
A Data Structure for Managing Parallel Operations

Carl D. O�ner

High Performance Computing Group

Digital Equipment Corporation

129 Parker Street Maynard, MA 01754

Abstract

The data distribution directives of High Perfor-

mance Fortran (HPF) provide a high-level way of de-

scribing the location of regularly distributed data which

is acted on in parallel. Parallel data is acted on by par-

allel computations. The distribution of parallel com-

putations is not speci�ed in HPF, but is left up to the

compiler|typically, the owner-computes rule is used,

not always the best choice.

We present a set of data structures which de-

scribe data layout, consistent both with HPF directives

and with more general data optimization techniques;

we also present an analogous set of data structures

which describe the distribution of parallel computa-

tions. These two sets of data structures are related

by a set of constraints which apply when data is being

accessed locally. This provides a coherent way to rep-

resent parallel data and parallel computations on an

equal basis and thereby enable a compiler to optimize

both kinds of parallelism.

1 Data layout on a distributed-

memory machine

We address the problem of generating e�cient

code for a data-parallel application running on a

distributed-memory SIMD or MIMD machine. That

is, our machine consists of a possibly large number

of processors, each with its own linear memory. The

data in the program is signi�cantly parallel|for our

purposes, it contains large arrays; and this data is

distributed and mapped onto the separate processors

in some fashion. Each processor executes the same

program; the actual instructions executed on di�er-

ent processors may di�er, however, because each pro-

cessor knows its processor number, and the code is

parametrized by that number. On MIMD machines,

this programmingmodel is referred to as SPMD (\sin-

gle program, multiple data").

Since inter-processor communication is typically

very costly on such machines, it is important to lay out

the data and schedule the computations so that com-

munication is minimized while maintaining as much

parallelism as possible.

Using data optimization techniques ([1, 3, 4, 5]), the

compiler can look at patterns of usage of arrays in the

program to perform layout automatically. An alterna-

tive approach is to have the programmer insert direc-

tives specifying how arrays are laid out. This is the ap-

proach taken by High Performance Fortran (HPF) [2].

Since the HPF approach forces the programmer to go

through the same analysis that the compiler would

otherwise have to do, we will start by giving a brief

introduction to some ideas of data optimization. The

data structures that we will subsequently present ap-

ply equally, regardless of whether automatic data op-

timization or HPF directives are used.

2 Some details of data optimization

Data optimization analysis, as described in the pa-

pers mentioned above, is performed by constructing a

preference graph whose nodes are expression nodes in

a program and whose edges are called preferences. An

unhonored preference generally implies data motion.

Preferences can be honored unless there are conicts.

There are several kinds of preferences; we mention

only two here:

identity preferences These are preferences that re-

ect true dependences in the program. That is,

if a data object is de�ned and subsequently used,

the processor where it is de�ned should be the

same processor where it is used; if not, then we

will have to move the object.

conformance preferences These have been de�ned

as preferences between corresponding elements of

data objects that occur in a parallel construct.

These preferences are honored if such correspond-

ing elements live on the same processor. We will

re�ne this de�nition below in Section 4.4.

Preferences can be honored unless there are cycles

in the preference graph, although a cycle does not nec-

essarily imply an unhonored preference.

B(1:100; 1:100) = : : :

A(1:100; 1:100) = B(2: 101; 3:102)

C(1:100; 1:100) = A(4:103; 5:104) + B(5:104; 9:108)

Figure 1: Part of a preference graph with a cycle

In Figure 1, identity preferences are indicated by

dashed arcs and conformance preferences by solid

arcs.

1

Even though there is a cycle in the preference

graph, there are no conicts in the �rst dimension. If

we drew the preference graph for the second dimen-

sion, however (this just amounts to moving the graph

over to the right at each array reference), we would

see that there is in fact a conict. So preferences must

be computed separately for each dimension.

Note that a cycle in the preference graph must con-

tain both identity and conformance preferences.

While identity preferences directly refer to where

data lives, conformance preferences actually refer to

where computations happen. For instance, in the ex-

ample (using the HPF forall construct)

forall (i = 1:n; j = 1:m)

A(i; j) = A(i; j)+B(j; i; 3)

there is a conformance preference which indicates that

we want A(i; j) and B(j; i; 3) to be added together

on the same processor. This is a preference which

really is determined by the usage of the forall indexes

i and j. For this reason, we will modify our notion

of conformance preference below so that it refers to

computations, rather than to data elements.

The HPF directives allow the programmer to de-

scribe data layout, and thereby manage identity pref-

erences, but give no way of dealing with conformance

preferences. Instead, the \owner-computes" rule has

been widely promoted as a way of determining where

1

There are also other preference edges which are not shown

in the �gure.

computations take place. It is easy, however, to write

examples where owner-computes is undesirable.

In contrast, the data structures presented below

handle parallel data and parallel computations on an

equal basis, emphasizing and explicitly supporting a

point of view that was implicit in the original papers

on data optimization.

Section 3 outlines the data structures which de-

scribe identity preferences. These data structures are

built around a data space. Section 4 outlines the

data structures which describe conformance prefer-

ences. These data structures are built around an it-

eration space. In Section 5 we will show how these

two data structures are related. This relation occurs

at data references in expression trees. Section 6 ex-

tends these data structures to handle partially repli-

cated data and computations, Section 7 gives some

simple examples of how these data structures can be

used by a compiler to manage communication e�ec-

tively, and Section 8 concludes with some comments

on the role of the compiler.

Sections 4, 5, 6, 7, and 8, together with Figures 3

and 4 contain the original work of this paper. They

give a coherent treatment of data and iteration spaces,

leading to a uni�ed view of parallel data and parallel

computations. As part of this uni�ed view, a re�ned

de�nition of a conformance preferance is given, and

the data structures are extended to handle partially

replicated data and computations in a natural fashion.

3 Representing parallel data

In this section, we describe a family of data struc-

tures which can be used to manage the HPF direc-

tives, as well as to manage the more general pref-

erence graphs used in data optimization. The data

structures are composed of certain spaces and maps

between those spaces.

3.1 Data space

Data space describes data which could in principle

be acted on in parallel.

With each declared object A is associated a data

space. This data space is simply Z

n

, where n is the

declared dimensionality of A. The elements of the

data space are n-tuples which should be thought of as

the subscripts of A. If A is a scalar, then of course

n = 0 and the data space is Z

0

, a 1-point space.

Note that the declared bounds of A have no bearing

on the data space used to describe A.

Elements of the data space will be denoted by vec-

tors hs

j

i, where s

j

denotes the j

th

subscript. Each s

j

is called a data coordinate.

3.2 The space of virtual processors

Early in the compilation process, it is convenient

to pretend that we have an in�nite number of proces-

sors available to us. Later in the compilation process,

these virtual processors must be mapped onto phys-

ical processors, in general in a many-to-one fashion.

But before this mapping takes place, we have a vir-

tual processor space associated with every node in an

expression tree. This virtual processor space will in

general be many-dimensional, so it will be of the form

Z

n

.

A particular virtual processor will always be de-

noted by a vector hv

j

i, where of course j runs over the

range 1 to n.

In HPF, a space of virtual processors can be de-

clared by the template directive. For instance,

!HPF$ template t(100; 100)

declares a virtual processor space of dimension 2.

3.3 Data allocation functions

Associated with each data object is both a data

space and a virtual processor space.

There is a map from the data space associated with

a data object to the corresponding virtual processor

space which describes how that data object is laid out

over the virtual processors.

Although such a map could in principle be arbi-

trarily complex, we restrict ourselves to maps which

in each coordinate are a�ne in one variable. Precisely,

each such map is of the form

f(s) = hf

j

(s

p(j)

)i = halloc stride

j

�s

p(j)

+alloc o�set

j

i

where p is a 1-1 map of the subscript indexes into

(and not necessarily onto) the virtual processor space

indexes.

In particular, distinct data elements are mapped to

distinct virtual processors. Of course, elements of dif-

ferent data objects can be mapped to the same virtual

processor; see for instance the example below.

Each map f

j

is called a data allocation function.

In HPF, the ALIGN directive can be used to specify

the data allocation functions of a data object. For

example, in the code

!HPF$ template t(100; 100)

!HPF$ align A(i; j) with t(i; j)

!HPF$ align B(i; j) with t(j; i)

!HPF$ align C(i; j) with t(i+1; 2�j�3)

the data allocation functions for A, B, and C are

hi; ji ! hi; ji

hi; ji ! hj; ii

hi; ji ! hi+1; 2�j�3i

respectively.

There are a few issues which come up in precisely

specifying the data allocation maps:

� Which virtual processor coordinate is a particu-

lar data coordinate mapped to? (The function p

above represents this map.)

� How can we represent the fact that the map f

from data space to virtual processor space may

not be onto?

� How can we represent the fact that the map f

from data space to virtual processor space may

actually be 1-to-many?

For instance, in this example:

real A(100; 100)

!HPF$ template t(50; 100; 300; 25)

!HPF$ align A(i; j) with t(7; j; 2�i+3; �)

the map from data space to virtual processor space

is not onto because no template element whose �rst

coordinate is di�erent from 7 is in the image of that

map; and it is 1-to-many because, for instance, the

data element (1; 1) is mapped to the virtual processor

elements (7; 1; 5; k) for all k.

As we will show below, we can manage all these

considerations by representing the coordinates of the

virtual processor space by data structures called cells.

3.4 The space of logical processors

Since there are really only a �nite number of proces-

sors, the space of virtual processors will be distributed

onto a space of logical processors. The space of logical

processors is an n-dimensional block contained in Z

n

,

of the form

n

Y

j=1

[0 :strip length

j

�1]

(This formula constitutes the de�nition of

strip length.) The elements of the space of logical pro-

cessors are denoted by vectors h�v

j

i, where j runs over

the range 1 to n.

A space of logical processors can be declared in HPF

by the processors directive:

!HPF$ processors p(32; 16)

declares p to be a 32� 16 array of logical processors.

3.5 The physical processors

In general, the physical processors do not consti-

tute an n-dimensional array. But in any case, the

set of physical processors corresponds in a 1-1 fash-

ion to the space of logical processors. The precise

way in which this correspondence is made is machine-

dependent. (There is currently no way in HPF to

specify this mapping.) For instance, the physical pro-

cessors might constitute a 1-dimensional array. The

space of logical processors is mapped onto this array

in in column-major order.

Bear in mind that we are only talking about proces-

sor addressing here, not about the actual connectivity

of the processors, or about relative costs of communi-

cation. To say that the physical processors constitute

a 1-dimensional array just means that the operating

system numbers them from 0 to n � 1, not that pro-

cessor 0 is closer to processor 1 than to processor 2,

say. The processors might in fact be fully connected.

In other words, when we refer to physical proces-

sors, we really mean physical processors as presented

by the operating system. The operating system itself

may have still another view of the underlying machine.

3.6 Distribution maps

The virtual processors are distributed over the log-

ical processors. HPF constrains this distribution map

to be a coordinatewise map, each coordinate being

mapped in one of only a few di�erent ways:

block A block of consecutive virtual processors is

mapped to the �rst logical processor; the next

block of virtual processors is mapped to the next

logical processor, and so on.

cyclic The virtual processors are dealt out to the log-

ical processors in a cyclic manner, much as one

might deal a deck of cards.

* Serial allocation; corresponds to block or cyclic

with a strip length of 1.

and there are some variants of these methods as well.

Thus, the map can be described in HPF by a dis-

tribute directive, which describes the distribution

map used for each data dimension. For example:

!HPF$ template t(1000; 1000; 1000)

!HPF$ processors p(32; 16)

!HPF$ distribute t(block; cyclic; �) onto p

3.7 Cells

Now we show how to represent the virtual processor

space in a more useful form.

The virtual processor space associated with a data

space will be represented as a list of data cells. A cell is

a data structure that holds all the information we need

about one dimension of the virtual processor space.

The mapping from cells to dimensions, and thence to

logical processors, can be de�ned separately.

First consider a machine where the number of pro-

cessors is a power of 2, say 2

n

, and where the physical

processors are arranged in a 1-dimensional array. Each

processor then has a processor ID number which can

be represented by an n-bit binary word. The di�erent

dimensions of the logical processor space can be made

to correspond to di�erent bit ranges in this processor

ID word. For instance, on a machine with 2

16

proces-

sors, a 3-dimensional logical processor array might be

allocated as in Figure 2, where the �rst dimension of

the logical processor array is expressed by bits 0-4 of

the processor ID word, and so on.

bit 0bit 5bit 9bit 15

cell 2 cell 1 cell 3

Figure 2: Processor word with three labeled cells

In this �gure there are three cells, which we may

number arbitrarily. If there is a 3-dimensional array A

which is distributed over this logical processor space,

we will number the cells so that each cell's number

is the same as the dimension of A to which it corre-

sponds.

With this cell layout, and assuming that the data

allocation functions are all identity functions and that

the array A is small enough so that distinct elements

of the array can be assigned to di�erent processors

(so the value of each subscript is the value in the cor-

responding cell), the array element A(i; j; k) will be

found in processor i � 2

5

+ j � 2

9

+ k � 2

0

.

Thus the correspondence of cells to dimensions of

the virtual processor space is made by assigning to

each cell a number representing the position of its low-

est bit.

The mapping to logical processors, which involves

folding the space of virtual processors onto the logical

processor space, involves the size of the cell, i.e. the

number of bits in it. 2 raised to that number of bits

is what we have denoted above as the strip length of

the logical processor dimension. We also refer to it as

the strip length of the cell.

A similar technique works for a machine model with

any number of processors (i.e. not just powers of 2).

Each cell will have a strip length; the product of these

strip lengths will be the number of physical processors

in the machine. Each cell will also have a multiplier

(analogous to the factors 2

5

, 2

9

, and 2

0

above); these

multipliers will determine how the cells �t together to

form the virtual processor array dimensions. A cell is

determined by its strip length and itsmultiplier, which

together we call the cell place.

In view of this representation, we usually refer to

each virtual processor coordinate v

j

as the virtual con-

tents of a cell.

Thus, the set of data allocation functions maps data

space coordinate-wise to virtual processor space, as on

the right-hand side of Figure 3.

The set of distribution functions then maps the vir-

tual processor space coordinatewise to the logical pro-

cessor space. In doing so, it folds each virtual proces-

sor coordinate onto the coordinate of the logical pro-

cessor space, so that for each i, more than one value

of the virtual cell contents v

i

may be mapped to a log-

ical processor coordinate value �v

i

. This is resolved by

also associating with each v

i

a partial memory depth

(which we denote by v̂

i

). (The separate partial mem-

ory depths v̂

i

have to be combined to form the actual

memory depth in the local processor's memory.) The

mapping from v

i

to v̂

i

is determined by the distribu-

tion map, just as the mapping from v

i

to �v

i

is. These

maps also appear on the right-hand side of Figure 3.

3.8 Identity preferences

Identity preferences can be expressed in terms of

this data structure as follows: an identity preference

between two occurrences of an array A is honored i�

for each dimension of A

� the corresponding data allocation functions are

equal,

� the corresponding data distribution functions are

equal, and

� the corresponding data cells have the same place.

The �rst condition guarantees that any given ele-

ment of A will be mapped to the same virtual proces-

sor at both occurrences, and the remaining conditions

ensure that a virtual processor will be mapped to the

same physical processor at both occurrences.

data

space

data

coordinate

virtual

cell

contents

(v

i

)

actual

cell

contents

(�v

i

)

partial

memory

depth

(v̂

i

)

logical

processor

space

(�v = h�v

i

i)

physical

processor

space

logical

local

memory

space

(v̂ = hv̂

i

i)

physical

local

memory

space

iteration and data

distribution

maps

data

allocation

function

f

i

iteration

space

iteration

coordinate

virtual

cell

contents

(v

i

)

actual

cell

contents

(�v

i

)

local

iteration

index

(k

i

)

logical

processor

space

(�v = h�v

i

i)

physical

processor

space

local

iteration

space

(hk

i

i)

iteration

allocation

function

�

i

subscript map

�

�

i

constraint map

Spaces have names in boldface type. Maps between spaces are

represented by thick arrows. One-dimensional subspaces (i.e.

the coordinate subspaces of those spaces) are either above or be-

low their corresponding spaces and have names in normalweight

type. Maps between those one-dimensional subspaces are rep-

resented by thin arrows. Symbols in parentheses parametrize

their corresponding spaces or subspaces. The maps represented

by dashed arrows apply when the data access is local.

Figure 3: How data and iteration structures are re-

lated at a data access

4 Representing parallel computations

4.1 Iteration space

Iteration space describes computations which could

in principle be performed in parallel.

A section of code

2

which is implicitly or explicitly

parametrized by one or more variables is a candidate

for being performed in parallel. The number of param-

eters (call it m) is said to be the dimensionality of the

iteration space, and the iteration space itself is sim-

ply Z

m

. Elements of the iteration space are m-tuples

2

The word \section" is used informally here; it is illustrated

below, and it does not have the formal meaning given in some

language de�nitions.

which should be thought of as particular choices of the

m parameters.

Iteration spaces can arise from forall statements,

array syntax, or do loops: the three parallel constructs

(1) forall (i = 1:n; j = 1:m)

B(i; j) = A(i; j)

(2) B(: ; :) = A(: ; :)

(3) do i = 1; n

do j = 1; m

B(i; j) = A(i; j)

enddo

enddo

are all parametrized by two variables (the second one

implicitly, the �rst and third by i and j), so the iter-

ation space in each case is Z

2

.

As with data space, we are taking the iteration

space to be all of Z

m

, even though the parameters

can only take values from a bounded set.

The bounds, however, are important; and while

they may be determined in many ways, they must be

the same for every expression node in the section of

parallel code to which the iteration space applies. To

put it another way, there is only one iteration space

for each parallel section of code. In particular, there

is only one iteration space for a parallel statement. So

for instance, in the statement

A(1 :100) = B(400 :202 :�2) +C(2 :101)

the actual iteration range could be taken as 1 :100, or

as 400 :202 : � 2, or as 2 :101, or even as some other

equivalent range. But whatever it is, it will be the

same for every expression node in that statement.

Elements of the iteration space will be denoted by

vectors hj

i

i (each j

i

denoting an iteration index). Each

j

i

is called an iteration coordinate.

It is important to keep in mind that data space and

iteration space are distinct concepts. For instance, in

the statement

C(: ; :) = A(: ; :) + B(: ; 11; :)

the data space at B is Z

3

, but the iteration space for

this statement is Z

2

.

4.2 Iteration allocation functions

Iteration spaces are mapped to the virtual proces-

sor space|this amounts to saying which virtual pro-

cessor executes a particular instance of a parallel com-

putation. This mapping, which is coordinatewise and

a�ne, is composed of iteration allocation functions,

which are entirely analogous to data allocation func-

tions. There is no way in HPF to specify these func-

tions; it is up to the compiler to come up with the best

ones it can.

As in the case of parallel data, the virtual proces-

sor space is represented in terms of cells|we call these

the iteration cells. We denote the individual iteration

allocation functions by �

i

(where i denotes the i

th

it-

eration coordinate; that is, the i

th

iteration cell).

4.3 The distribution of parallel computa-

tions

After parallel computations are mapped to virtual

processors, they are distributed onto the space of log-

ical processors, just as parallel data is. The distribu-

tion maps are analogous to data distribution maps|

block, cyclic, and so on. Again there is no way in

HPF to specify these maps.

Here the key di�erence between data and compu-

tations appears: While data which is mapped to the

same logical processor is located at di�erent memory

locations in that processor's memory, computations

which are mapped to the same logical processor take

place at di�erent times. Thus, the iteration distribu-

tion maps de�ne mappings both from the space of vir-

tual processors to the space of logical processors, and

from the space of virtual processors to a local iteration

space, which parametrizes the computations mapped

to a single logical processor. This gives us the maps

shown, later on, on the left-hand side of Figure 3.

4.4 Conformance preferences

We will now recast the data optimization notion

of conformance preferences as follows: two computa-

tional nodes in the compiler's internal representation

of a parallel construct

3

will have a conformance pref-

erence between them which is honored i�

� the corresponding iteration allocation functions

are equal,

� the corresponding iteration distribution functions

are equal, and

� the corresponding iteration cells have the same

place.

The �rst condition guarantees that on any given

iteration of the parallel construct the two nodes will

3

By a computational node we mean any node which is not a

constant or a data reference; i.e. any node having an associated

iteration space

be computed on the same virtual processor, and the

remaining conditions ensure that a virtual processor

will be mapped to the same physical processor at both

nodes.

Let us look again at the example from Figure 1.

Figure 4 shows the same code as it might be repre-

sented internally by the compiler (except that the ar-

rays are now 1-dimensional; we have taken the second

dimension, which is where the problem lies), and we

have indicated the identity preferences as dashed arcs

and the conformance preferences as solid arcs.

STORE

B(1 : 100) � � �

STORE

A(1 : 100)

FETCH

B(3 : 102)

STORE

C(1 : 100) +

FETCH FETCH

A(5 : 104) B(9 : 108)

Figure 4: Identity and conformance preferences for the

second dimension of �gure 1

As yet, there are no cycles in this preference

graph|in fact, the graph is disconnected at every data

reference. We address this issue in the next section.

5 The relation between data and iter-

ation structures

5.1 The subscript map

Every computational node in an expression tree has

an iteration space associated with it. Each data ref-

erence (typically, an array reference) in an expression

tree has a data space associated with it. So at each

fetch or store of data there is an iteration space, and

at its child (which is a data reference) there is a data

space. These spaces are related by a subscript map

which maps the iteration space into the data space.

Here are some examples:

(1) B(: ; :) = A(: ; 4; :)

The iteration space and the data space at the store of

B are both Z

2

, and the subscript map is the identity

map Z

2

! Z

2

. At the fetch of A, however, the data

space is Z

3

, and the subscript map is the map from

Z

2

! Z

3

given by

hi; ji ! hi; 4; ji

(2) forall (i = 1:n; j = 1:m)

B(i; j�i) = A(2�i+j; �1; 4�3�j)

Here the subscript map at the store of B is the map

from Z

2

! Z

2

given by

hi; ji ! hi; j�ii

while the subscript map at the fetch of A is the map

from Z

2

! Z

3

given by

hi; ji ! h2�i+j; �1; 4�3�ji

(3) A(1 :100) = B(400 :202 :�2) + C(2 :101)

If the iteration range is taken as 1 :100, then the sub-

script maps at the store of A, the fetch of B, and the

fetch of C are

i ! i

i ! 402�2�i

i ! i+1

respectively. On the other hand, if the iteration range

is taken as 400 :202 : � 2, then the corresponding sub-

script maps would be

i ! (402�i)=2

i ! i

i ! (404�i)=2

and so on.

We will denote the subscript map by the letter �.

The subscript map appears at the top of Figure 3.

Figure 3 as a whole actually demonstrates the com-

putations that occur on a processor when dealing with

a reference to parallel data. After all, what does a pro-

cessor know? It knows two things:

1. Who it is: its physical processor number, which it

can map backwards to get its coordinates in the

logical processor space.

2. What time it is: which of the local iterations is

being processed. This amounts to the coordinates

of a point in the local iteration space.

These two values are then pushed backwards

through the iteration distribution maps, and then

through the iteration allocation maps to get the point

in iteration space being computed. This point is then

mapped forward through the subscript map into data

space and then down to arrive ultimately at a physical

processor and a location in that physical processor's

memory. These computations start on the lower left

of Figure 3 and move up, over to the right, and then

down to the lower right.

4

Thus, starting with the two items that a physical

processor knows, it can compute the location of the

data it needs to access. In general, of course, this

data may be on a di�erent processor|the values in

the physical processor space on the data side and on

the iteration side of Figure 3 will be di�erent. This

is just an indication of the fact that in general, data

accesses may be remote, as opposed to local.

5.2 Constraints

Looking at Figure 4, we see that since the iden-

tity and conformance preferences relate disjoint sets

of nodes in the expression trees, the allocation func-

tions and distribution maps can be de�ned in such a

way that all the preferences are honored. The price

we would pay for this, however, is that in general, too

many data references would be remote|that is, inter-

processor communication would be necessary at too

many fetches and stores of data. So we have to im-

pose some constraints between the data maps and the

iteration maps. These constraints will relate the data

maps at data references to the iteration maps at the

parents of those references (i.e. at stores and fetches).

The constraints will reect the fact that certain data

references are local.

To do this, we have to have a way of identifying data

references which a priori should be local. One way is

as follows: if the subscript map is a coordinatewise

a�ne map|so � can be expressed as h�

i

i, where each

�

i

is an a�ne function of one iteration coordinate|

then we would certainly expect the data reference to

be local. For example, an array reference of the form

A(i�3; 2�k+5; 7�j) should be local. It will be, if

4

We hasten to assure the reader that in the most common

cases, the compiler can generate much simpler code. But in

general (for instance, when there are vector-valued subscripts),

this is actually the way the computations must be generated.

1. the iteration space point hi; j; ki is mapped

by the iteration allocation functions to the

same virtual processor as the data space point

hi�3; 2�k+5; 7�ji is mapped by the data alloca-

tion functions;

2. the corresponding distribution maps are identical;

3. the corresponding cells have the same cell place.

Items 2 and 3 are easy to check. Item 1 amounts

to this: in Figure 3 the constraint map should be the

identity (for all i).

The constraint for local data accesses thus consists

of items 2 and 3 above together with the set of iden-

tities

�

i

= f

i

� �

i

6 A catalog of di�erent kinds of cells

By giving cells some additional attributes, we can

extend this data structure to accomodate scalar, repli-

cated, and irregular data.

A cell is a data cell or an iteration cell according

to whether it is used on the data or iteration side of

Figure 3.

The cells we have described so far are what we call

primary cells: corresponding to each subscript of the

form a�i+b where i is an iteration coordinate, there is

a primary iteration cell and a primary data cell. The

data and iteration allocation functions for these two

cells are related by the constraint

�

i

= f

i

� �

i

Corresponding to a constant subscript in an ar-

ray reference, we create a scalar data cell. To avoid

data motion, such a scalar data cell at an array refer-

ence will be matched with a scalar iteration cell hav-

ing the same cell place. It is convenient to imagine

a constant iteration coordinate corresponding to the

constant data coordinate, with a constraint that the

iteration allocation function applied to this constant

iteration coordinate value equals the data allocation

function applied to the constant subscript.

Scalar cells are actually useful in more general cir-

cumstances, as when an array is aligned with a section

of a template, e.g.:

!HPF$ align A(i; j) with t(7; j; 2�i+3)

A reference to A(i; j) will then involve a scalar data

cell and a corresponding scalar iteration cell. The con-

stant virtual cell contents will be 7.

Scalar cells are thus used in representing data or

iterations which are not mapped completely onto the

whole data or iteration space.

Replicated cells are used to represent replicated

data or iterations. So for instance, given the HPF

directive

!HPF$ align A(i; j) with t(7; j; 2�i+3; �)

a reference to A(i; j) will involve 1 scalar data cell, 2

primary data cells, and 1 replicated data cell. To avoid

data motion, each replicated data cell will be paired

with a corresponding replicated iteration cell with the

same cell place. There are no subscripts or iteration

coordinates corresponding to replicated cells.

A replicated cell can also be used to describe a

scalar which is replicated over all the processors. A

scalar which is replicated over just some of the pro-

cessors would be described by two cells: a replicated

cell and a scalar cell (with \complementary" or \or-

thogonal" cell places). In this way, a scalar data object

can be regarded as a 0-dimensional array object.

Finally, a complex data cell is a cell corresponding

to a subscript which is not constant or a�ne in one

iteration coordinate. For example, the array reference

A(V (i); j+k) will have two complex data cells asso-

ciated with it. A complex data cell has no associated

iteration cell, because we use complex data cells as a

catch-all mechanism for data that we cannot easily ac-

cess in a regular fashion. The occurrence of a complex

cell usually signals the need for data motion.

Another example where complex cells come up is

in an array reference such as A(i; i). Here the �rst i

corresponds to a primary cell, but the second i cannot

also be primary (logically, there can be only one it-

eration cell corresponding to the iteration coordinate

i). Hence we make the second data cell complex. This

means that in general, the second dimension of A will

not be distributed over processors, but will be allo-

cated serially \down memory". (If it is not, i.e. if the

second dimension is distributed over a number of pro-

cessors, then data motion will probably be necessary.)

7 Some simple examples

The reason for exposing the di�erent maps in this

data structure is that they can each serve as the locus

of a compiler optimization. For an example, consider

forall (i = 1:100; j = 1:100)

A(i; j) = B(i)+C(i)

Let us assume �rst that A is distributed in both

dimensions, and that B and C align with the �rst

dimension of A:

!HPF$ processors p(10; 10)

!HPF$ template t(100; 100)

!HPF$ distribute t(block; block)

!HPF$ align A(i; j) with t(i; j)

!HPF$ align B(i); C(i) with t(i; 1)

If we implement the \owner-computes" rule, then

the iteration cells at each interior node will consist of

two primary cells; one for i, and one for j. These cells

are identical to the data cells at A. The data cells at B

and C consist of one primary cell and one scalar cell.

This is illustrated in Figure 5, where corresponding

cells have the same cell place, and the scalar cell is

denoted by s.

A(i; j)

STORE

FETCH

B(i)

PLUS

FETCH

C(i)

i

j

i

j

i

j

i

s

i

j

i

j

i

s

Figure 5: Example illustrating the \owner-computes"

rule

This way of setting up the iteration cells forces the

fetches of B and C to be remote fetches. Thus two re-

mote operations are necessary to compute this assign-

ment. An better alternative would be to change the

iteration cells at the two FETCH nodes and the PLUS

node so that in each case the j cell has strip length 1,

and a new scalar cell is introduced which has the same

place as the former j cell, as in Figure 6.

A(i; j)

STORE

FETCH

B(i)

PLUS

FETCH

C(i)

i

j

i

j

i

j
s

i

s

i

j
s

i

j
s

i

s

Figure 6: Alternative iteration cells.

Here constraints can be introduced so that the two

fetches are local. The PLUS operation is also local,

and only one data motion is needed|between the

PLUS and the STORE.

Finally, suppose that B and C were actually repli-

cated across the second dimension of A, for instance

by means of the align directive

!HPF$ align B(i); C(i) with t(i; �)

Then we would have the situation in Figure 7 (the

replicated cell is denoted by r).

A(i; j)

STORE

FETCH

B(i)

PLUS

FETCH

C(i)

i

j

i

j

i

j

i

r

i

j

i

j

i

r

Figure 7: Example with replicated cells

In this case, no motion at all is necessary|a repli-

cated cell in a node on the right-hand side of an assign-

ment statement satis�es the appropriate constraint

with any cell in its parent node having the same cell

place.

Much more complicated cases, involving vector-

valued subscripts and other complex expressions, can

be dealt with similarly. In all these cases, this data

structure is expressive enough to reect the intentions

of the programmer and to enable the compiler to do

the analysis it needs to determine the correct place-

ment of data motion, as well as to generate the code

for that motion.

8 The role of the compiler

The fact that HPF only has directives that specify

the distribution of data, but not of computations, is

no accident. As these data structures make clear, it

would be impractical in general to specify the distri-

bution of computations in a program explicitly. While

data distribution is de�ned once for each data object,

and is declarative, the distribution of computations

would have to be speci�ed at each expression node in

the program, and could in principle be di�erent for

each node. Such a program would not be readable or

maintainable. It is more natural to let the compiler

determine the distribution of computations.

9 Conclusion

Where computations are executed can be as impor-

tant as where data is located. These data structures

represent both phenomena in a parallel fashion, giving

the compiler a uni�ed view of both kinds of optimiza-

tion.

Acknowledgements

Thanks for many helpful discussions to Kathleen

Knobe, Joan Lukas, Michael Weiss, Venkat Natarajan,

and Alex Nelson.

References

[1] Eugene Albert, Kathleen Knobe, Joan D. Lukas,

and Guy L. Steele, Jr. Compiling Fortran 8x ar-

ray features for the Connection Machine computer

system. In Symposium on Parallel Programming:

Experience with Applications, Languages, and Sys-

tems. ACM SIGPLAN, July 1988.

[2] High Performance Fortran Forum. High perfor-

mance Fortran language speci�cation, Version 1.0.

Scienti�c Programming, 2(1), May 1993. Also

available as Technical Report CRPC-TR93300,

Center for Research on Parallel Computation, Rice

University, Houston, TX; and also via anonymous

ftp from titan.cs.rice.edu in the directory pub-

lic/HPFF/draft.

[3] Kathleen Knobe, Joan D. Lukas, and Guy L.

Steele, Jr. Massively parallel data optimiza-

tion. In Frontiers '88: The Second Symposium on

the Frontiers of Massively Parallel Computation,

George Mason University, October 1988. IEEE.

[4] Kathleen Knobe, Joan D. Lukas, and Guy L.

Steele, Jr. Data optimization: Allocation of ar-

rays to reduce communication on SIMD machines.

Journal of Parallel and Distributed Computing,

8:102{118, 1990.

[5] Kathleen Knobe and Venkataraman K. Natarajan.

Data optimization: Minimizing residual interpro-

cessor data motion on SIMD machines. In Fron-

tiers '90: The Third Symposium on the Frontiers

of Massively Parallel Computation, University of

Maryland, October 1990. IEEE.

