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Abstract

Per Brinch Hansen's criticisms of High Performance Fortran in the March issue of this journal are

examined and shown to be without foundation.
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In the March issue of this journal, Per Brinch Hansen devoted an article [1] to an evaluation of High

Performance Fortran (HPF). The article is quite negative: Brinch Hansen concludes that HPF is not a

suitable language for parallel programming. It is truly unfortunate, however, that every complaint in

the article is based on easily avoidable ignorance and misunderstanding of HPF and of the compiler he

used. Here I am going to itemize the complaints Brinch Hansen makes in his article, and address each

of them.

1. � A forall statement cannot call a user procedure. The user is forced to inline procedure calls.

� A forall statement cannot have local variables.

Response: While both these statements are true, neither is an obstacle to what Brinch Hansen

wants to do.

The reason both statements are true is that a forall does not subsume the most general parallel

construct; rather, it is simply a somewhat more general array assignment.

The reason that neither statement is an obstacle to what Brinch Hansen wants to do is that in

the case he is considering, it is much more appropriate to use an independent do loop instead

of a forall construct. Such a loop can have local variables. (Such variables are tagged as new

in the independent directive, and they are local to each loop iteration.) Such loops also can

contain procedure calls, making the need for procedure inlining unnecessary.

Speci�cally, here is how it works: Figure 1 shows Brinch Hansen's original code.

Brinch Hansen then quite correctly adds three lines to distribute the array a:

integer, parameter :: p = number_of_processors()

!hpf$ processors nodes(p)

!hpf$ distribute a*(*,cyclic) onto nodes

and then wants to execute the inner do loop in parallel. It is in fact an independent do loop, and

the procedure transform() only references its own arguments. So in particular, it is resident (in

HPF terms), and so we can write the code indicated in Figure 2, which does exactly what Brinch

Hansen wants. The on home directive tells the compiler that the called routine transform only

accesses data that is available locally, which is true in this case.

Incidentally, Brinch Hansen did �nally wind up with some code that gave him good performance.

The much simpler code indicated here would have done equally well.



subroutine reduce(a)

...

real*8, intent(inout) :: a(n, n+1)

real*8 :: vi(n)

integer :: i, j

do i = 1, n-1, 1

call eliminate(i, a(1:n, i), vi)

do j = i+1, n+1, 1

call transform(i, a(1:n,j), vi)

end do

end do

return

end subroutine reduce

Figure 1: Sequential Householder Reduction; original code

subroutine reduce(a)

...

real*8, intent(inout) :: a(n, n+1)

real*8 :: vi(n)

integer :: i, j

integer, parameter :: p = number_of_processors()

!hpf$ processors nodes(p)

!hpf$ distribute a*(*,cyclic) onto nodes

do i = 1, n-1, 1

call eliminate(i, a(1:n, i), vi)

!hpf$ independent

do j = i+1, n+1, 1

!hpf$ on home (a(:,j)), resident

call transform(i, a(1:n,j), vi)

end do

end do

return

end subroutine reduce

Figure 2: Sequential Householder Reduction: HPF code



2. � There is inadequate documentation.

� The compiler hides the details of inter-processor communication.

\It took us two months to make this program run faster in parallel. Our frustrations were caused

by the poor documentation of the HPF language and the lack of information about the behavior

of running programs, which more often than not reduced our `design' e�ort to an endless series

of wasted `experiments' based on guesses about what might possibly work."

\The hidden details of processor communication make performance prediction of HPF programs

impractical both in theory and practice."

Response: The two itemized statements are both false. Brinch Hansen's frustrations are due

to his failure to read readily available material. For instance, the documentation [3] that comes

with the Digital Fortran/HPF compiler (which is the main compiler Brinch Hansen says he used)

includes:

� An HPF tutorial, built around some common kinds of coding examples, giving many hints

as to how to use HPF e�ectively to write easily maintainable and e�cient code.

� A more detailed chapter, titled HPF Essentials, which contains, among many other things,

an extensive discussion of di�erent kinds of data mappings.

� A chapter titled Optimizing HPF Programs, which contains a lot of information about com-

piler switches, directives, and programming practices that can be used to good e�ect. This

chapter also contains advice on converting old-style Fortran 77 programs to modern standard

Fortran and HPF.

� An installed UNIXman page for the compiler, with a complete listing of all available switches.

Among these are some HPF-speci�c switches (the main one being \-show hpf_all") that

can be used to have the compiler report what message-passing code it is generating, what

lines in the source this code corresponds to, and why the compiler thinks that message-

passing is needed at that point. In practice, this gives a lot of information very quickly and

easily, and is always the �rst thing to look at.

In addition, there is a pro�ler that comes with the HPF Parallel Software Environment, which

can be used to give a more quantitative measure of the time actually taken by message-passing

code.

None of this material is hard to �nd. It's the basic documentation and toolkit, and it is delivered

in the same manner as with any software product.

Brinch Hansen seems to have relied pretty much on the HPF Handbook [6] for his knowledge of

the language. The Handbook was written to document HPF Version 1.0, and has been out of

date for over a year. HPF Version 2.0 was published in January, 1997, and is what our compiler

supports. The o�cial language report [4] is available on-line.

There are some di�erences between Version 1 and Version 2 of HPF, and in particular, the

subroutine interface details have been greatly simpli�ed in version 2.

3. The HPF compiler did not support independent do loops.

Response: The Digital Fortran/HPF compiler has supported independent do loops since

Digital Fortran version 4.1, which �rst shipped in January, 1997. Brinch Hansen was evidently

using an out-of-date compiler.



4. Independent do loops constitute an insecure form of parallelism in which the programmer is com-

pletely responsible for the absence of race conditions.

Response: This is true, but only in the sense that an independent directive is an assertion

that the loop iterations are truly independent of each other. If they are not, the program is

non-conforming. If the programmer's assertion is correct, however, the compiler is responsible for

handling any necessary synchronization.

I don't see that this puts any more strain on the programmer than would be there if the program

were written in an explicit SPMD style (i.e., with explicit message-passing), which is what Brinch

Hansen seems to prefer. In such a style, the programmer has to be continually aware of a multitude

of low-level details, in a program that is of necessity much larger.

5. Conforming implementations of HPF do not have to support the HPF LOCAL extrinsic subroutine

model.

Response: Technically this is true, but every implementation does support hpf local, and

always will, because it is such an important way to escape to a lower-level programming model

in certain circumstances. So there is no loss of portability in using this model.

6. Function calls cannot be used in parallel assignment statments.

Response: Actually, they can. Function calls can occur in forall constructs provided they are

pure. The problem with the example Brinch Hansen uses is that the function he calls accesses

non-local data. (It is not resident, to use the HPF term.) Therefore, although the construct is

legal, the compiler will not generate parallel code for it. This is a case where inlining the function

body (which is only 1 line long) is in fact a good thing to do, as it enables the compiler to optimize

the communication. The inlining can be encapsulated by a macro, as we will see below; Brinch

Hansen also likes to do this in his own code.

The benchmark that Brinch Hansen was trying to code that led to this last complaint was a simple

red-black relaxation code. Now actually, one of the �rst test cases we tried when we were developing

our HPF compiler was a red-black relaxation|in 3 dimensions. Our results, which showed optimal

scaling, were published in [5] in 1995.

Our code, which runs as well or slightly better than comparable explicit message-passing code, has

been available on the net since at least 1995, and is pointed to by our high performance computing web

page (http://www.digital.com/info/hpc/fortran/optimizations.html), as well as by the paper

mentioned above.

The code is much simpler than the message-passing code that Brinch Hansen writes in his companion

article on MPI [2], and is also much easer to maintain. To see this, look �rst at the computational

kernel of Brinch Hansen's message-passing code:



void relax(int qi, int qj, int up, int down,

int left, int right, subgrid u)

{ int b, i, j, k;

for (b = 0; b <= 1; b++)

{ exchange(qi, qj, 1 - b, up, down,

left, right, u);

for (i = 1; i <= m; i++)

{ k = (i + b)%2;

j = 2 - k;

while (j <= m - k)

{ nextstate(u, i, j);

j = j + 2

}

};

}

}

We want to compare this with the equivalent HPF code. We take the HPF code from our red-black

problem (cut down to 2 dimensions, as in the Brinch Hansen example). Aside from some insigni�cant

changes in variable names and bounds, this performs the same computation. First, we de�ne a macro to

encapsulate the stencil computation. The body of the forall super�cially performs the computation in

Brinch Hansen's nextstate() function. As explained below, however, it really performs much more|it

also takes care of all the communication in the companion exchange() routine.

#define rb(i_init, j_init) \

forall (i = i_init:m-1:2, j = j_init:m-1:2) \

u(i, j) = factor*(hsq*u(i, j) + \

u(i-1, j) + u(i+1, j) + \

u(i, j-1) + u(i, j+1))

Using this macro, the computational kernel appears as follows:

! red-black relaxation: the red points

rb(2,2)

rb(3,3)

! red-black relaxation: the black points

rb(3,2)

rb(2,3)

That is all there is to it. In this form, the bounds of the forall are clearly exposed, and do not have

to be deciphered from the modulus computation (i + b)%2. For this and other reasons, I think it is

clear that the HPF code is more understandable and cleanly written.

But the di�erence is even more striking than just cleanliness. In order to set up for his kernel, Brinch

Hansen devotes two full pages in his MPI article to explicit message-passing code to manage his shadow

edges. In contrast, all this code is generated automatically by the HPF compiler. That is, the compiler



handles the introduction of shadow edges, and the movement of data into those edges automatically,

and does it as well as a programmer could do by hand using explicit message passing. This is a prime

example of a case in which the HPF language, together with a good compiler, makes unnecessary the

writing of a lot of error-prone low-level code|code that does not directly solve the actual problem|at

no cost in e�ciency.

And e�ciency is important|we certainly agree with Brinch Hansen on that point. Figure 3 shows the

latest �gures on speedup for our 3-dimensional red-black relaxation code, using a 128�128�128 array:

number of processors

1 2 4 8

time (sec) 251.1 115.7 50.6 15.8

speedup 1.0 2.2 5.0 15.9

Figure 3: Speedup for 3-dimensional red-black relaxation on a 128� 128� 128 array, implemented in

HPF

The important thing, of course, is that the speedup is at least linear. Superlinear speedup, as we see

here, is due to cache e�ects|with more processors, there is more available cache. And by the time we

get to 8 processors, evidently a large chunk of the problem �ts completely in cache, which explains the

remarkably large speedup for that con�guration.

This, I believe, is a fair response to all of Brinch Hansen's concerns about HPF. Using what I have

written here, he should be able to get o� to a much faster start the next time he writes a program in

HPF. And �nally, everything I have written about here is publicly available, and has been for a very

long time.
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