. That is −3 ≤ t3,
which is subsumed by SV3. Thus, we have reduced the problem again, this time to

(SV1) 1 ≤ t1 ≤ 10
(SV2) 1 ≤ t2 ≤ 10
(SV3) 0 ≤ t3 ≤ 4

and since this problem plainly has solutions, so does the original one.

Maydan claims this test is actually useful, but does not give an actual example in his thesis. In

any case, we will show below (following Pugh) how it is efficiently subsumed by Fourier-Motzkin
elimination.

6 RESIDUE—The Simple Loop Residue Test

If we have reached this point and we are not done, there must be at least some constraints that
are cyclic. The Simple Loop Residue Test, developed by Pratt, applies to cyclic constraints that
are all of the form

ti ≤ tj + c (1)

The idea is that if we have a sequence of such constraints starting and ending at t1, say:

t1 ≤ t2 + c1

t2 ≤ t3 + c2

. . .

tn ≤ t1 + cn

then these constraints collapse into the resulting constraint

t1 ≤ t1 +
n

∑

i=1

ci

which can be true if and only if
∑

ci ≥ 0. In fact, if all the remaining constraints are of the form

(1), then they can all be satisfied simultaneously if and only if all the sums from the corresponding

cycles are ≥ 0. (This is because the variables tj could be assigned any values whatsoever if this is

true.)
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Consider Example 1 (page 4). We saw on page 15 that the possible set of solutions can be
parametrized as

i1 = t4

i2 = t3 + 1

j1 = t3

j2 = t4

The constraints are then expressed in terms of t3 and t4, and become

(SV1) 1 ≤ t4
(SV2) 1 ≤ t3 + 1
(SV3) t4 ≤ m
(SV4) t3 + 1 ≤ m

(MV1) t4 ≤ t3
(MV2) t3 + 1 ≤ t4

(SV5) t3 ≤ n
(SV6) t4 ≤ n

The Single Variable per Constraint Test might apply, if we have a pretty smart dependence analyzer:
the SV constraints can be used successively to show that the upper bounds for t3 and t4, which

start out at min {m − 1, n} and min {m, n} respectively, can be reduced to min {m − j − 1, n} and

min {m − j, n} at the jth step. Since j is arbitrary, we can conclude that the upper bound for
each variable is −∞. This is pretty sophisticated reasoning for a poor little computer program,
however.

The Acyclic Test does not apply, because t3 and t4 form a cycle.

The Simple Loop Residue Test, however, applies at once: we have

t4 ≤ t3 ≤ t4 − 1

which is impossible. Therefore, no dependence can exist. This test really is a short-circuited version
of the sophisticated reasoning indicated above using the Single Variable per Constraint Test. Of
course the Single Variable per Constraint Test applies in many cases for which the Simple Loop
Residue Test cannot be used; it’s just that in this special case, the Simple Loop Residue Test is
both quicker and much less sophisticated in its application.

Maydan points out that if a cyclic constraint is of the form

ati ≤ atj + c

then a can be divided out (using a floor or ceiling for c/a as usual), and so such constraints can
also be handled by this test.

6.1 Example: A Skewed Nearest-Neighbor Problem

This is a standard nearest-neighbor type of problem, as would be found in solving a discretized
partial differential equation. We use a skewed form as considered in Goff, Kennedy, and Tseng:
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Example 6

do i = 1, n

do j = i+1, n+1

a(i, j−i) = a(i−1, j−1) + a(i, j−1+1) + a(i+1, j−1) + a(i, j−1+1)

end do

end do

We’ll just consider the first term on the right-hand side:

Equations:

i1 = i2 − 1
j1 − i1 = j2 − i2

Constraints:

1 ≤ i1 ≤ n
1 ≤ i2 ≤ n

1 + i1 ≤ j1 ≤ n + i1
1 + i2 ≤ j2 ≤ n + i2

This problem is not separable. The equations are represented as

(

1 −1 0 0
−1 1 1 −1

)









i1
i2
j1
j2









=

(

−1
0

)

The GCD reduction proceeds as follows:

A I4

„

1 −1 0 0
−1 1 1 −1

«

0

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

„

1 0 0 0
−1 0 1 −1

«

0

B

B

@

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

„

1 0 0 0
−1 1 0 −1

«

0

B

B

@

1 0 1 0
0 0 1 0
0 1 0 0
0 0 0 1

1

C

C

A

„

1 0 0 0
−1 1 0 0

«

0

B

B

@

1 0 1 0
0 0 1 0
0 1 0 1
0 0 0 1

1

C

C

A

D U
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Solving D~t = ~c, we get ~t = 〈−1,−1, t3, t4〉. ~i = D~t then yields

i1 = −1 + t3

i2 = t3

j1 = −1 + t4

j2 = t4

The constraints then become

1 ≤ −1 + t3 ≤ n
1 ≤ t3 ≤ n
t3 ≤ −1 + t4 ≤ n − 1 + t3

1 + t3 ≤ t4 ≤ n + t3

That is,

(SV1) 2 ≤ t3
(SV2) t3 ≤ n + 1
(SV3) 1 ≤ t3
(SV4) t3 ≤ n
(MV1) t3 ≤ −1 + t4
(MV2) t4 ≤ n − 1 + t3
(MV3) t3 ≤ −1 + t4
(MV4) t4 ≤ n + t3

Some of these inequalities are subsumed by others; we reduce the set of inequalities to this:

(SV1) 2 ≤ t3
(SV4) t3 ≤ n
(MV1) t3 ≤ −1 + t4
(MV2) t4 ≤ n − 1 + t3

We can substitute the SV bounds in the MV constraints, yielding

t4 ≤ 2n − 1
3 ≤ t4

which is consistent, provided that n ≥ 2. However, this does not constitute an exact test. In this
case, the Simple Loop Residue Test is exact: the two MV constraints form a loop, and we get

t3 ≤ t4 − 1 ≤ n − 2 + t3

which shows that there is a dependence, provided again that n ≥ 2.

7 FOURIER—Fourier-Motzkin Elimination

At this point, we apply Fourier-Motzkin elimination to the remaining constraints. This is a tech-

nique, going back to Fourier (and subsequently rediscovered by Dines and later by Motzkin), for
successively eliminating variables from the constraints. It works like this: Say the variables are
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{t1, t2, . . . , tn}. Pick one of the variables represented in an MV constraint—say we pick t1—and

solve all the constraints for that variable, dividing out by its coefficient. (Note that we cannot throw
away the remainders at this point—this is not integer division. We have to keep the quotients as
rational numbers.) We get three sets of inequalities, which we will call the A inequalities:

t1 ≥ D1(t̄) t1 ≤ E1(t̄) 0 ≤ F1(t̄)

. . . . . . . . .

t1 ≥ Dp(t̄) t1 ≤ Eq(t̄) 0 ≤ Fr(t̄)

where now t̄ = (t2, . . . , tn) and Di, Ei, and Fi are affine functions of t̄ with rational coefficients.

Note that there will be both inequalities involving functions Di and Ej : if there were no Di

inequalities, then t1 would only be constrained above by the MV constraints, and so would already
have been eliminated by the processing of the Acyclic Test; and similar reasoning would apply if
there were no Ej inequalities.

Suppose that these inequalities have a solution (t1, t̄). Then certainly

max
i

Di(t̄) ≤ t1 ≤ min
j

Ej(t̄)

Thus, if the inequalities have a solution (t1, t̄), then we must have what we will call the B inequal-
ities:

max
i

Di(t̄) ≤ min
j

Ej(t̄)

0 ≤ min
k

Fk(t̄)

Conversely, if the B inequalities have a solution t̄, then there is a value t1 such that

max
i

Di(t̄) ≤ t1 ≤ min
j

Ej(t̄)

and so the A inequalities are satisfied. In other words, we have shown that there is a solution (t1, t̄)

to the A inequalities if and only if there is a solution t̄ to the B inequalities. In this way, we have
reduced the problem by one dimension, by eliminating the variable t1; and we can continue in this
fashion until either a contradiction is reached or we have proved that a solution actually exists.

In practice, we don’t do things quite in this way:

• We don’t actually compute the max and min as above. (These would be symbolic expressions

in any case.) Instead, we replace the original “D” and “E” inequalities with all possible
equalities of the form

Di(t̄) ≤ Ej(t̄)

• We don’t reduce the coefficients of t1 to 1, since that would involve representing rational
numbers in our implementation. Instead, we normalize the coefficients of t1 to be the least
common multiple of the original coefficients. That way, all the coefficients in the inequalities
remain integers.

There are a couple of things to note at this point:
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1. Fourier-Motzkin elimination is an exact method for finding rational solutions of inequalities.
As it stands, however, it can show one of two possibilities:

• There are no rational solutions, and therefore there are no integer solutions.

• There is a rational solution, and therefore there might be an integer solution.

Thus Fourier-Motzkin elimination is in general an inexact dependence test. There are many
cases, however, in which the test can be shown to be exact. We will see examples of this
below.

2. The elimination step, although it reduces the number of variables by 1, can cause the number
of inequalities to increase. The increase can be explosive: If there are n equations in d
variables, in the worst case one can wind up with about

(n

4

)2
d

equations by the time all the variables have been eliminated. This has caused the algorithm
to be ignored until recently. It does appear, however, that there are efficient implementations
that make this test practical for dependence problems that occur in practice.

Geometrically, Fourier-Motzkin elimination amounts to projection onto the hyperplane that is
perpendicular to the variable being eliminated. For example, suppose we have the two inequalities

4x + 5y ≤ 20

3x + 5y ≥ 15

Solving for x, we get the inequalities

12x ≤ −15y + 60

12x ≥ −20y + 60

and so by eliminating x, we get
−20y + 60 ≤ −15y + 60

or
0 ≤ y

Figure 7 illustrates this problem. The reduced inequality 0 ≤ y is represented by the thickened
shadow, and is the projection of the original region onto the y-axis.

Note that in this case, the shadow includes the integer point (0, 1), but the original region does
not include a integer point that projects onto this point. Because of this phenomenon, the shadow
produced by Fourier-Motzkin elimination is referred to as the “real shadow”; the term “real” is
used here to indicate that the shadow consists of solutions over the real numbers (in fact, over the

rational numbers), as opposed to the integers.

Since we really need integer solutions for dependence analysis, Fourier-Motzkin elimination does
not in general constitute an exact test. It can be made exact in every case, however, by a rather
expensive process of exhaustive search where needed. We will describe this process below in the
section on the “penumbra”.
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x

y

Figure 7: Fourier-Motzkin elimination applied to x. The projection on the y-axis is shown as a
(thickened) shadow.

7.1 Example: A Triangular Loop Nest

This example is from Banerjee (page 133):

Example 7

do i = 1, 100

do j = i, 50

a(i−2∗j−60) = . . .

· · · = . . . a(−i−j+50) . . .

end do
end do

Equation:

i1 − 2j1 − 60 = −i2 − j2 + 50

Constraints:

1 ≤ i1, i2 ≤ 100
i1 ≤ j1 ≤ 50
i2 ≤ j2 ≤ 50
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This is a 1-dimensional problem, so there is no question of separability. The equations are just

(

1 1 −2 1
)









i1
i2
j1
j2









= 110

The usual GCD reduction then gives

(

1 0 0 0
)









1 −1 2 −1
0 1 0 0
0 0 1 0
0 0 0 1









D U

Solving D~t = c gives ~t = 〈110, t2, t3, t4〉. The solution is then ~v = U~t. That is,

i1 = 110− t2 + 2t3 − t4

i2 = t2

j1 = t3

j2 = t4

The constraints then become

1 ≤ 110− t2 + 2t3 − t4 ≤ 100
1 ≤ t2 ≤ 100

110− t2 + 2t3 − t4 ≤ t3 ≤ 50
t2 ≤ t4 ≤ 50

and we can write these as follows:

(SV1) 1 ≤ t2 ≤ 100
(SV2) t3 ≤ 50
(SV3) t4 ≤ 50
(MV1) 1 ≤ 110− t2 + 2t3 − t4 ≤ 100
(MV2) 110− t2 + 2t3 − t4 ≤ t3
(MV3) t2 ≤ t4

Substituting the SV bounds into the MV constraints yields the tighter set of bounds

(SV1) 1 ≤ t2 ≤ 50
(SV2) −53 ≤ t3 ≤ −10
(SV3) 1 ≤ t4 ≤ 50

There are no acyclic constraints here, so we skip the Acyclic Test. Similarly, the Simple Loop
Residue Test does not apply. We proceed to Fourier-Motzkin elimination: Solving the MV con-
straints for t2, we get

t2 ≤ 109 + 2t3 − t4

t2 ≤ t4

t2 ≥ 10 + 2t3 − t4

t2 ≥ 110 + t3 − t4
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When we consider these equations in pairs, we find that the first and fourth yield

110 + t3 ≤ 109 + 2t3

which amounts to t3 ≥ 1, and we know this cannot be true—it violates a previously computed
bound. Thus we have proved that there is no dependence. Note that the preliminary tightening of
the loop bounds helped us here.

Incidentally, if we had decided to eliminate t3 instead of t2, we would have proceeded like this:

2t3 ≥ −109 + t2 + t4

2t3 ≤ −10 + t2 + t4

2t3 ≤ −220 + 2t2 + 2t4

The first and third equations yield
t2 + t4 ≥ 111

and applying the upper bound for t4 to this inequality, we get t2 ≥ 61, which we know violates the
upper bound on t2, so again we see that there is no dependence.

Starting with t4 would be entirely similar to starting with t2.

7.2 Example: Fourier-Motzkin Elimination as an Exact Test

This example comes from Wolfe (page 258, problem 7.9):

Example 8

do i = 1, 10

do j = i, 10

a(i+8∗j+3) = a(i+8∗j−6)

end do

end do

Equation:
i1 + 8j1 + 3 = i2 + 8j2 − 6

Constraints:
1 ≤ i1, i2 ≤ 10
i1 ≤ j1, j2 ≤ 10

The problem is 1-dimensional; there is no question of separability. The GCD reduction gives

i1 = −9 + t2 − 8t3 + 8t4

i2 = t2

j1 = t3

j2 = t4

and the constraints become

(SV1) 1 ≤ t2 ≤ 10
(SV2) 1 ≤ t3 ≤ 10
(SV3) 1 ≤ t4 ≤ 10
(MV1) 1 ≤ −9 + t2 − 8t3 + 8t4 ≤ 10
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No further tightening of the bounds is possible at this point. The Acyclic and Simple Loop Residue
tests do not apply, so we proceed to Fourier-Motzkin elimination: we have

t2 ≤ 19 + 8t3 − 8t4

t2 ≤ 10

t2 ≥ 10 + 8t3 − 8t4

t2 ≥ 1

Combining these equations in pairs yields a couple of inequalities that are trivially always true,
and the following inequality:

−18 ≤ 8t3 − 8t4 ≤ 0

Now we have previously mentioned that this elimination step might in principle lose information.
That is, there might be a solution of this reduced set of inequalities that does not correspond to a
solution with an integral value of t2. However, in this case, this is impossible. The reason is that
the coefficients of t2 in the above inequalities were all 1. Reverting back to our original formulation
on page 33, the values of Di and Ej are therefore integers. Hence if

max
i

Di(t̄) ≤ min
j

Ej(t̄)

there must be an integer between them. In other words, a Fourier-Motzkin elimination step is

exact when the coefficients of the variable being eliminated are all 1. Note that this was not the
case in the example in Figure 7.

Now let us proceed. Dividing out by the greatest common factor (4) of the coefficients of t3 and t4
in the inequality just produced, we have reduced our problem to the following set of inequalities:

−2 ≤ t3 − t4 ≤ 0
1 ≤ t3 ≤ 10
1 ≤ t4 ≤ 10

The only MV constraint here is the first, and the Acyclic Test shows at once that it is consistent.
Therefore, a dependence exists.

Thus, at each step of the Fourier-Motzkin elimination, it may pay to revisit previous tests in our
sequence of tests to see if they apply.

Alternatively, we could simply proceed with a second Fourier-Motzkin elimination step on t3, say.
Since all the coefficients of t3 are 1, this step will be exact. When we do this, we get

1 ≤ t4 ≤ 12

and this is consistent with the final MV constraint on t4. Equivalently, to carry the Fourier-Motzkin
elimination to the end, we eliminate t4 (which again has coefficient 1) from the inequality

1 ≤ t4 ≤ 10

and get 1 ≤ 10, which is certainly true.
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7.3 The Dark Shadow

Let us again consider the problem of inexactness in Fourier-Motzkin elimination. We have already
seen that if all the coefficients of t1 are 1, then eliminating t1 is exact. Suppose that we have two
constraints of the form

D(t̄) ≤ t1
at1 ≤ E(t̄)

where a > 1. Then we have

aD(t̄) ≤ at1 ≤ E(t̄)

and the projection would consist of the inequality

aD(t̄) ≤ E(t̄)

Now it turns out that this projection too is exact: for there to be an integral solution t1 to the
original inequality, it is necessary and sufficient that there be a multiple of a lying between aD and
E. Since aD is itself a multiple of a, we see that an integral t1 exists if and only if

aD(t̄) ≤ E(t̄)

Thus, a Fourier-Motzkin elimination step is exact when, for each two paired inequalities, the coef-

ficient of the variable being eliminated is 1 in at least one of them.

So the only case we have to consider is that in which the inequalities are of the form

D(t̄) ≤ at1
bt1 ≤ E(t̄)

and a and b are each greater than 1. Figure 7 provides an example of this.

We rewrite the inequality as

bD(t̄) ≤ abt1 ≤ aE(t̄)

(We could have rewritten it so that the coefficient of t1 became the least common multiple of a
and b; the conclusion we reach below would not change, and the way we have done it here is a bit
simpler.)

Now one way to guarantee a solution is this: suppose there is an integral vector t̄ for which

bD(t̄) + ab ≤ aE(t̄). Then the region being projected has a thickness ≥ ab at that point and

therefore must include an integer of the form abt1 (i.e., it must include a multiple of ab). Thinking

of the region being projected as a translucent object, the shadow at this point (i.e., at t̄) would be
relatively dark, since the region is relatively thick.

Actually, Pugh has a slightly weaker condition having the same effect. It works like this:

For there to be no multiple of ab between bD(t̄) and aE(t̄), one would have to have, for some
integer i,

abi < bD(t̄) ≤ aE(t̄) < ab(i + 1) (2)

This could not be true if

aE(t̄) − bD(t̄) ≥ ab (3)
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This is just what we saw above. Pugh, however, points out that since all the terms in the inequal-
ity (2) are integers, and since the first two terms are multiples of b while the last two are multiples

of a, it is equivalent to the inequality

abi + b ≤ bD(t̄) ≤ aE(t̄) ≤ ab(i + 1) − a (4)

and this inequality cannot be satisfied if

aE(t̄) − bD(t̄) ≥ ab − a − b + 1 (5)

and this is weaker than the inequality (3). So if we replace the inequality bD(t̄) ≤ aE(t̄) in the

Fourier-Motzkin elimination process by the inequality (5), we will get a stronger condition. Pugh

refers to the the set of values of t̄ satisfying these stronger conditions as the dark shadow. The
significant facts are these:

• If the dark shadow is not empty, it must contain an integer vector.

• Each integer vector in the dark shadow is guaranteed to come from an integer vector in the
original region.

• If either a or b in the above derivation is 1, then the dark shadow is the same as the real

shadow. This is evident from inequality (5). This shows that the dark shadow is not too
conservative an approximation; we have seen above that this should be true.

Thus, we can say that if the real shadow is contains no integer points (in particular, if it is empty),
there can be no dependence. If the dark shadow contains an integer point, there is definitely a
dependence. There is still the possibility that the real shadow contains integer points but the dark
shadow contains none; that is, all the integer points in the real shadow lie outside the dark shadow.
These points may or may not correspond to integer points in the original region.

For a simple example, consider the inequalities

4x + 5y ≤ 20

3x + 5y ≥ 15

from Figure 7, which were rewritten as

12x ≤ −15y + 60

12x ≥ −20y + 60

Inequality (5) for the dark shadow becomes

(−15y + 60)− (−20y + 60) ≥ 12 − 3 − 4 + 1

That is, y ≥ 2. Figure 8 shows the real shadow (as before), together with the dark shadow.

Note that there are two integer points in the real shadow that are not in the dark shadow. One of
them—the point (0,0)—comes from an integer point in the original region, while the other—the

point (0,1)—does not.
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Figure 8: Fourier-Motzkin elimination applied to x. Now we also show the dark shadow.

7.4 The Penumbra

Let us refer to those points in the real shadow but not in the dark shadow as the penumbra.

Continuing with the notation we have been using, an integer point t̄ in the real shadow will
correspond to a solution (t1, t̄) coming from the penumbra if and only if

0 ≤ aE(t̄) − bD(t̄) ≤ ab − a − b t̄ is not in the dark shadow
bD(t̄) ≤ abt1 ≤ aE(t̄) (t1, t̄) is an integer solution

In particular, then, we must have

bD(t̄) ≤ abt1 ≤ bD(t̄) + ab − a − b

and so

D(t̄) ≤ at1 ≤ D(t̄) +

⌊

ab − a − b

b

⌋

Thus, it is enough to search in this region. We do this by setting an integer i successively to the
numbers

0, 1, . . . ,

⌊

ab − a − b

b

⌋

and replacing the inequality

D(t̄) ≤ at1

with the equality

at1 = D(t̄) + i
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in the original constraints. There is an integer solution to the original problem with t̄ in the

penumbra if and only if there is an integer solution to one of these “penumbral problems”4.

Notice that if a > b (remember that we have fixed things so that a and b are both positive), we

would instead successively substitute the alternative equalities

bt1 = E(t̄) − i

where i runs over the smaller interval

0, 1, . . . ,

⌊

ab − a − b

a

⌋

for the original inequality

bt1 ≤ E(t̄)

In any case, we have shown that there is a solution to the original problem if and only if either

• The dark shadow is not empty, or

• There is a solution to one of the penumbral problems.

Let us return to the problem we have been considering, which is illustrated in Figure 7:

4x + 5y ≤ 20

3x + 5y ≥ 15

The first step was to eliminate x. When we did this, we found the values y = 0 and y = 1 in

the penumbra. The coefficients of x are 3 and 4 (a and b, respectively), so we replace the second
inequality successively by the equations

3x = 15− 5y + i

for 0 ≤ i ≤ 1, and we check the values of 0 and 1 for y. Let us see how this works:

(i = 0) 3x = 15−5y. y = 0 yields the solution x = 5, which is compatible with the first inequality.
y = 1 is impossible because 3 does not divide 15− 5y = 10.

(i = 1) 3x = 16− 5y. 3 does not divide 16 − 5y for either y = 0 or y = 1.

So we see that (x, y) = (5, 0) is a solution whose image is in the penumbra, and is the only such
solution.

These computations are illustrated in Figure 9.

So in principle, Fourier-Motzkin elimination can be made an exact test as follows:

• Successively eliminate variables in the standard way.

4Pugh refers to these penumbral problems as “splinters”.
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x

y

Figure 9: The penumbral computations. The two dark closely parallel lines correspond to the
equations

3x = 15− 5y

and
3x = 16− 5y

• At each step, see if the elimination is exact. This amounts to seeing if the dark shadow is
all of the real shadow. This will certainly be true if all the coefficients of the variable being
eliminated are ±1. So if possible, choose such a variable to be eliminated at each step.

• At the final step,

1. If the real shadow contains no integer points (in particular, if it is empty, there is no

dependence.

2. Otherwise, if there is at least one integer point in the dark shadow, there is a dependence.

3. If the dark shadow was equal to the real shadow at each step, we are done. Otherwise,
go back, and for each step at which the dark shadow was not equal to the real shadow,
create a family of additional tests corresponding to the penumbra for that step, and
repeat the process with those tests.

In practice, this is almost certainly overkill, and looks to be quite expensive. I would think that a
good first implementation would simply treat Fourier-Motzkin elimination as an inexact test—that
is, report a possible dependence at step 3 of the final step above whenever the elimination is not
exact at any step. This could then be extended by adding the penumbra tests at the last step only;
my guess is that this would catch almost all the remaining examples.
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8 Which Tests Are Really Necessary?

Pugh has pointed out that a good implementation of Fourier-Motzkin elimination subsumes the
processing of the SINGLE, ACYCLIC, and RESIDUE tests. Here we will show how this happens.
We will treat the ACYCLIC and RESIDUE tests first, because what is going on there is quite
simple.

8.1 Eliminating the Acyclic Test

In the example on page 28, Fourier-Motzkin elimination applied to the variable t2 would yield (by

an exact projection) the constraint
1 ≤ t1

and then eliminating t1 would yield (again exactly)

−3 ≤ t3

These are precisely the same computations as were performed by the Acyclic Test.

The Acyclic Test would cause us to perform the elimination in precisely this manner: t2 first, then
t1. On the other hand, if we just performed Fourier-Motzkin elimination on t1 first, the resulting
computations would be no more complex.

Further, each Fourier-Motzkin elimination step corresponding to a use of the Acyclic Test will be
exact, because the SV lower or upper bound that is used has in effect a coefficient of 1 for the
variable being eliminated.

There is one part of the Acyclic Test that has to be kept in mind, however: When there is no
SV bound for a variable that is constrained in only one direction by its MV bounds, those MV
bounds are discarded by the Acyclic Test, because they can be automatically satisfied, provided
all the other constraints can be satisfied; we mentioned this in the discussion of the Acyclic Test.
Pugh does exactly this as part of his processing of the constraints before applying Fourier-Motzkin
elimination.

8.2 Eliminating the Residue Test

This test only applies when the coefficients of the variables are all 1. Hence the Fourier-Motzkin
projections are all exact, and amount to precisely the same computations as are performed by the
Residue Test.

8.3 Eliminating the Single Variable Per Constraint Test

Looking at the processing in this test in terms of Fourer-Motzkin projections enables us to make a
significant improvement in the computations. Let us write each constraint in the form “expression ≥
0”; in fact, we can then leave off the “≥ 0”, as it is redundant, and represent each constraint sim-
ply as an expression. A linear combination formed by adding together positive multiples of such
expressions is another usable expression—this just expresses the fact that a sum of non-negative
numbers is non-negative. Thus, if in two such expressions a variable occurs with coefficients of
opposite sign, that variable can be eliminated from a linear combination of those two expressions.
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If in addition the coefficient of the variable in at least one of the two original expressions was ±1,
that elimination will correspond to an exact projection. (This is all simply a matter of representa-

tion; it just happens to be a convenient way to manage the inequalities. In itself, it adds nothing
to the analysis.)

Let us consider first the example on page 20. The constraints we are given in this example then
are represented as the two expressions

2t1 + t2 (1)

− 3t1 − 4t2 + 12 (2)

Now since the coefficient of t2 in equation (1) is 1, we can eliminate t2 by an exact Fourier-Motzkin
projection to get

5t1 + 12

which is normalized to

t1 + 2 (3)

Constraint (3) can in turn be used with (2) (since the coefficients of t1 have opposite signs) to
eliminate t1 by an exact projection, giving

− 4t2 + 18

which is normalized to

− t2 + 4 (4)

Note that in normalizing an expression, the constant term is always rounded down (i.e. towards

−∞). This is just because if x ≥ 0, then it must also be true that bxc ≥ 0, and the second
inequality is stronger.

In this way, we have arrived at the same bounds (−2 ≤ t1; t2 ≤ 4) as in our original computation.

The projections were both exact in this case (and in fact, the point (−2, 4) is in the original shaded

region).

Finally, we did not even need to “seed” our computation with the a priori bound −5 ≤ t1, as we
did on page 20. We could have, of course; this a priori bound would simply have been represented
as the expression t1 + 5, but it would not have improved our final result. For instance, combining
this expression with (2) would yield the (normalized) expression −t2 +6. This expression, however,

is a weaker bound that that given by (4), and so can be discarded.

This is an example of a general phenomenon: if two expressions have the same coefficients for

corresponding variables, then the one with the lower constant term subsumes the other. This is
because, as in the reasoning above, it represents a tighter bound.

So now we can see that there was really nothing particularly special about using the SV constraints
in the SINGLE processing. The point of an SV constraint simply was that the coefficient of the
(single) variable was 1, and therefore, substituting that bound in the MV constraints amounted to
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an exact projection. The same thing would happen, however, with any MV constraint containing
a variable whose coefficient was ±1. Using these constraints can greatly speed up the processing.

Let us consider, for example, the computations on page 25. We can write the constraints as follows:

− t4 + 9 (1)

t4 + 1 (2)

− 4t3 − 7t4 − 2 (3)

4t3 + 7t4 + 11 (4)

3t3 + 2t4 + 27 (5)

− 3t3 − 2t4 − 7 (6)

t3 + t4 + 16 (7)

− t3 − t4 − 13 (8)

Now the constraints with unitary coefficients for t4 are (1), (2), (7), and (8). We can pair each
of them with the constraints having coefficients for t4 of opposite signs. In this way, we get the
following expressions:

(1, 4) 4t3 + 74 =⇒ t3 + 18 (9) subsumed by 10

(1, 5) − 3t3 + 45 =⇒ t3 + 15 (10)

(1, 7) t3 + 25 subsumed by 10

(2, 3) − 4t3 + 5 =⇒ −t3 + 1 (11) subsumed by 12

(2, 6) − 3t3 − 5 =⇒ −t3 − 2 (12) subsumed by 13

(2, 7) − t3 − 12 (13) (subsumed by 14)

(We use parentheses in the expression “(subsumed by 14)” to indicate that this expression is sub-
sumed by an expression to be produced in a later pass. We will follow this convention consistently.)
So far, this is the same as what we did originally, since we have just used the SV constraints (1)
and (2). Now, however, we can go on and use (7) and (8):

(7, 3) 3t3 + 110 =⇒ t3 + 36 subsumed by 10

(7, 6) − t3 + 25 subsumed by 13

(8, 4) − 3t3 − 80 =⇒ −t3 − 27 (14) inconsistent with 10

and so we arrive at a contradiction rather more quickly than we did originally.

For comparison, let us look at the same problem, but with a different GCD reduction (using the
version of mod that returns the remainder of least absolute value). This was presented on page 22,
and took considerably longer to stabilize. The constraints there now get written like this:

− t4 + 9 (1)

t4 + 1 (2)

− 4t3 − 3t4 − 1 (3)

4t3 + 3t4 + 11 (4)

3t3 − t4 + 27 (5)

− 3t3 + t4 − 7 (6)

5t3 + 4t4 + 34 (7)

− 5t3 − 4t4 − 14 (8)
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Here the constraints with unitary coefficients for t4 are (1), (2), (5), and (6). Proceeding as before,
we get

(1, 4) 4t3 + 38 =⇒ t3 + 9 (9) (subsumed by 12)

(1, 6) − 3t3 + 2 =⇒ −t3 (10) subsumed by 11

(1, 7) 5t3 + 70 =⇒ t3 + 14 subsumed by 9

(2, 3) − 4t3 + 2 =⇒ −t3 same as 10

(2, 5) 3t3 + 28 =⇒ t3 + 9 same as 9

(2, 8) − 5t3 − 10 =⇒ −t3 − 2 (11) (subsumed by 13)

So far, the processing is the same as that performed originally, since we have just used the SV
constraints (1) and (2). Now as before, we go on to use (5) and (6):

(5, 4) 13t3 + 92 =⇒ t3 + 7 (12)

(5, 7) 17t3 + 142 =⇒ t3 + 8 subsumed by 12

(6, 3) − 13t3 − 22 =⇒ −t3 − 2 same as 11

(6, 8) − 17t3 − 42 =⇒ −t3 − 3 (13)

Up to this point, the tightest constraints—12 and 13—are still consistent. At this point, we can
go on to perform inexact projections using constraints 3, 4, 7, and 8:

(3, 7) − t3 + 98 subsumed by 13

(4, 8) t3 + 2 inconsistent with 13

And so again we arrive at a contradiction. That is, we have shown that the real shadow is empty,
and so there can be no integer solutions. This process converged much faster than the original set
of calculations, although it was still slower than the alternate version done immediately previously.
So again, using Pugh’s modified mod operator cannot be said to lead always to an improvement
in performance, and, in this case at least, actually slowed down the computation.

9 Computing Direction and Distance Vectors

Pugh has also shown how Fourier-Motzkin elimination can be used to determine direction and
distance vectors: introduce a new variable for each direction distance; for instance, introduce
∆i = i2 − i1. Then perform the GCD reduction in such a way that these variables are not
eliminated. This is done by placing these variables at the end of the variable vector, and never
interchanging columns of A that correspond to these variables. Each of these variables will then
be one of the tj variables produced by the GCD reduction, and Fourier-Motzkin elimination can

then be used to find the corresponding bounds.

Burke and Cytron’s hierarchical technique for analyzing multi-dimensional dependences can be
used to organize the computations. This works by successively searching down a tree which looks
like that in Figure 10 in the case of a three-dimensional iteration space.

We will illustrate this with three examples.

9.1 Example: The Skewed Nearest-Neighbor Problem Again

We reconsider Example 6 (page 31). We write the equations as
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(∗, ∗, ∗)

(<, ∗, ∗) (=, ∗, ∗) (>, ∗, ∗)

(=, <, ∗) (=, =, ∗) (=, >, ∗)

(=, >, <) (=, >, =) (=, >, >)

Figure 10: Burke-Cytron Search Tree for Multi-Dimensional Dependence Testing
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


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The GCD reduction becomes

A I6

0

B

B

@

1 −1 0 0 0 0
−1 1 1 −1 0 0
1 −1 0 0 1 0
0 0 1 −1 0 1

1

C

C

A

0

B

B

B

B

B

@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

A

Add column 1 to column 2:

0

B

B

@

1 0 0 0 0 0
−1 0 1 −1 0 0
1 0 0 0 1 0
0 0 1 −1 0 1

1

C

C

A

0

B

B

B

B

B

@

1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

A
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Interchange columns 2 and 3:

0

B

B

@

1 0 0 0 0 0
−1 1 0 −1 0 0
1 0 0 0 1 0
0 1 0 −1 0 1

1

C

C

A

0

B

B

B

B

B

@

1 0 1 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

A

Add column 2 to column 4:

0

B

B

@

1 0 0 0 0 0
−1 1 0 0 0 0
1 0 0 0 1 0
0 1 0 0 0 1

1

C

C

A

0

B

B

B

B

B

@

1 0 1 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

A

D U

Note how we left the last two columns of matrix D alone. Now solving

D~t =









−1
0
0
0









yields

~t = 〈−1,−1, t3, t4, 1, 1〉

and then ~v = U~t gives

i1 = t3 − 1

i2 = t3

j1 = t4 − 1

j2 = t4

∆i = 1

∆j = 1

Thus if we take the dependence to be a true dependence (i.e., from reference 1 on the left to

reference 2 on the right), the direction vector will be (<, <), and in fact the distance vector will

be (−1,−1). Proving that this dependence actually exists is straighforward using Fourier-Motzkin

elimination (as we have already mentioned), and we omit the details.

9.2 Example: A Triangular Iteration Space

This example is taken from a prepublication draft of a book5 by Allen and Kennedy, who deal with
this using a “triangular Banerjee inequality”. Our processing is much simpler.

5“Advanced Compilation for Vector and Parallel Computers”, to be published by Morgan Kaufman Publishers.
The draft is available at ftp://softlib.rice.edu/pub/Kennedy/book.
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Example 9

do i = 1, 100

do j = 1, i−1

a(j) = a(i+j−1) + C

end do

end do

Equations:

j1 = i2 + j2 − 1
∆i = i2 − i1
∆j = j2 − j1

Constraints:
1 ≤ i1, i2 ≤ 100
1 ≤ j1 ≤ i1 − 1
1 ≤ j2 ≤ i2 − 1

The equations are then written like this:





0 1 −1 1 0 0
1 −1 0 0 1 0
0 0 1 −1 0 1





















i1
i2
j1
j2
∆i
∆j

















=





1
0
0





Note that the variables ∆i and ∆j are placed at the “far end” of the variable vector. This
corresponds to the last two columns of the array A. Now we proceed with the usual GCD reduction:

A I6

0

@

0 1 −1 1 0 0
1 −1 0 0 1 0
0 0 1 −1 0 1
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A
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B

B

B

B

@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

A

Interchange the first two columns:

0
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−1 1 0 0 1 0
0 0 1 −1 0 1

1

A

0

B

B

B

B

B

@

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

A
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Add column 1 to column 3; subtract it from column 4:

0

@

1 0 0 0 0 0
−1 1 −1 1 1 0
0 0 1 −1 0 1

1

A

0

B

B

B

B

B

@

0 1 0 0 0 0
1 0 1 −1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

A

Add column 2 to column 3; subtract it from columns 4 and 5:

0

@

1 0 0 0 0 0
−1 1 0 0 0 0
0 0 1 −1 0 1

1

A

0

B

B

B

B

B

@

0 1 1 −1 −1 0
1 0 1 −1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

A

Add column 3 to column 4; subtract it from column 6:

0

@

1 0 0 0 0 0
−1 1 0 0 0 0
0 0 1 0 0 0

1

A

0

B

B

B

B

B

@

0 1 1 0 −1 −1
1 0 1 0 0 −1
0 0 1 1 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C

C

C

C

C

A

D U

Note that at no point did we interchange any column with one of the last two columns—the columns

corresponding to ∆i and ∆j. Now solving D~t =
(

1
0
0

)

yields

~t = 〈1, 1, 0, t4, t5, t6〉

and then ~v = U~t. That is,

i1 = 1 − t5 − t6

i2 = 1 − t6

j1 = t4 − t6

j2 = t4

∆i = t5

∆j = t6

The constraints are now written as the following expressions:

− t5 − t6 (1) (subsumed by 9)

99 + t5 + t6 (2)

− t6 (3) (subsumed by 10)

99 + t6 (4)

t4 − t6 − 1 (5)

− t5 − t4 (6)

t4 − 1 (7)

− t6 − t4 (8)
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Since the variables we really care about are t5 ( = ∆i) and t6 ( = ∆j), we first eliminate t4:

(5, 6) − t5 − t6 − 1 (9)

(5, 8) − 2t6 − 1 =⇒ −t6 − 1 (10)

(7, 6) − t5 − 1 (11)

(7, 8) − t6 − 1 same as 10

So at this point we see from expressions 10 and 11 that t5 and t6 are both ≤ −1. Thus the only
possible dependence vector is (<, <). Continuing, we can eliminate t5 (the expressions remaining
are 2, 4, 9, 10, and 11):

(2, 9) 98

(2, 11) 98 + t6 (12)

The expressions remaining now are 10 and 12 (4 is subsumed by 12). This yields −98 ≤ t6 ≤ −1.
Since all the eliminations were exact, there really are dependences. Each dependence is an anti
dependence (from reference 2 to reference 1) with dependence vector (<, <).

9.3 Example: A Four-Dimensional Iteration Space

Our next example is one mentioned by Pugh, which Wonnacott says is one of the most complicated
that they encountered in a large suite of standard benchmark tests.

Example 10

do j = 0, 20

do i = max(−j, −10), 0

do k = max(−j, −10) − i, −1

do l = 0, 5

a(l, i, j) = . . . a(l, k, i+j) . . .

end do
end do

end do

end do

In writing the equations and constraints for this dependence problem, we are going to switch6 the
convention that we have been using: the variables from the left-hand side array reference will have
subscript 2 and those from the right-hand side array reference will have subscript 1.

9.3.1 Separation: The First Problem

The first thing to notice about this dependence problem is that it is separable–the equations and
constraints for l are independent of those for the other variables. So the first dependence problem
consists simply of the

Equations:

l2 = l1
∆l = l2 − l1

6It’s just because I worked it out this way and didn’t want to redo all the calculations.
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Constraints:
0 ≤ l1 ≤ 5
0 ≤ l2 ≤ 5

which is clearly solvable, and we have l2 = l1; i.e., ∆l = 0.

9.3.2 The GCD Reduction

The second problem is composed of the rest of the variables, and is the significant one: we have

Equations:

i2 = k1

j2 = i1 + j1
∆i = i2 − i1
∆j = j2 − j1
∆k = k2 − k1

Constraints:
0 ≤ j1, j2 ≤ 20

−j1 ≤ i1 ≤ 0
−10 ≤ i1
−j2 ≤ i2 ≤ 0
−10 ≤ i2

−j1 − i1 ≤ k1 ≤ −1
−10− i1 ≤ k1

−j2 − i2 ≤ k2 ≤ −1
−10− i2 ≤ k2

We write the equations as usual as













0 1 0 0 −1 0 0 0 0
1 0 1 −1 0 0 0 0 0
−1 1 0 0 0 0 −1 0 0
0 0 −1 1 0 0 0 −1 0
0 0 0 0 −1 1 0 0 −1








































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∆i
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∆k





























=













0
0
0
0
0













Here is the GCD reduction:
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A I9
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Interchange the first two columns:
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Add column 1 to column 5:
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1

C

C

C

C

C

C

C

C

C

C

C

A

Subtract column 2 from column 3; add it to column 4:

0

B

B

B

@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 −1 1 −1 1 0 −1 0 0
0 0 −1 1 0 0 0 −1 0
0 0 0 0 −1 1 0 0 −1

1

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

@

0 1 −1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

A

Add column 3 to columns 4 and 7; subtract it from column 5:

0

B

B

B

@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 −1 1 0 0 0 0 0 0
0 0 −1 0 1 0 −1 −1 0
0 0 0 0 −1 1 0 0 −1

1

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

@

0 1 −1 0 1 0 −1 0 0
1 0 0 0 1 0 0 0 0
0 0 1 1 −1 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

A
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Interchange columns 4 and 5 (and don’t touch columns 7, 8, or 9 ):

0

B

B

B

@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 −1 1 0 0 0 0 0 0
0 0 −1 1 0 0 −1 −1 0
0 0 0 −1 0 1 0 0 −1

1

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

@

0 1 −1 1 0 0 −1 0 0
1 0 0 1 0 0 0 0 0
0 0 1 −1 1 0 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

A

Add column 4 to columns 7 and 8:

0

B

B

B

@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 −1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 −1 0 1 −1 −1 −1

1

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

@

0 1 −1 1 0 0 0 1 0
1 0 0 1 0 0 1 1 0
0 0 1 −1 1 0 0 −1 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

A

Interchange columns 5 and 6:

0

B

B

B

@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 −1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 −1 1 0 −1 −1 −1

1

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

@

0 1 −1 1 0 0 0 1 0
1 0 0 1 0 0 1 1 0
0 0 1 −1 0 1 0 −1 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

A

Add column 5 to columns 7, 8, and 9:

0

B

B

B

@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 −1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 −1 1 0 0 0 0

1

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

@

0 1 −1 1 0 0 0 1 0
1 0 0 1 0 0 1 1 0
0 0 1 −1 0 1 0 −1 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

A

D U

Now

D~t =













0
0
0
0
0













yields

~t = 〈0, 0, 0, 0, 0, t6, t7, t8, t9〉

~v = U~t
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then gives us

i1 = t8

i2 = t7 + t8

j1 = t6 − t8

j2 = t6

k1 = t7 + t8

k2 = t7 + t8 + t9

∆i = t7

∆j = t8

∆k = t9

and the constraints are then expressed by the non-negative expressions

t6 − t8 (1)

− t6 + t8 + 20 (2)

t6 (3)

− t6 + 20 (4)

t6 same as 3

− t8 (5)

t8 + 10 (6)

t6 + t7 + t8 (7)

− t7 − t8 subsumed by 9

t7 + t8 + 10 (8)

t6 + t7 + t8 same as 7

− t7 − t8 − 1 (9)

t7 + 2t8 + 10 (10)

t6 + 2t7 + 2t8 + t9 (11)

− t7 − t8 − t9 − 1 (12)

2t7 + 2t8 + t9 + 10 (13)

We will call these expressions the original constraint expressions, since we will come back to them
below.

9.3.3 Eliminating down to t8

Since we only really care about t7, t8, and t9, and since all the coefficients of t6 are ±1, we eliminate
t6. The expressions with positive coefficients are 1, 3, 7, and 11; those with negative coefficients
are 2 and 4. Pairing them up, we have
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(1, 2) 20

(1, 4) − t8 + 20 subsumed by 5

(3, 2) t8 + 20 subsumed by 6

(3, 4) 20

(7, 2) t7 + 2t8 + 20 (14)

(7, 4) t7 + t8 + 20 subsumed by 8

(11, 2) 2t7 + 3t8 + t9 + 20 (15)

(11, 4) 2t7 + 2t8 + t9 + 20 subsumed by 13

This leaves us with expressions 5, 6, 9, 10, 11, 13, 14, 15, and 16. Let us make a table showing the
expressions with positive and negative coefficients for each variable:

+ −
t7 8, 10, 13, 14, 15 9, 12
t8 6, 8, 10, 13, 14, 15 5, 9, 12
t9 13, 15 12

Notice that although some of the coefficients in these expressions are not ±1, the offending ones
are all positive. Therefore, any elimination we make is guaranteed to be exact. In this case, the
table shows us that the cheapest variable to eliminate is 9, so that is what we do next:

(13, 12) t7 + t8 + 9 (16)

(15, 12) t7 + 2t8 + 19 subsumed by 10

This leaves us with the following situation:

+ −
t7 10, 14, 16 9
t8 6, 10, 14, 16 5, 9

It is now cheapest to eliminate t7:

(10, 9) t8 + 9 (17)

(14, 9) t8 + 19 subsumed by 17

(16, 9) 8

This leaves us with the following:
+ −

t8 17 5

These two expressions yield (on addition) the constant 9, which is ≥ 0. Therefore there is a
dependence. Further, we know that t8 ≤ 0; that is, ∆j ≤ 0.
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There are now two possibilities: t8 = 0 or t8 < 0. We consider them separately

9.3.4 t8 = 0

We replace t8 by 0 in each of the original constraint expressions. This yields the expressions

t6 (1a)

− t6 + 20 (2a)

t6 same as 1a

− t6 + 20 same as 2a

0

10

t6 + t7 (7a)

t7 + 10 (8a)

− t7 − 1 (9a)

t7 + 10 same as 8a

t6 + 2t7 + t9 (11a)

− t7 − t9 − 1 (12a)

2t7 + t9 + 10 (13a)

We proceed as before:
+ −

t6 1a, 7a, 11a 2a
t7 7a, 8a, 11a, 13a 9a, 12a
t9 11a, 13a 12a

Again, we want to eliminate t6:

(1a, 2a) 20

(7a, 2a) t7 + 20 subsumed by 8a

(11a, 2a) 2t7 + t9 + 20 subsumed by 13a

So now we have
+ −

t7 8a, 13a 9a, 12a
t9 13a 12a

We eliminate t9 next:

(13a, 12a) t7 + 9 (14a)

Now we have
+ −

t7 14a 9a

and so we have t7 ≤ −1, i.e., ∆i < 0. If instead of eliminating t9 at the last step we eliminate t7,
we would throw away (14a) and proceed as follows:

(8a, 9a) 9

(8a, 12a) − t9 + 9 (14a) subsumed by 16a

(13a, 9a) t9 + 8 (15a)

(13a, 12a) − t9 + 8 (16a)
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This leaves us with −8 ≤ t9(= ∆k) ≤ 8. Thus, we have found the directions given by ∆j = 0,
∆i < 0, ∆k = ∗, ∆l = 0; i.e., the dependence from the left-hand array reference (reference 2) to
the right-hand reference (reference 1) has the direction vector (=, <, ∗, =).

9.3.5 t8 < 0

We add the constraint t8 < 0 to the original constraint equations. Since we always write weak
inequalities, we actually add the constraint t8 ≤ −1; i.e., we add the expression −t8 − 1, which
subsumes the original expression 5. Thus we have

t6 − t8 (1b)

− t6 + t8 + 20 (2b)

t6 (3b)

− t6 + 20 (4b)

− t8 − 1 (5b)

t8 + 10 (6b)

t6 + t7 + t8 (7b)

t7 + t8 + 10 (8b)

− t7 − t8 − 1 (9b)

t7 + 2t8 + 10 (10b)

t6 + 2t7 + 2t8 + t9 (11b)

− t7 − t8 − t9 − 1 (12b)

2t7 + 2t8 + t9 + 10 (13b)

Our configuration is
+ −

t6 1b, 3b, 7b, 11b 2b, 4b
t7 7b, 8b, 10b, 11b, 13b 9b, 12b
t8 2b, 6b, 7b, 8b, 10b, 11b, 13b 1b, 5b, 9b, 12b
t9 11b, 13b 12b

and we eliminate t6. This amounts to the same computation as last time (since (5b) does not
involve t6). So expressions 1b, 2b, 3b, 4b, 7b, and 11b are deleted, and two new expressions are
inserted:

(7b, 2b) t7 + 2t8 + 20 (14b)

(11b, 2b) 2t7 + 3t8 + t9 + 20 (15b)

Now we have
+ −

t7 8b, 10b, 13b, 14b, 15b 9b, 12b
t8 6b, 8b, 10b, 13b, 14b, 15b 5b, 9b, 12b
t9 13b, 15b 12b

Next, we eliminate t8. We do this here because we already know that t8 < 0; normally we would
not eliminate t8 at this stage because it would be the most expensive elimination.

(6b, 5b) 9

(6b, 9b) − t7 + 9 (16b) subsumed by 21b
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(6b, 12b) − t7 − t9 + 9 (17b)

(8b, 5b) t7 + 9 (18b) subsumed by 20b

(8b, 9b) 9

(8b, 12b) − t9 + 9 (19b) subsumed by 25b

(10b, 5b) t7 + 8 (20b)

(10b, 9b) − t7 + 8 (21b)

(10b, 12b) − t7 − 2t9 + 8 (22b)

(13b, 5b) 2t7 + t9 + 8 (23b)

(13b, 9b) t9 + 8 (24b)

(13b, 12b) − t9 + 8 (25b) (subsumed by 27b)

(14b, 5b) t7 + 18 subsumed by 20b

(14b, 9b) − t7 + 18 subsumed by 21b

(14b, 12b) − t7 − 2t9 + 18 subsumed by 22b

(15b, 5b) 2t7 + t9 + 17 subsumed by 23b

(15b, 9b) − t7 + t9 + 17 (26b)

(15b, 12b) − t7 − 2t9 + 17 subsumed by 22b

and so we have this configuration:

+ −
t7 20b, 23b 17b, 21b, 22b, 26b
t9 23b, 24b, 26b 17b, 22b, 25b

We now eliminate t7:

(20b, 17b) − t9 + 17 (27b) subsumed by 28b

(20b, 21b) 16

(20b, 22b) − 2t9 + 16 =⇒ −t9 + 8 subsumed by 27b

(20b, 26b) t9 + 25 subsumed by 24b

(23b, 17b) − t9 + 26 subsumed by 27b

(23b, 21b) t9 + 24 subsumed by 24b

(23b, 22b) − 3t9 + 24 =⇒ −t9 + 8 (28b)

(23b, 26b) 3t9 + 42 =⇒ t9 + 14 subsumed by 24b

This leaves us with 24b and 28b. These yield −8 ≤ t9 ≤ 8. We have to consider these three cases
separately:

t9 < 0

We add the expression −t9 − 1 to expressions 16b through 26b. It subsumes 25b, and we have

− t7 − t9 + 9 (17c)

t7 + 8 (20c) (subsumed by 27c)

− t7 + 8 (21c)

− t7 − 2t9 + 8 (22c)

2t7 + t9 + 8 (23c)
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t9 + 8 (24c)

− t9 − 1 (25c)

− t7 + t9 + 17 (26c)

We have
+ −

t7 20c, 23c 17c, 21c, 22c, 26c
t9 23c, 24c, 26c 17c, 22c, 25c

and we eliminate t9:

(23c, 17c) t7 + 17 subsumed by 20c

(23c, 22c) 3t7 + 24 =⇒ t7 + 8 same as 20c

(23c, 25c) 2t7 + 7 =⇒ t7 + 3 (27c)

(24c, 17c) − t7 + 17 subsumed by 21c

(24c, 22c) − t7 + 24 subsumed by 21c

(24c, 25c) 7

(26c, 17c) − 2t7 + 26 =⇒ −t7 + 13 subsumed by 21c

(26c, 22c) − 3t7 + 42 =⇒ −t7 + 14 subsumed by 21c

(26c, 25c) − t7 + 16 subsumed by 21c

which leaves us with 21c and 27c: −3 ≤ t7 ≤ 8. Thus, we have the “direction vector” t8 < 0, t9 <
0, t7 = ∗.

t9 = 0

We set t9 to 0 in the expressions 16b through 26b. This yields

− t7 + 9 (17c) subsumed by 20b

t7 + 8 (20b) subsumed by 23b

− t7 + 8 (21b)

− t7 + 8 (22b) same as 20b

2t7 + 8 =⇒ t7 + 4 (23b)

8 (24b) trivial

− 1 (24b) inconsistent

− t7 + 17 (26b) subsumed by 23

This yields the contradiction in 24b. So t9 = 0 is not possible in this context.
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t9 > 0

We add the expression t9 − 1 to expressions 16b through 26b. This gives

− t7 − t9 + 9 (17c)

t7 + 8 (20c)

− t7 + 8 (21c) (subsumed by 28c)

− t7 − 2t9 + 8 (22c)

2t7 + t9 + 8 (23c)

t9 + 8 (24c)

− t9 + 8 (25c)

− t7 + t9 + 17 (26c)

t9 − 1 (27c)

This gives us the configuration

+ −
t7 20c, 23c 17c, 21c, 22c, 26c
t9 23c, 24c, 26c, 27c 17c, 22c, 25c

and we eliminate t9. Many of the eliminations are the same as above when we handled the case
t9 < 0; this can be implemented efficiently by remembering these computations. We get

(23c, 17c) t7 + 17 subsumed by 20c

(23c, 22c) 3t7 + 24 =⇒ t7 + 8 same as 20c

(23c, 25c) 2t7 + 16 =⇒ t7 + 8 same as 20c

(24c, 17c) − t7 + 17 subsumed by 21c

(24c, 22c) − t7 + 24 subsumed by 21c

(24c, 25c) 16

(26c, 17c) − 2t7 + 26 =⇒ −t7 + 13 subsumed by 21c

(26c, 22c) − 3t7 + 42 =⇒ −t7 + 14 subsumed by 21c

(26c, 25c) − t7 + 25 subsumed by 21c

(27c, 17c) − t7 + 8 same as 21c

(27c, 22c) − t7 + 6 (28c)

(27c, 25c) 7

This leaves 20c and 28c; i.e., −8 ≤ t7 ≤ 6. So we have the “direction vector” (t8 < 0, t9 > 0, t7 = ∗)

And so finally, we see that for the dependence from the left-hand reference to the right-hande

reference we have the complete set of direction vectors (in the order (j, i, k, l) of the loop nest):

(t8 = 0, t7 < 0, t9 = ∗) (=, <, ∗, =)

(t8 < 0, t7 = ∗, t9 < 0) (<, ∗, <, =)

(t8 < 0, t7 = ∗, t9 = 0) (<, ∗, =, =)

(t8 < 0, t7 = ∗, t9 > 0) (<, ∗, >, =)

which could also be written more compactly as the two direction vectors

(−, <, ∗, =) and (<, ∗, ∗, =)
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