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Introduction

The purpose of this set of notes is to show, as simply as possible, how the
theory of finite fields applies to certain commonly used pseudo-random number
generators. Only those parts of the theory of finite fields that are needed for
this purpose are presented, and the development of the algebraic theory needed
for this is greatly simplified for this purpose. I have tried to compose these
notes in a sympathetic manner, so as to be readable to someone who has not
read mathematics in a while.

The notes only go so far as to show how finite fields enter into the theory of
pseudo-random number generators. I do not pursue the crucial and interesting
investigations into the quality and efficiency of such generators.

While all of the algebraic material here is quite standard, the following points
may be noted:

• Undoubtedly the most difficult part of this subject is the construction of
field extensions in Chapter 2. This is not because the construction itself is
complicated—it is really quite simple. The reason is that the arguments
needed to justify the correctness of the construction involve isomorphisms
of quotient constructions (to use the technically correct terms); such argu-

ments tend to be confusing to beginners. I have tried to make this section
quite discursive and have given a number of examples, taken verbatim
from Lidl and Niederreiter.

• Since I am not looking to present things in much generality, but am only
aiming at the theory of finite fields, I completely eliminated the standard
but sophisticated arguments involving ideals in rings. These come up in
two contexts:

1. To get unique prime factorization. Even in general, ideals are not
needed for this, although their use undoubtedly makes the theory
more elegant. The traditional proof as given in Hardy and Wright,
however, works just fine here. I didn’t bother writing it out.

2. To show that adjoining the root of an irreducible polynomial really
does yield a field. In modern treatments this is usually approached
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by way of maximal ideals. Now actually, there is a simple traditional
proof that follows directly from the division algorithm, so ideals are
not really needed here either. In the case of finite fields, however,

since everything is finite (and not just finite-dimensional), we can
avoid even this traditional argument and reduce the whole matter to
the kind of counting argument that is used over and over in these
notes.

• In a similar way, I have given a simplified proof of the fact that any two
finite fields having the same number of elements are isomorphic. The proof
of this result is usually made to rest on the uniqueness of splitting fields.
Again in this case, I was able to avoid using this fact.

None of these simplifications is at all original. But practically all alge-
bra texts prove things in more generality and so cannot use these simple
arguments.

• The proof in Chapter 3 that primitive polynomials yield higher-order re-
cursive random number generators with maximal period is greatly simpli-
fied from the two references I have seen.

The reader is assumed to know (or at least to be willing to remember) some
basic linear algebra. What is required is reviewed in the section on vector spaces
in Chapter 1. Other than that, these notes are pretty much self-contained.



Chapter 1

Algebraic Preliminaries

There are many mathematical structures that consist of a set with one or more

binary operations that seem similar to ordinary addition and/or multiplication.
Mathematicians have abstracted these structures so that their common prop-
erties can be handled all at once. The four most important of these structures

are groups, rings, fields, and vector spaces1. In this chapter we give brief intro-
ductions to these four structures. First, however, we review some arithmetic.

1.1 Arithmetic

Here is some standard notation that we often use:

N denotes the set of positive integers (i.e., the integers greater than 0. The

letter N comes from the word “natural”—the set N is sometimes referred to
as the set of natural numbers; i.e., the set of counting numbers that everyone
learns in first grade.

Z denotes the set of all integers (including 0 and the negative integers). The
letter Z comes from the German word “Zahlen”, which means “numbers”.

R denotes the set of all real numbers.

C denotes the set of all complex numbers.

The notation b|a means “b divides a” (or, as my students would have put it, “b

guzzinta a”). For example, 6|18.

1The terms “group”, “ring”, and “field” were not picked because of any intuitive meaning.
In particular, there is nothing ring-like about a ring.
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1.1.1 Division

When we first learn division, we learn to say “7 divided by 3 is 2 with a remainder
of 1.” This is the same as writing

7 = 2 · 3 + 1

The remainder is always ≥ 0 and strictly less than the number we are dividing

by (which in this case is 3).

In general, if a and b are two integers and b > 0, we can always divide a by b to
get a quotient q and a remainder r. We always determine r so that 0 ≤ r < b,
and we have

a = qb + r

Thus, if we are dividing by 7, we have

14 = 2 · 7 + 0

9 = 1 · 7 + 2

2 = 0 · 7 + 2

−5 = −1 · 7 + 2

Note that b|a (b divides a) if and only if r = 0.

1.1.2 Primes

The prime numbers in N have the following two characteristic properties:

• A prime p cannot be factored into two non-unit factors (i.e., into two

factors neither of which is 1).

• If p is a prime, and if a and b are any two numbers in N, and if p divides
the product ab (remember that the notation for this is p|ab), then either

p|a or p|b (or both, of course).

The first property is conventionally regarded as a defining property for primes

(with the additional statement that 1 is not a prime). But the second property
is equally characteristic of primes, and is absolutely key. For instance, from
the fact that 3 divides a product ab we can conclude that either 3 divides a or
3 divides b. On the other hand, 6 (which is not a prime) divides the product
14 · 27 = 378, but 6 does not divide either 14 or 27.
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The Fundamental Theorem of Arithmetic states that every positive integer is
the unique product of primes. That is given any positive integer a, we can write

a = pe1

1 pe2

2 . . . pen

n

where the exponents {e1, e2, . . . , en} are determined uniquely by a. For example,

2352 = 24 · 31 · 72

We could actually write this as a product over all the primes, by making the
remainder of the exponents all 0:

2352 = 24 · 31 · 50 · 72 · 110 · 130 · 170 . . .

This is the usual way that mathematicians write this, except that we write it
using the product notation:

a =
∏

pi prime

pei

i

The reason we agree that 1 is not a prime is to allow for the statement of
uniqueness in the Fundamental Theorem. If 1 were a prime, we could always
include an arbitrary number of factors of 1 into the product, and so the product
representation would not be unique.

The Fundamental Theorem illuminates many problems of divisibility. For ex-

ample, the reason why 6|14 · 27 even though 6 does not divide either 14 or 27 is

that one of the prime factors (2) of 6 divides 14, and the other one (3) divides
27, but neither 14 nor 27 is divisible by both.

In general, if

a =
∏

pi prime

pαi

i

b =
∏

pi prime

pβi

i

then a divides b if and only if αi ≤ βi for all i.

It follows that, given two numbers a and b, their greatest common factor gcf(a, b)

and their least common multiple lcm(a, b) can be computed as follows:

gcf(a, b) =
∏

pi prime

p
min(αi,βi)
i

lcm(a, b) =
∏

pi prime

p
max(αi,βi)
i
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For instance, the least common multiple of

23 · 54 · 11 and 22 · 55 · 73

is

23 · 55 · 73 · 11

These formulas are not often useful for computation, because usually we do
not know the prime factorization of a number. Usually, by far the best way
of computing the greatest common factor is by use of the Euclidean algorithm.
Nevertheless, these formulas are important in understanding and proving things.

For another example, to say that a and b are relatively prime is just to say that
gcf(a, b) = 1; i.e., no prime divides both a and b. Thus, if a and b are relatively

prime and n is some number such that a|nb, then by looking at the factorization
into primes, we see that a must divide n.

1.1.3 Congruence

The notation

a ≡ b (mod m)

simply means that m|a− b. Another way to think of this is that it means that
a and b each have the same remainder when divided by m. The notation is
read “a is congruent to b mod m”, which is short for “a is congruent to b with
respect to the modulus m”. This notation is due to Gauss.

In particular, a ≡ 0 (mod m) is just another way of saying that m|a.

A good way to think of congruence is by looking at the number line. Suppose
we want to consider congruence mod 7. We draw a number line, and label the
multiples of 7:

-28 -21 -14 -7 0 7 14 21 28

Then 9 and -5 are congruent (mod 7) (in symbols, 9 ≡ −5 (mod 7)) because

the distance between them on the number line is a multiple of 7:

-28 -21 -14 -7 0 7 14 21 28

9-5
14

Congruence is an equivalence relation. Numbers that are congruent are said to
be in the same congruence class. So for instance the congruence class containing
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the number 9 is the set

{. . . ,−33,−26,−19,−12,−5, 2, 9, 16, 23, 30, 37, . . .}

There are 7 congruence classes (mod 7). Each congruence class contains one

number in the set {0, 1, 2, 3, 4, 5, 6}. We often identify these numbers with the

congruence classes (mod 7).

The phrase “the integers mod 7” refers to the these 7 congruence classes.

Here are some important properties of congruences. We will write them as
theorems so that we can refer to them later, although actually they are pretty
elementary:

1.1 Theorem If

a1 ≡ b1 (mod m)

and

a2 ≡ b2 (mod m)

then

a1 + a2 ≡ b1 + b2 (mod m)

This is pretty obvious if you look at the number line. Another way to see it is
as follows: we know by assumption that m|a1 − b1 and m|a2 − b2. Therefore,

m divides their sum: m|(a1 − b1) + (a2 − b2), which is the same as saying

m|(a1 + a2)− (b1 + b2), and this in turn is just the statement that

a1 + a2 ≡ b1 + b2 (mod m)

1.2 Theorem If

a1 ≡ b1 (mod m)

and

a2 ≡ b2 (mod m)

then

a1a2 ≡ b1b2 (mod m)

This is true because the first statement says that a1 = b1 + cm for some integer

c. (That is, a1 and b1 differ by a multiple of m.) Similarly, the second statement
says that a2 = b2 + dm for some integer d. Thus, we have

a1a2 = (b1 + cm)(b2 + dm) = b1b2 + m(cb2 + db1 + cdm)
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That is, a1a2 and b1b2 differ by a multiple of m, which is the conclusion we
needed to reach.

1.3 Theorem As a simple special case of the previous property, if

a ≡ b (mod m)

then

an ≡ bn (mod m)

This just says that if m|a− b then m|(a− b)n.

The converse is not true in general: for instance, 5 ·3 ≡ 7 ·3 (mod 6), but 5 6≡ 7

(mod 6). However, there is an important case in which the converse holds:

1.4 Theorem If

an ≡ bn (mod m)

and if m and n are relatively prime, then

a ≡ b (mod m)

This is because, as we have seen, if m|(a−b)n and m and n are relatively prime,

then m|(a− b).

1.2 Binomial coefficients

In the familiar Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

...

each number is the sum of the two numbers diagonally above it, and the end
numbers on each row are defined to be 1. The rows are numbered starting with

0, and the elements in each row are also numbered starting with 0. The rth

element in the nth row is denoted

(

n

r

)
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(often read “n above r”), so the triangle looks like this:

(

0
0

)

(

1
0

) (

1
1

)

(

2
0

) (

2
1

) (

2
2

)

(

3
0

) (

3
1

) (

3
2

) (

3
3

)

(

4
0

) (

4
1

) (

4
2

) (

4
3

) (

4
4

)

(

5
0

) (

5
1

) (

5
2

) (

5
3

) (

5
4

) (

5
5

)

...

The defining property of the numbers in Pascal’s triangle is thus

(

n

r − 1

)

+

(

n

r

)

=

(

n + 1

r

)

The number
(

n
r

)

is the number of ways of choosing r objects out of a set of n

possible objects. Equivalently, it is the number of different ways of placing r
indistinguishable balls in n boxes so that at most one ball is in each box. This
can be proved by induction, as follows:

First, it’s obviously true for n = 0 and n = 1. (For instance, for n = 1, there is

exactly 1 way of placing 1 ball in 1 box—this agrees with
(

1
1

)

= 1. And there is

by convention 1 way of placing 0 balls in 1 box—this agrees with
(

1
0

)

= 1.)

Now suppose the result is true for n boxes. Suppose we have n + 1 boxes and
r balls. Then either all the r balls are placed in the first n boxes—there are

by assumption
(

n
r

)

ways of doing this, or 1 ball is placed in the last box and

r − 1 balls are placed in the first n boxes—there are by assumption
(

n
r−1

)

ways

of doing this. So the total number of ways of placing r balls in n+1 boxes must
be

(

n

r − 1

)

+

(

n

r

)

which we know is just

(

n + 1

r

)

and this shows that if the result is true for n, it is true for n+1, so we are done.

The numbers in Pascal’s triangle are called binomial coefficients, because they
are the coefficients in the binomial theorem. That is, they are the coefficients
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in the expansion of the binomial power (a + b)n:

(a + b)0 = 1a0b0

(a + b)1 = 1a1b0 + 1a0b1

(a + b)2 = 1a2b0 + 2a1b1 + 1a0b2

(a + b)2 = 1a3b0 + 3a2b1 + 3a1b2 + 1a0b3

and generally,

(a + b)n =

(

n

0

)

anb0 +

(

n

1

)

an−1b1 +

(

n

2

)

an−2b2 + · · ·+
(

n

n

)

a0bn

which we usually write using summation notation:

(a + b)n =

n
∑

i=0

(

n

i

)

an−ibi

This result can be derived as follows: when we multiply out (a + b)n, we have

n factors (a + b). We pick either an a or a b from each factor and multiply
them all together to get a product. If the number of times we pick b is i, we

get a term an−ibi. We repeat this process using all possible choices, and add up

the resulting terms. The number of terms an−ibi is just the number of ways of
picking i of the b terms from the n factors—this is just the same as the number

of ways of putting i balls in n boxes, and so is
(

n
i

)

. Thus, adding all the terms

up, we get

(a + b)n =
n
∑

i=0

(

n

i

)

an−ibi

There is a nice formula for the binomial coefficients:

(

n

r

)

=
n!

r!(n− r)!

This can be seen as follows: Label the r balls from 1 to r. There are n ways of
putting the first ball into the n boxes. After this ball has been placed, there are
n− 1 boxes free, so there are n− 1 ways of placing ball 2 for each placement of
ball 1. Similarly, for each way of placing balls 1 and 2, there are n− 2 ways of
placing ball 3, and so on. Thus, there are

n(n− 1)(n− 2) . . . (n− r + 1) =
n!

(n− r)!



1.2. BINOMIAL COEFFICIENTS 11

ways of placing the numbered balls in the boxes. Any particular set of r boxes,
however, can contain r! permutations of the r balls, which are indistinguishable
if we erase the numbering on the balls. Hence to get the number of ways of
placing r indistinguishable balls in n boxes, we have to divide this number by
r!, yielding

n!

r!(n− r)!

Another way of thinking about this is to consider the equivalent problem of
placing r white balls and n− r black balls in n boxes. If we number the white
balls and the black balls, then we have n numbered balls, which can be placed

in the n boxes in n! different ways. Then as before, we have to divide by r! (for

the white balls) and (n− r)! (for the black balls).

If we look at the fifth row of Pascal’s triangle, we see that all the terms except

the outermost ones are divisible by 5. This is true in general in the pth row,
provided that p is a prime: all the numbers except the outermost ones will be
divisible by p. We can see this as follows: the number

(

p

i

)

=
p!

i!(p− i)!

is an integer2. If 0 < i < p, then both i and (p − i) are strictly less than p,
and so neither factor in the denominator can contribute a factor of p. But the
numerator contains a factor of p, and so this factor remains uncancelled in the

fraction, which shows that it is a factor of
(

p
i

)

, and so p|
(

p
i

)

, which is what we

wanted to show.

As a consequence, we have the striking result

(a + b)p ≡ ap + bp (mod p)

for any prime p. (All the other terms in the binomial expansion on the right-

hand side drop out because p divides all of their coefficients.)

In fact, the result remains true for powers of p:

1.5 Theorem If p is a prime and if n is a positive integer, then

(a + b)pn ≡ apn

+ bpn

(mod p)

Proof. Again this is easy to prove by induction. We have already seen that it

2That the right hand side is an integer is not at all obvious. But we have shown that it is
an entry in Pascal’s triangle, and we know that all such entries are integers.
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is true for n = 1. If it is true for n, then we can compute:

(a + b)pn+1 ≡
(

(a + b)pn)p
(mod p) (by definition)

≡
(

apn

+ bpn)p
(mod p) (by the inductive hypothesis)

≡ (apn

)
p

+ (bpn

)
p

(mod p) (by the result for n = 1)

≡ apn+1

+ bpn+1

(mod p) (by definition)

and we are done.

1.3 Groups

1.3.1 Definition and examples

A group consists of the following:

• a set G (the elements, or members, of the group),

• a distinguished element (often denoted by e) of G. This element is called

the identity element (or simply the identity) of G,

• a binary operation (usually denoted by addition or multiplication) from
G×G to G such that for all elements a, b and c of G,

1. a(bc) = (ab)c (multiplication is associative)

2. ea = a = ae (e is a multiplicative identity)

• and such that to each element a of G there is a unique two-sided multi-
plicative inverse. That is, for each a there is a unique element b such that

ab = ba = e. The multiplicative inverse of a is conventionally written a−1.

If the group operation is written as addition instead of multiplication, the in-
verse of a is denoted by −a, and the identity element is often just denoted
by 0. Writing the group operation as multiplication, we can write repeated
multiplication as exponentiation in the usual fashion:

gn def
= gn−1 · g

and we can also define

g−n def
= (gn)−1
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It is easy to see that this is also equal to (g−1)n, and that the usual formulas
remain true:

gn+m = gn · gn

(gn)m = gnm

for all integers n and m.

Note that a set G could have two different group operations defined on it—in
that case, we really have two different groups. (We will see an example of this

below.) In other words, the group consists not only of the elements of G but

also the group operation. Nevertheless, we will often simply refer to “the group
G”, with the understanding that the group operation is also implicitly being
referred to. This sort of usage is called in mathematics an “abuse of notation”,
and is a good thing as long as it does not lead to confusion. In fact, without
abuse of notation, most mathematics would become completely unreadable.

Nevertheless, we may occasionally (but very rarely) want to be quite specific.

In such a case, we may write something like “let 〈G, ◦, e〉 be a group”. The
meaning of this is that G is the set of elements of the group, ◦ is the group

operation (so the group operation applied to the elements a and b of the group

is a ◦ b), and e is the identity element of the group.

Here are some examples of groups:

The real numbers R, under addition The identity element is 0. The (ad-

ditive) inverse of any element a is −a.

The non-zero real numbers R∗, under multiplication The identity element

is 1. The (multiplicative) inverse of any element a is a−1 = 1/a.

The positive real numbers R+, under multiplication This is essentially
the same as the previous example. Since the positive real numbers are
themselves a group under multiplication, with the same identity element
1, they form a subgroup of the larger group R∗.

The 2-dimensional plane R2 The operation is vector addition, and the iden-
tity element is the zero vector (0, 0).

The 3-dimensional space R3 Similar to the previous example.

n-dimensional Euclidean space Rn . Similar to the previous example. The
elements of this space are n-tuples (x1, x2, . . . , xn). The group operation

is (coordinate-wise) addition. The identity element is the zero vector

(0, 0, . . . , 0).
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The integers Z under addition The identity element is 0. (Note that the
non-zero integers Z∗ do not form a group under multiplication, because

no numbers except 1 and -1 have multiplicative inverses in Z∗.)

The integers Z mod m, under addition m can be any positive integer. This
is a group for the following reasons:

As we noted above in Theorem 1.1, if a1 ≡ b1 (mod m) and a2 ≡ b2 (mod

m), then a1 + a2 ≡ b1 + b2 (mod m). This shows that it makes sense to

talk about adding congruence classes (mod m); to add two congruence
classes, just pick a number in each one and add them. The result will be
in another congruence class which is by definition the sum of the first two
congruence classes. The property of congruences noted above shows that
it doesn’t matter which two numbers you pick to add—you will always get
the same final congruence class.

The congruence class containing 0 is then clearly the identity element, and

the (additive) inverse of the congruence class containing a number a is the
class containing the number −a. Thus, we really do have a group.

This group, which has m elements, is denoted Zm. As mentioned before,
we often refer to the elements of this group as {0, 1, 2, . . . , m− 1}, since

any integer is congruent to exactly one of these integers (mod m).

The non-zero elements of Zp, under multiplication, for p prime If p is

a prime, and a is not congruent to 0 (mod p), then p does not divide a. If

also b is not congruent to 0 (mod p), then p does not divide the product
ab. Thus the non-zero elements of Zp are closed under multiplication. The

elements of this set are often denoted {1, 2, . . . , p− 1}, as above, and the
set itself is denoted Z∗

p. Note that Z∗

p has p− 1 elements.

We have to show that Z∗

p is a group. Just as we used Theorem 1.1 to

show that addition of congruence classes is well-defined, we can use The-
orem 1.2 to show—in exactly the same way—that multiplication of con-
gruence classes is well-defined.

Clearly 1 is the multiplicative identity. So we have to show that every
element has a multiplicative inverse.

To do this, we reason as follows: Let a be in Z∗

p and consider the set

obtained by multiplying a by each element of Z∗

p. This set is

{1 · a, 2 · a, 3 · a, . . . , (p− 1) · a}

Now these elements are all distinct, for to say that ab = ac in Z∗

p is just

to say that ab ≡ ac (mod p). But since a ∈ Z∗

p, p is relatively prime to a,

so this means that b ≡ c (mod p); i.e., b = c in Z∗

p (by Theorem 1.4).

Since Z∗

p is a finite set, it follows that the set of multiples of a is just a

permutation of Z∗

p. Therefore, one of the elements of this set must be 1.
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That is, there must be an element b ∈ Z∗

p such that ab ≡ 1 (mod p). This

b is the multiplicative inverse of a.

For a concrete example, let us take p = 5 and a = 2. The set

{1 · 2, 2 · 2, 3 · 2, 4 · 2}

is just the set

{2, 4, 1, 3}

which is a permutation of

Z∗

5 = {1, 2, 3, 4}

This reasoning is used over and over in this subject.

The rotations in the plane around (0, 0) . The identity element is the ro-
tation of 0 degrees, i.e., the “rotation” that does nothing. The inverse of
the rotation through an angle θ is the rotation through the angle −θ.

The rotations in R3 around lines passing through (0, 0, 0) This is simi-
lar to the previous example.

All the groups listed above except for the last one have the property that the
group operation is commutative. The last example is different, because rotations
about different axes do not in general commute. Commutative groups are also
called abelian groups in honor of Niels Henrik Abel, a Norwegian mathematician
in the early 1800’s.

Although many important groups are non-abelian, we will only need to consider
abelian groups in this survey.

1.3.2 Subgroups

A subgroup H of a group G is a subset of G that includes the identity of G

and which is itself a group under the group operation of G. So for instance (as

we pointed out already above), the multiplicative group R+ is a subgroup of

the multiplicative group R∗. Also, any line through the origin is an (additive)

subgroup of R2. Note, however, that a line that does not pass through the

origin is not a subgroup of R2: it does not contain the identity of R2, and the
vector sum of two elements of the line will not be on the line, so it is not even
closed under the group operation.

Let us continue with this example. Let H be a line through the origin, thought

of as a subgroup of R2. If a vector a is not in the line H then a+H (remember

we are using additive notation here) is a line that is parallel to H . (It is called
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a translation of H ; the term “translation” refers geometrically to a rigid motion
not involving a rotation.) a + H does not pass through the origin, so it is not a

subgroup of R2. And since a + H is parallel to H , it is disjoint from H .

Now we could continue this process: if b is a vector that is not in H and also
not in a + H then b + H is another line that is parallel to H and disjoint from

both H and a + H , and so on. In fact, the whole group R2 can be thought of

as being “tiled” by disjoint copies (or translates) of H , each copy being of the

form a + H . (See Figure 1.1)

H

a + H

b + H

a

b

Figure 1.1: Tiling R2 with translates of a subgroup H

This construction is valid in any group: Let G be a group, with the group
operation written as multiplication. If H is a subgroup of G, and if a is any
element of G, then the set aH is defined to be the set of multiples

aH
def
= {ah : h ∈ H}

You can think of the set aH as “H translated by a”.

If a is not in H , then aH and H have no elements in common. This is because
if ah1 were an element of aH that was also an element h2 of H , then from the
equation

ah1 = h2
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we would get (by multiplying on the right by h−1
1 )

ah1h
−1
1 = h2h

−1
1

But the left hand side is just a, and the right hand side is an element of H , so
this says that a is an element of H , which we assumed was not the case. Thus
aH and H must be disjoint.

This shows again that aH is not a subgroup of G—for one thing, it doesn’t
contain the identity.

We can continue as before: if b is not in H and not in aH then bH is disjoint
from H by what we have already shown. It is also disjoint from aH , for if

bh1 = ah2 then just as before, we get b = ah2h
−1
1 , which shows that b is in aH ,

a contradiction. Thus, continuing the process until we can’t go any further, we
see that the whole group G is a disjoint union of sets of the form aH .

If G is a finite group, then H is also finite. Further, the number of elements

in aH (for any a) is the same as the number of elements in H . For ah1 = ah2

if and only if h1 = h2 (by multiplying or dividing on the left by a). Thus, the
number of elements of G is just the product of the following two numbers:

• the number of elements of H

• the number of distinct sets aH

and in particular, the number of elements of H divides the number of elements
of G.

The number of elements of a group is called the order of that group; similarly
for a subgroup. We have thus shown the following:

1.6 Theorem The order of any subgroup of a finite group divides the order of the
group.

This theorem is due to Lagrange.

1.3.3 Products of groups

If 〈G, ◦, e〉 and 〈H, •, f〉 are groups, then we can form a new group G×H simply

by making each original group a “coordinate” in the new group and having the
group operations act separately on each coordinate. To be precise, the new

group consists of all the ordered pairs (g, h) where g is an element of G and H
is an element of H . The group operation is defined by

(g1, h1)× (g2, h2)
def
= (g1 ◦ g2, h1 • h2)
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With this definition, it is clear that the element (e, f) is the identity for the new

group and that the inverse of (g, h) is (g−1, h−1), where g−1 is the inverse (in

G) of g, and similarly for h−1.

You may be concerned that, while it is clear that (e, f) is an identity, we have
not shown that the identity is unique. Well, this is an easy exercise. But
actually, it is not necessary to prove this, because in a complete treatment of
group theory, one of the first results proved is that if an identity exists at all, it

is automatically unique. (The proof is quite easy.) So we don’t have to concern
ourself with this point.

Products of groups are quite common. For instance, R×R is just the group R2.
And R×R×R (it’s obvious what this means—the group of ordered triples. . . )

is just the group R3. And so on.

Here are some other important examples:

Z2 × Z3 This group has 6 elements, which we can write as

(0, 0) (0, 1) (0, 2)
(1, 0) (1, 1) (1, 2)

where (0, 0) is the identity, and addition is (mod 2) in the first coordinate

and (mod 3) in the second.

The group Z6 also has 6 elements, and is isomorphic to Z2 × Z3. This
means that each group can be thought of as a simple renaming of the
other. Precisely, two groups 〈G, ◦, e〉 and 〈H, •, f〉 are isomorphic if and

only if there is a function φ : G→ H (the “renaming function”) such that

• φ is 1-1 and onto (i.e., φ sets up a 1-1 correspondence between the

elements of G and the elements of H),

• φ(e) = f , and

• For all elements a and b of G, φ(a ◦ b) = φ(a) • φ(b)

We can set up the correspondence between Z2 × Z3 and Z6 (which is

represented by the set {0, 1, 2, 3, 4, 5}) as follows:

(0, 0) ←→ 0

(0, 1) ←→ 4

(0, 2) ←→ 2

(1, 0) ←→ 3

(1, 1) ←→ 1

(1, 2) ←→ 5
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In terms of the renaming function φ, this is just the same as defining3

φ(0, 0) = 0

φ(0, 1) = 4

φ(0, 2) = 2

φ(1, 0) = 3

φ(1, 1) = 1

φ(1, 2) = 5

It is a straightforward exercise to show that this correspondence preserves

the group operation. (That’s very important—just a 1-1 correspondence

is completely insignificant unless it also preserves the group operation.)

We’ll explain below an easy way to come up with this correspondence.

Z2 × Z2 This is a group with four elements. One might think at first that
since Z2 × Z3 is isomorphic to Z6, that also Z2 × Z2 is isomorphic to
Z4. Certainly they have the same number of elements, so they can be put
into 1-1 correspondence. But there is no way to do this so that the group
operation is preserved. We will see why this is true in the next subsection.

1.3.4 The order of an element of a group

Let G be a finite group, with the group operation represented as multiplication.

If g is any element of G, consider the set of powers
{

gi : i = 1, 2, . . .
}

of g. Since

g is a finite group, eventually there will be two powers that are equal—say they

are gc and gd. We may assume that c > d. Then since gc = gd, we have

e = gc(gd)−1 = gcg−d = gc−d Thus, there is a positive integer n (in this case

n = c− d) such that gn = e.

The order of an element g of G is defined to be the least positive integer n such
that gn = e. (Note that we have previously defined the order of a group. These
two uses of the word “order” are not precisely the same, but they are related,

as we’ll see below.)

Here are some simple things we can say about the order of an element. Say n
is the order of g:

• g raised to any multiple of n is e. For, grn = (gn)r = er = e.

• If gm = e then m is a multiple of n. For if not, we can divide m by n
in the usual way, to get m = qn + r where the remainder r is not 0; we

have 0 < r < n. Then e = gm = gqn+r = (gn)qgr = gr, and this is a
contradiction, because 0 < r < n.

3Note that actually we should write φ((0, 0)) instead of φ(0, 0). But since there is no chance
of confusion here, we use the shorter form. This is another example of abuse of notation.
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So the powers of g that yield the identity are precisely the multiples of the order
of g.

Already we can now see that Z2 × Z2 cannot be isomorphic to Z4. For every
element of Z2×Z2 has order 1 or 2, while two elements of Z4 (1 and 3) have order
4. So these two groups, even though they have the same number of elements,
cannot be thought of as just renamings of each other—the group operations act
in very different ways on the two groups.

To repeat: if two groups are isomorphic, they must have the same number of
elements. But just because two groups have the same number of elements does
not guarantee that they are isomorphic. The group operation must also be
preserved by the renaming map.

A finite group is cyclic if there is an element whose order is the order of the
group. Another way of saying this is that a group is cyclic if there is an element
g such that every element of the group is a power of g. In such a case, we say
that such an element g generates the group. What we pointed out above is that
Z4 is cyclic, but Z2 × Z2 is not, so they cannot be isomorphic.

The way we arrived at the correspondence between Z2 × Z3 and Z6 was to
note that both groups are cyclic. We picked a generator for each, and made
them correspond. (The generators we picked were 1 for Z6 and (1, 1) for Z2 ×
Z3.) Then corresponding powers4 of these elements must also correspond; that
determines the renaming map. Actually, Z6 has one other generating element:
−1 also has order 6. We could have picked either 1 or −1 to use in constructing
the isomorphism.

Clearly, all the additive groups Zm are cyclic, and they are all generated by the
element 1. It is a remarkable fact that the multiplicative groups Z∗

p are also

cyclic. I don’t think this is at all obvious. The proof, however, is stunningly

short—we will see it later (Theorem 1.18, page 42).

If h is any element of a finite group G, let H denote the set of all powers of
h. So H is all of G if and only if G is cyclic and h generates G. But even if
this is not true, H itself is a cyclic subgroup of G generated by h. And clearly
the order of h is the number of elements of the subgroup H . By Theorem 1.6

(page 17), then, we have:

1.7 Theorem The order of any element of a finite group divides the order of the
group.

Let’s see what this means in two simple cases:

G = Zm If a is an element of Zm (i.e., a number (mod m)), then the order n of

a divides m. To say that n is the order of a just says that na ≡ 0 (mod

4actually, corresponding multiples, since we are using the additive notation for the group
operations
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m), and as we have seen, the fact that n|m means that also ma ≡ 0 (mod

m). This is really trivial—of course m|ma for any number a.

G = Z∗

p, for p prime The order of G is p− 1. If n is the (multiplicative) order

of a number a in Z∗

p, then an ≡ 1 (mod p). The theorem tells us that n

divides p− 1, and so also ap−1 ≡ 1 (mod p).

In contrast to the result for Zm, the result for Z∗

p is not at all trivial—I don’t

think it’s obvious at all, even though the proof we just gave is today quite
simple. It is significant enough to have a name:

1.8 Theorem (Fermat’s “little theorem”) If p is a prime and p does not divide
a, then

ap−1 ≡ 1 (mod p)

1.3.5 Orders of elements in abelian groups

1.9 Lemma If a and b are two elements in an abelian group whose orders are
relatively prime, then the order of ab is the product of their orders.

Proof. Say the order of a is n and the order of b is m. Since a and b commute,
we have

(ab)nm = anmbnm = e

so the order of ab is at most nm.

Now say the order of ab is r. We have

(ab)rn =

{

(

(ab)r
)n

= e

(an)
r
brn = brn

so brn = e. Therefore the order of b, which is m, must divide rn. But n and m
are relatively prime. Therefore m actually divides the order r of ab.

Similarly, n must also divide r. Hence r ≥ lcm(m, n) = mn

Now one might think at first that one could extend this theorem so that in
general (even if the orders of a and b were not relatively prime), the order of

ab would be lcm(n, m). However, this is clearly not true. For instance, just

take b = a−1. Then a and b have the same order, but the order of ab is 1.
Nevertheless, we can show that there is some element of the group whose order
is lcm(n, m):

1.10 Lemma If an element a of an abelian group G has order n, and if d is any
divisor of n, then there is an element of G of order d.
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Proof. an/d is such an element. For (an/d)d = an = e, so the order of an/d is
no larger than d. And on the other hand, its order can’t be less than d, because
if it were, then the order of a would be less than n, which is a contradiction.

1.11 Theorem If a and b are two elements in an abelian group G whose orders are

n and m respectively, then there is an element c of G whose order is lcm(n, m).

Proof. Say n and m have the prime factorizations

n =
∏

pi prime

pνi

i

m =
∏

pi prime

pµi

i

Then as we have already mentioned,

lcm(n, m) =
∏

pi prime

p
max(νi,µi)
i

For each prime pi, we know by the proof of the preceding lemma that

an/p
νi
i has order pνi

i

and similarly

bm/p
µi
i has order pµi

i

Set

ci =

{

an/p
νi
i if νi ≥ µi

bm/p
µi
i otherwise

Then ci has order p
max(νi,µi)
i . The orders of all the elements ci are relatively

prime, so their product c =
∏

ci has order
∏

p
max(νi,µi)
i = lcm(n, m).

1.12 Corollary If G is an abelian group, and if n is the greatest order of any element
of G, then the order of each element of G divides n.

Proof. If m is the order of an element of G, and if m does not divide n, then
there is an element of order lcm(m, n), which must be strictly greater than n.
But we assumed that n was the largest order of any element of G, so this is a
contradiction.
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1.4 Rings

Well, groups are quite nice, but the mathematical objects we know and love best
really have two operations, not one. Rings and fields are abstract structures
having two operations. These operations are almost always denoted by addition
and multiplication. You can think of a ring as an abstract version of the integers
Z, and a field as an abstract version of the real numbers R.

A ring is a set R, together with two operations, denoted by addition and mul-
tiplication, such that

• Under addition, R is an abelian group. The identity is denoted by the
symbol 0. Thus, for all elements a and b of R,

a + b = b + a

a + 0 = a = 0 + a

• Multiplication is associative, and there is a multiplicative identity element,
denoted by the symbol 1. Thus,

a(bc) = (ab)c

a1 = a = 1a

• Multiplication distributes over addition. That is, for all elements a, b, and
c of R,

a(b + c) = ab + ac

(b + c)a = ba + ca

We denote the element 1 + 1 by 2. Similarly, we denote 1 + 2 by 3, and so on
for any positive integer n. The additive inverse of n is (as usual) denoted by
−n. Thus, for any element a in the ring,

2a = (1 + 1)a = 1a + 1a = a + a

and in general, for any integers n and m,

(n + m)a = na + ma

Certainly the ordinary integers Z form a ring (with the ring elements 0 and

1 being the actual integers 0 and 1). In fact, the integers have a few more
properties, which we will need:
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• Multiplication is commutative: for elements a and b,

ab = ba

A ring in which multiplication is commutative is called a commutative ring. (We

have already defined a ring so that addition is automatically commutative.)

Finally,

• If a and b are two elements and ab = 0, then at least one of a and b is 0.

This is usually expressed by saying that the ring has no zero-divisors. It may
not at first be obvious that a ring might have zero-divisors, because we are so
used to thinking of the ordinary integers, where this can’t happen. However,
here is an example:

The set Z6 is a ring under addition and multiplication. This is because just as
addition of congruence classes is well-defined by Theorem 1.1, multiplication of
congruence classes is well-defined by Theorem 1.2. However, we see that in this

ring, 2 · 3 is 0. (That is, 2 · 3 ≡ 0 (mod 6).) So this ring has zero-divisors.

On the other hand, if p is a prime, then the ring Zp does not have zero-divisors.

This is because, as we have seen already before, if ab is (congruent to) 0 (mod p),

then p|ab, so either p|a or p|b; i.e., either a or b is already (congruent to) 0 (mod

p).

A commutative ring with no zero-divisors is called an integral domain, presum-
ably because it is very similar to the ordinary integers. All the rings we will
need to consider in this survey are integral domains.

Note that although a ring is a group under addition, its non-zero elements
do not necessarily constitute a group under multiplication—although it has a
multiplicative identity, it does not have to have multiplicative inverses. The
ring Z is an example.

For now, the two main examples of rings to keep in mind are Z and Zp, where p

is any prime. Soon we shall see some more rings, which will be very important
to us.

1.5 Fields

A field is a commutative ring in which each non-zero element has a multiplicative
inverse.

If R is a ring, we denote the set of non-zero elements of R by R∗. Thus, a
commutative ring R is a field if R∗ is a multiplicative group. (And in general, the

set of non-zero elements of a field is called the multiplicative group of the field.)



1.5. FIELDS 25

Thus when R is a field, the set R∗ is in particular closed under multiplication,
and so R has no zero-divisors. That is, each field is automatically also an integral
domain.

The ring Z is not a field, as we have already noted. On the other hand, the ring
Zp is a field, for any prime p—we saw previously that Z∗

p was a group.

The most intuitive fields for most of us are the fields R (the real numbers), C

(the complex numbers), and Q (the rational numbers). However, even though
these fields are the most important fields in mathematics, they are relatively
unimportant for our purposes in this survey. The most important field for us is
Zp. Note that Zp has a finite number of elements, and is thus the first example

we have seen of a finite field. We will see that there are many more.

Just as a general group is often denoted by the letter G, a general field is most
often denoted by K or k. This comes from the German word for field, Körper.

(In French, similarly, the word is corps.)

We mentioned above that we can consider each integer n as being an element of
any ring; this holds in particular then also for fields. It may be, however, that
there are some positive integers that are equal to 0 in the ring. For instance,
in Zp, any multiple of p is 0. In such a case, we call the smallest positive

integer that is 0 in the ring the characteristic of the ring. So for instance, the
characteristic of the ring Zm is m. It is easy to see that any integer then is 0 in

the ring if and only if that integer is a multiple of the characteristic. (In fact,
the characteristic is just the order of the element 1 in the additive group of the
field, and so n · 1 = n = 0 if and only if the order of 1 divides n.)

If no positive integer equals 0 in the ring, you might think we would say that
the ring has characteristic infinity. However, algebraists say in such a case that
the ring has characteristic 0. So for instance, the rings Z, R, and Q all have
characteristic 0. However, all finite fields must have non-zero characteristic,
since, being finite, they can’t contain distinct copies of all the integers.

The characteristic of any field must be prime. This is because otherwise, there
would be two non-zero numbers whose product was the characteristic; i.e., the
field would have zero-divisors, and we know this is impossible.

In a field K of characteristic p, the elements {0, 1, 2, . . . , p− 1} themselves form

a field that is obviously isomorphic to Zp. This subfield of K is called the prime

field of K.

The characteristic of a finite field divides the number of elements in the field.
This is simply because the prime field is a subgroup of the additive group of the
field, and the order of the subgroup must divide the order of the group. This
result is actually much weaker than the whole truth, which is that the number
of elements in a finite field is a power of the characteristic. We’ll see that below
in Theorem 1.17 on page 42.
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1.6 Vector spaces

1.6.1 Vector spaces and dimensionality

The simplest vector spaces are R2 and R3. When we call them vector spaces,
we are referring to the following properties, which we will illustrate using the

vector space R2:

• Their elements are called vectors. A typical vector is ~v = (2,−3).

• Vectors can be added. Addition is commutative, and the set of vectors
forms a group under addition. That is, there is an additive identity (the

zero vector (0, 0)), and every vector ~v has an additive inverse −~v. For

instance, −(2,−3) is the vector (−2, 3).

• The real numbers are called scalars. Vectors can be multiplied by scalars
to form other vectors. For instance, 5(2,−3) = (10,−15). This scalar
multiplication “acts like you would expect”. For instance,

−(2,−3) = (−1)(2,−3)

(7 + π)(2,−3) = 7(2,−3) + π(2,−3)

7
(

(2,−3) + (0, 1/3)
)

= 7(2,−3) + 7(0, 1/3)

and so on.

We call R2 a vector space over R, because the scalars are elements of R. R2

can be represented as the set of all ordered pairs of real numbers.

Similarly, R3 is also a vector space over R, and can be represented as the set
of all ordered triples of real numbers.

In general, we can make the following definition:

A vector space over R is a set V such that

• V is an additive abelian group. The additive identity is denoted by ~0 and
is called the zero vector.

• There is an operation called scalar multiplication that takes an element
of R and an element of V and produces another element of V . Scalar
multiplication is written multiplicatively, and has the following properties:
for all vectors ~v and ~w and for all elements a and b of R,

1. a(b~v) = (ab)~v
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2. (a + b)~v = a~v + b~v

3. a(~v + ~w) = a~v + b~w

4. 1~v = ~v

5. 0~v = ~0 (This actually follows from item 2.)

6. (−1)~v = −~v (This follows from items 2, 5, and 4.)

We can go one step farther, and for the purposes of this survey, this is important:
There is no reason why the scalars have to be elements of R. All that is really
needed is that there be a field K which can be used as the scalar field. A vector
space over a field K is defined exactly as above, simply substituting K for R.
Vector spaces over the complex numbers C are important in quantum mechanics
and in many parts of mathematics. For us, a useful example is a vector space
over Zp: pick a prime p and consider all ordered pairs of elements of Zp. Scalar

multiplication is performed coordinate-wise; that is,

a(x, y) = (ax, ay)

It is easy to see that this is actually a vector space over Zp. For instance—say

p = 3—we have

(2, 1) + (1, 1) = (0, 2)

2(2, 1) = (1, 2)

(Remember that all computations are carried out in Z3, that is, (mod 3)).

This vector space, which is typically denoted Z2
p is a 2-dimensional vector space

over Zp, because it can be represented as ordered pairs of elements of Zp.

Similarly, Zn
p , the set of ordered n-tuples of elements of Zp, is an n-dimensional

vector space over Zp.

In general, if K is a field, Kn denotes the vector space of n-tuples of elements of
K. If K is a finite field—say K has c elements—then Kn will have cn elements,
since there will be cn different ordered pairs with coordinates in K. For instance,
Zn

p has pn elements.

Sometimes a set can be considered to be a vector space over 2 different fields.
In this case, the dimension of the space depends on the field over which it is a

vector space. For instance, the vector space C2 is the 2-dimensional space of
ordered pairs of complex numbers:

C2 = {(z1, z2) : z1, z2 ∈ C}
Now each complex number z has a real and an imaginary part—we write z =
x + iy, where x and y are each real numbers. Thus, we could write

C2 = {(x1 + iy1, x2 + iy2) : x1, y1, x2, y2 ∈ R}
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which is isomorphic to the set of all real 4-tuples:

R4 = {(x1, y1, x2, y2) : x1, y1, x2, y2 ∈ R}

Thus, as a vector space over the field C, C2 has dimension 2. But as a vector

space over the field R, C2 has dimension 4.

Note that these are really two different vector spaces, even though they consist

of the same set of elements: when we consider C2 as a vector space over R, we
can only multiply each vector by real numbers; when we consider it as a vector
space over C, we can multiply each vector by any complex number.

As a matter of notation, if we have a vector space of n-tuples over a field K, we
give names to the following special vectors:

e1 = 〈1, 0, . . . , 0〉 = “unit vector in the x direction”

e2 = 〈0, 1, . . . , 0〉 = “unit vector in the y direction”

...

en = 〈0, 0, . . . , 1〉 = “unit vector in the nth direction”

All the vector spaces we have been looking at have been sets of ordered n-tuples
of elements of a field K. Such a space is said to have dimension n over K.

A set of vectors {v1, v2, . . . , vr} is said to generate or span the vector space V
if every element v of V can be represented as a linear combination of elements
vi with coefficients in K:

v = k1v1 + k2v2 + · · ·+ knvn

(Of course some or all of the coefficients ki might be 0.) For instance, the vectors

{e1, e2, . . . , en} span the vector space Kn of n-tuples of elements of the field K.

One of the main theorems proved early on in courses in linear algebra is this:

1.13 Theorem If V is a vector space over a field K for which there is a set of
finitely many vectors that generate all of V over K, then V is actually finite-
dimensional—that is, V can be represented as the set of all n-tuples of elements
of K. Further, the dimension n is unique—one could not have one representa-
tion of V as the set of 3-tuples over K and another as the set of 4-tuples over
K.

We won’t prove this theorem here, but we do use it for one important observa-
tion. Remember that we showed above on page page 25 that the characteristic
of a finite field divides the number of elements of the field. That’s really only
part of the story; the truth of the matter is quite a bit stronger:

1.14 Theorem If K is a finite field of characteristic p, then the number of elements
of K is a power of p.
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Proof. Just by referring to the definition above of a vector space, we see that
any field K is a vector space over its prime field. Further, any finite field K,
when considered as a vector space over its prime field, must have a finite basis,
since there are only finitely many elements of K to begin with. Therefore K
is a finite-dimensional vector space over its prime field. Say its dimension is n.
Then K can be represented as the set of n-tuples of elements of the prime field.
Since there are pn such n-tuples, it follows that a finite field of characteristic p
has pn elements.

Theorem 1.13 is actually usually expressed somewhat differently: We say that
a set of vectors {v1, v2, . . . , vr} that spans a vector space V is a basis if the set

is minimal—that is, if there is no subset of this set that also spans V . Then
the theorem states that each basis of a vector space V has the same number of
elements. This number is then called the dimension of V .

Continuing a little with this, a set of vectors {vj} is linearly independent if no

vector in this set can be expressed as a linear combination of the remaining

vectors. If {vj} is a spanning set for V and it is not linearly independent, then

some vector (say v1) can be expressed in terms of the rest of the vectors; we
would have

v1 = a2v2 + a3v3 + · · ·+ arvr

But this means that any vector v in V , which by assumption has a representation
in terms of the vectors {v1, v2, . . . , vr}:

v = b1v1 + b2v2 + b3v3 + · · ·+ brvr

actually has a representation in terms of the smaller set {v2, . . . , vr}—we can just
rewrite v1 in terms of the remaining vectors as above and collect the resulting
terms. This shows that if a spanning set is not linearly independent, it is not a
basis of V .

Conversely, if a spanning set {v1, v2, . . . , vr} is not a basis of V , then it has a

subset which still spans V . If this subset does not include v1, say, then this
just means that v1 (as an element of V ) must be a linear combination of the
remaining vectors in this set, and so the set is not linearly independent.

So a set of vectors {vj} is a basis if and only if it spans V and is linearly

independent.

In case V has dimension 2, any basis will have 2 elements. In this case, things are
particularly simple: two vectors are linearly independent if and only if neither

is a multiple of the other. Figure 1.2 shows an example of two bases for R2,
considered as a vector space over R. The first basis is the usual one:

e1 = (1, 0)

e2 = (0, 1)
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The second basis consists of the two vectors

f1 = (4,−1)

f2 = (1, 1)

Clearly in each case, neither vector is a multiple of the other. The figure shows
how the vector (2, 4) can be expressed as a linear combination of the basis
vectors in each case.

(2, 4) = 2e1 + 4e2 (2, 4) = − 2
5f1 + 18

5 f2

Figure 1.2: Two different bases for R2. In each case the basis vectors are the
thick ones.

1.6.2 Linear functions

If V is a vector space over a field K, a function L : V → V (“L maps V to V ”)

is said to be a linear function (or a linear transformation) if and only if the
following two criteria both hold:

1. L(u + v) = L(u) + L(v) for all vectors u and v in V .

2. L(au) = aL(u) for all vectors u in V and scalars a in K.

We could combine these conditions into the single condition

1. L(au + bv) = aL(u) + bL(v) for all vectors u and v and scalars a and b.
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It follows immediately (take u = v, a = 1, and b = −1) that for any linear

function L, L(0) must be the zero vector.

If V is an n-dimensional vector space over K, represented as the set of ordered
n-tuples over K, then any n × n matrix with elements in K corresponds to a
linear function from V to V , as follows: say the matrix is

T =











t11 t12 . . . t1n

t21 t22 . . . t2n

...
...

. . .
...

tn1 tn2 . . . tnn











The matrix T applied to the vector v = 〈v1, v2, . . . , vn〉 is just the vector whose

ith coordinate is

n
∑

j=1

tijvj

That is, the ith coordinate of the vector T (v) is the “dot product” of the ith

row of the matrix T with the vector v.

It is easy to see that this function is linear. It is also true that any linear function
from V to V has this form—it can be represented by a matrix in exactly this
way. We don’t actually need this result here, although it is easy to prove.

What is important for us is that composition of linear functions corresponds
to multiplication of their associated matrices. That is, if S and T are linear
functions given by the matrices {sij} and {tij} then the linear function ST

(“first apply T , then apply S to the result”), which is defined so that

(ST )(v) = S
(

T (v)
)

is given by a matrix A = {aij}, where

aij =

n
∑

k=1

siktkj

If T is a matrix, we define T 2 = TT , T 3 = TTT , and so on. In this way, we can
define T n for any positive integer n.

The identity matrix I is defined to be the matrix that is 1 on the diagonal and
zero elsewhere. That is, if I is the matrix aij , then

aij =

{

1 i = j

0 i 6= j
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I is then the identity function, when considered as a linear transformation:
I(v) = v for every v in V . Since IT = TI = T for any matrix T , it makes sense

to write T 0 = I for any T .

We should also note that if T is the 0 transformation (i.e., if Tv = 0 for all

vectors v)5 then the matrix corresponding to T must be the 0 matrix. This

is because Tej is just the vector whose components are the jth column of this

matrix6 . So if all Tej are 0 then every element in every column of the matrix

for T must be 0.

In a similar way, we can show that a linear transformation is determined by its
values on a set of vectors that spans V :

Say {wi} is a set of vectors7 in V that spans V . That is, every vector v in V

can be written as a linear combination of vectors {wi} with coefficients in K.

Suppose that we have a linear transformation T , and we know that T (wi) = 0

for each vector wi. Then T is identically 0. This is simply because if v is any
vector, we can write

v = a1w1 + a2w2 + · · ·+ anwn

with the coefficients ai in K. Then because T is linear, we get

T (v) = a1T (w1) + a2T (w2) + · · ·+ anT (wn)

and each term on the right is 0, since all the T (wi) are 0. So T (v) = 0 for all
vectors v, and so T is identically 0.

The way this result is used is that if we have two matrices A and B, and we
know that Awi = Bwi for all i, then we must have A = B. For we can just set
T = A−B and apply the previous reasoning.

1.6.3 Dot products and adjoint transformations

We mentioned dot products above. We can define a dot product (or “scalar

product”) of two vectors in the usual fashion. Usually mathematicians do not
write it with a dot, however, but with parentheses, like this:

(u, v) =

n
∑

i=1

uivi

5As a slight abuse of notation we often write Tv instead of T (v). The meaning is always
clear from the context.

6Remember that e1 = 〈1, 0, . . . , 0〉, e2 = 〈0, 1, . . . , 0〉, and so on.
7This is a little bit tricky notationally: I really wanted to write {vi}, but I have used

vi above to denote a (scalar) component of the vector v. So here I am using wi, with the
understanding that wi is a vector in V , not a scalar component in K.
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Of course this looks like an ordered pair, but it is not. You have to get the
meaning by context, but this is never a problem in practice. Note that here u
and v are vectors in V , but (u, v) is a scalar in K.

If T is a linear transformation from V to V , as above, and we represent T as
a matrix {tij}, let us denote by T ∗ the transformation whose matrix is the

transpose of T . That is,

t∗ij = tji

Then given any two vectors u and v in V , we have

(Tu, v) =

n
∑

i=1

(Tu)ivi

=

n
∑

i=1

n
∑

j=1

tijujvi

=

n
∑

j=1

uj

n
∑

i=1

tijvi

=

n
∑

j=1

uj

n
∑

i=1

t∗jivi

= (u, T ∗v)

T ∗ is called the adjoint of T . Note that since

(STu, v) = (Tu, S∗v) = (u, T ∗S∗v)

we have

(ST )∗ = T ∗S∗

(note the order reverses), and consequently

(T n)∗ = (T ∗)n

1.6.4 An application of vector spaces

The familiar Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

is defined by setting the first two terms to 1 and making each subsequent term
be the sum of the two preceding terms. Computations with this sequence turn
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out to be a little simpler if we consider the sequence as starting with a “0th”

term 0. Denoting the nth term of the sequence by Fn, we have

n Fn

0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34

10 55
11 89

...

This is what is called a recursive definition—each term of the sequence is defined

in terms of previous ones. But suppose we want to know what the 10574th term
of the sequence is, without computing all the previous ones? It would be nice
to have a formula that gives us Fn directly in terms of n.

There actually is such a formula; it is

Fn =
1√
5

(

1 +
√

5

2

)n

− 1√
5

(

1−
√

5

2

)n

The trouble with this formula is that it seems too cute; when you see it for the
first time it is not at all clear where it could possibly come from, although you
can verify for the first few values of n that it really does give the corresponding
values of Fn correctly. So we will now explain where this formula comes from:

Consider the set V of all sequences {f0, f1, . . . } of real numbers that satisfy

fn = fn−1 + fn−2

for all n ≥ 2. For example, V contains the following sequences:

• 0, 1, 1, 2, 3, 5, 8, . . .

• -1, 2, 1, 3, 4, 7, 11, . . .

• 1, 0, 1, 1, 2, 3, 5, . . .

Now V is actually a vector space. For,
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• If we define the sum of two sequences {sn} and {tn} as the sequence

{sn + tn}, then the sum of any two sequences in V is also a sequence in
V .

• If c is a real number and we define c {sn} to be the sequence {csn}, then
any real number times a sequence in V yields another sequence in V .

and this shows that V is a vector space over the field R of real numbers. In
fact, it is a 2-dimensional vector space. This is because each sequence in V is
determined by its first two elements. If we make each sequence in V correspond
to the ordered pair consisting of its first two elements, then we have an isomor-

phism between V and R2. That is, the ordered pair (0, 1) corresponds to the
sequence

0, 1, 1, 2, 3, 5, . . .

and the ordered pair (2, 1) corresponds to the sequence

2, 1, 3, 4, 7, 11, . . .

and so on. Addition of ordered pairs amounts to addition of the corresponding
sequences, and multiplication by a scalar c acts similarly.

Now here’s the idea: maybe we can find particular sequences in V that have
a simple formula. In fact, we can. Suppose we look for a sequence that has
the formula fn = tn where t is some number to be determined. What must t
satisfy? Well, since fn+2 = fn+1 + fn for all n ≥ 0, we must have

tn+2 = tn+1 + tn

for all n ≥ 0. Factoring out tn from each term in this equation, we see that we
only need to find a t such that

t2 = t + 1

There are two solutions to this quadratic equation:

t =
1±
√

5

2

and thus we have two specific sequences in V given by simple formulas:

1,
1 +
√

5

2
,

(

1 +
√

5

2

)2

,

(

1 +
√

5

2

)3

, . . .

and

1,
1−
√

5

2
,

(

1−
√

5

2

)2

,

(

1−
√

5

2

)3

, . . .
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Neither of the ordered pairs

(

1,
1 +
√

5

2

)

and

(

1,
1−
√

5

2

)

is a multiple of the other. Therefore, these two ordered pairs constitute a basis

of R2, and any ordered pair can be constructed as a linear combination of
these two ordered pairs. This amounts to saying that any sequence in V can
be represented as a linear combination of these two sequences. To get the
coefficients of the linear combination correct, all we have to do is check the first
two terms of the sequence. For the Fibonacci sequence, we need to find a and
b so that

(0, 1) = a

(

1,
1 +
√

5

2

)

+ b

(

1,
1−
√

5

2

)

This amounts to picking a and b so that

a + b = 0 (n = 0)

a

(

1 +
√

5

2

)

+ b

(

1−
√

5

2

)

= 1 (n = 1)

We can solve this to get

a =
1√
5

b = − 1√
5

Thus, the Fibonacci sequence has the representation

a

(

1 +
√

5

2

)n

+ b

(

1−
√

5

2

)n

and substituting in the values of a and b we just found, this is just the formula
we wrote previously.

Incidentally, this formula can be proved to be true by mathematical induction,
but it is certainly clear that no one could possibly discover it that way.

1.7 Polynomials over a field

A polynomial (in one variable) over a field K is a finite sum of the form

a0 + a1x + a2x
2 + a3x

3 + · · ·+ anxn
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where each coefficient ai is an element of the field K. The degree of the polyno-
mial is the highest power of the variable x that occurs in the sum; in this case,
it is n.

Since we add polynomials by adding corresponding coefficients, and since we
can multiply a polynomial by an element a of the field K by multiplying each
coefficient by a, it is easy to see that the set of polynomials of degree ≤ n (for

some fixed n) is a vector space over K. In fact, it is isomorphic to Kn+1 (that

is, it is just a renaming of Kn+1), since each polynomial can be equally well

represented by the ordered (n + 1)-tuple of its coefficients

(a0, a1, a2, . . . , an)

This is an (n + 1)-dimensional vector space over K.

For example, we see that the set of polynomials of degree 5 or less over Z2 is a

vector space of degree 6 over Z2, and therefore has 26 elements—there are 64
such polynomials. The first few are:

0
1

x
1 + x

x2

1 + x2

x + x2

1 + x + x2

...

The set of all polynomials over K (without any restriction on their degrees) is
an infinite-dimensional vector space over K, since it is isomorphic to the set of
tuples with infinitely many components

(a0, a1, a2, . . . )

only finitely many of which are non-zero. This set of all polynomials in one
variable x over the field K is denoted by K[x].

Now K[x] not only has the structure of a vector space—that is to say, we not
only can add polynomials and multiply them by elements of the scalar field
K—we can also multiply them by each other. That is, K[x] is also a ring (in

fact, an integral domain).

The fact that K[x] is both a vector space and a ring is nothing to be confused
about. We have already seen, for instance, that Zp is an additive group, but it

is also a field. When we talk about K[x] as a vector space, we are focussing our
attention on its additive structure, on the operation of multiplying a scalar by a
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polynomial, and on our ability to represent it as a set of tuples. When we talk
about K[x] as a ring, we are not concerned with multiplying by scalars per se,

but we are very much concerned with multiplying two polynomials together.

Thinking of a set of polynomials as a vector space is particularly useful when we
are concerned with dimensionality, or equivalently, with counting the number of
polynomials there are. Thinking of a set of polynomials as a ring is particularly
useful when we are concerned with questions of divisibility. Switching back and
forth between these two points of view turns out to be quite productive.

1.8 Factoring polynomials

1.8.1 Division of polynomials

When we studied algebra in high school, we learned how to divide polynomi-
als. Division of polynomials works just the same when the polynomials have
coefficients in any field. For instance, Figure 1.3 shows a long division of two
polynomials with coefficients in Z5:

4x3 + 2x2 + 2x + 1

3x2 + 1 2x5 + x4 + 4x + 3

2x5 + 4x3

x4 + x3

x4 + 2x2

x3 + 3x2 + 4x

x3 + 2x

3x2 + 2x + 3

3x2 + 1

2x + 2

Figure 1.3: Long division of two polynomials in Z5.

The important fact is this: given two polynomials P1(x) and P2(x), P1 can be

divided by P2 to get a quotient polynomial Q(x) and a remainder polynomial

R(x) such that the degree of R(x) is strictly less than that of P2(x), and we
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have

P1(x) = Q(x)P2(x) + R(x)

For example, the long division computation above shows that in Z5[x],

2x5 + x4 + 4x + 3 = (4x3 + 2x2 + 2x + 1)(3x2 + 1) + (2x + 2)

and of course the degree of the remainder 2x + 2 is strictly less than the degree

of 3x2 + 1.

We use the notation deg(f) to denote the degree of the polynomial f . Thus,

deg(3x2 + 1) = 2.

We can see now that division of polynomials acts very similarly to division of
integers. Where in integers we would write

a = qb + r

with 0 ≤ r < b, here we have

deg R < deg P2

This turns out to be enough to allow all the usual constructions to go through:

• The greatest common factor of two polynomials can be found by the Eu-
clidean algorithm, just as it can for integers.

• Polynomials can be uniquely factored into polynomials that cannot be
further factored. These polynomials are called prime, or irreducible, poly-
nomials.

For example, in high school algebra, one might discover that

x3 − x2 + x− 1 = (x2 + 1)(x− 1)

and neither polynomial on the right can be factored further. They are both
prime polynomials.

Well, actually, that’s a bit sloppy. The polynomial x2 +1 is a prime polynomial
because in high school algebra we only deal with the real numbers. If we allow

ourselves to use complex numbers, then x2 + 1 is not prime. It factors like this:

x2 + 1 = (x + i)(x− i)

In fact, that was the original reason complex numbers were introduced—to allow

polynomials like x2 + 1 to be factored.

Thus, whether a polynomial is prime or not depends on what field we consider

it as being over. As an element of R[x], x2 +1 is prime. As an element of C[x],
it is not.
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1.8.2 Linear factors of polynomials

Thinking of a polynomial as a function of x (i.e., not just as a formal expression

in the symbol x) can often help find linear factors of the polynomial. This is for
the following simple reason:

The first-degree polynomial p(x) = x − 7 has the value 0 when x = 7; i.e.,

p(7) = 7− 7 = 0. And more generally, if p(x) = x− a, then p(a) = 0.

We can push this a little farther: when a polynomial is factored into linear
factors, we can tell at once what values of the variable x cause the polynomial
to evaluate to 0. For instance, since (over the real numbers)

x2 − x− 6 = (x + 2)(x− 3)

we can see at once that the function p(x) = x2 − x− 6 satisfies

p(−2) = 0

p(3) = 0

We say the zeros of the polynomial p are −2 and 3.

Well, that’s not too impressive, really. But suppose we have figured out that
the polynomial

p(x) = x4 − 2x3 − 41x2 + 42x + 360

can be factored as

p(x) = (x + 3)(x− 4)(x + 5)(x− 6)

Then we know at once that the zeros of p are −3, 4, −5, and 6:

p(−3) = 0

p(4) = 0

p(−5) = 0

p(6) = 0

This works in reverse, too: if we have been given the polynomial

p(x) = x4 − 2x3 − 41x2 + 42x + 360

and we know it vanishes when x is −3, 4, −5, and 6, then we know at once that
p factors as

p(x) = (x + 3)(x− 4)(x + 5)(x− 6)
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This is very useful as a way of finding the factors of a polynomial, because in
many cases it is not hard to find the zeros of the polynomial.

We can state this result as a couple of simple but important theorems:

1.15 Theorem (Remainder theorem) If p(x) is a polynomial, then the remainder

when p(x) is divided by the polynomial x− a is just p(a).

Proof. The remainder will be a constant, because it is a polynomial whose
degree is less than that of x− a. Thus, we have

p(x) = q(x)(x − a) + r

Substituting a for x, we get

p(a) = q(a)(a− a) + r = r

1.16 Theorem (Factor theorem) If p(x) is a polynomial, then x − a is a factor

of p(x) if and only if p(a) = 0.

Proof. Using the notation of the previous proof, x − a is a factor of p(x) if

and only if the remainder r is 0; i.e., if and only if p(a) = 0.

Nothing in these proofs uses any special properties of the field over which the
polynomial is defined. Thus, these results are true over any field. For example,

over the field Z2, the polynomial x2 + 1 vanishes for x = 1. This is because all

computations now are (mod 2); we are just saying that

12 + 1 ≡ 0 (mod 2)

Therefore x− 1 (which is the same as x + 1 over Z2, because −1 is the same as

1 in this field) is a factor of x2 + 1; in fact, we have

x2 + 1 = (x + 1)(x + 1)

in Z2[x], since

(x + 1)(x + 1) = x2 + 2x + 1

and the middle term on the right vanishes since it is a multiple of 2.

Thus, x2 + 1 factors into linear factors in Z2[x]. Note, however, that in R[x],

the polynomial x2 + 1 is prime, as we have already mentioned.

The fact that x2 + 1 = (x + 1)(x + 1) in Z2[x] is just a rewording of the result

already noted in Theorem 1.5 (page 11). In fact, for any prime p and any n > 0
we have

(x + a)pn

= xpn

+ apn
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in Zp[x].

The factor theorem has the following consequence:

1.17 Theorem A polynomial of degree n has at most n roots.

Proof. This is because each root a corresponds to a factor of the form x− a.
If there were more than n such factors, then multiplying them together would
yield a polynomial of degree greater than n. This polynomial would either be
the original polynomial, or it would be a factor of it. Either way, the original
polynomial would have degree greater than n, a contradiction.

As a remarkable consequence of this simple result, we have

1.18 Theorem The multiplicative group Z∗

p is cyclic.

Proof. The reason this is true is that Z∗

p is the multiplicative group of the

field Zp. Let us look at the orders of the elements of Z∗

p. Say n is the largest

order of any element in Z∗

p, and say a is such an element (i.e., the order of a is

n). Corollary 1.12 (page 22) shows that every element of Z∗

p has order dividing

n. Therefore, every element b of Z∗

p satisfies bn = 1. To put it another way, the

polynomial xn− 1 has p− 1 roots in Z∗

p. This can only be true if n ≥ p− 1. On

the other hand, the order of any element divides the order of Z∗

p, so actually

n = p− 1. Therefore, the order of a is exactly p− 1, and this element therefore
generates all of Z∗

p, so Z∗

p is cyclic.

An element a of Z∗

p whose order is p − 1 (and which is therefore a generator

of Z∗

p) is called a primitive root (or a primitive element) of the field Z∗

p, or

alternatively, a primitive root (mod p). (The term “root” comes from the fact

that it is a root of the polynomial xp−1 − 1.)

We have just shown that each field Z∗

p has at least one primitive root. Actually,

there are a number of them, and it is known how many. But there is no simple
way to find them. Of course, trial and error always works. As an example of
the kind of behavior we can expect, let us consider the field Z∗

7. This field has
6 non-zero elements. Since its multiplicative group has 6 elements and is cyclic,
it is isomorphic to the additive group Z6. (Actually, every abelian group with
6 elements is isomorphic to Z6, but that kind of thing is not true in general—
remember that Z2 × Z2 is a group with 4 elements that is not isomorphic to
Z4.) We have already seen that Z6 has two elements of order 6. Therefore, Z∗

7

similarly has two elements of (multiplicative) order 6. They are 3 and 5: we

have (remember that everything here is (mod 7))

n 0 1 2 3 4 5

3n 1 3 2 6 4 5
5n 1 5 4 6 2 3
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We can use exactly the same reasoning as in the proof of the previous theorem
to show the following generalization, which is the key result for our purposes
here:

1.19 Theorem The multiplicative group of any finite field is cyclic.

The proof is almost word-for-word the same. It just depends on the facts that

• A polynomial of degree n over a field cannot have more than n roots.

• In a finite abelian group, if a is an element whose order is maximal, the
order of any other element divides the order of a.

In the next chapter we will show how to construct many new finite fields. But
this result does not depend on any construction, so we have put it here.

1.8.3 Formal derivatives

If p(x) is a polynomial, we say that a is a simple root or simple zero of p if

(x−a)|p(x) (so certainly p(a) = 0), but (x−a)2 does not divide p(x). Otherwise,

a is a multiple root of p(x). It turns out that there is an easy way to tell if a
root is simple or not. To understand this, let us think of polynomials over R as

functions. If (x − a)2 divides p(x), then near a, p(x) is tangent to the x-axis;
that is, its derivative is 0 at a. On the other hand, if a is a simple root, then the

derivative will not be 0; p(x) will pass through the x-axis at a with a positive
or negative slope.

It turns out that, even when we consider polynomials (mod p), we can use this
same technique. First we have to say what we mean by the derivative of a
polynomial: If

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0

is a polynomial over a field K, then the derivative of p is defined to be the
polynomial

p′(x) = nanxn−1 + (n− 1)an−1x
n−2 + · · ·+ a1

It’s important to realize that this is a purely algebraic notion. There is no
question of the derivative being the slope of anything, or being a limit of a
difference quotient, as it is in calculus. (In fact, we really have no notion of

limit in an abstract field.) Nevertheless, the derivative is quite useful.

The first thing to know about this definition of the derivative is that it satisfies
all the usual formulas we are familiar with. For instance,

(

(p(x) + q(x)
)′

= p′(x) + q′(x)
(

p(x)q(x)
)′

= p(x)q′(x) + p′(x)q(x)
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We won’t bother to prove these results, but they are easy to prove using induc-
tion. (This is much more elementary than in calculus, where these formulas are

proved for arbitrary differentiable functions—here we only need to differentiate
polynomials, which are much simpler.)

So the derivative of a polynomial is easy to compute. Here is how it is used:

1.20 Theorem A root a of the polynomial p(x) is a multiple root if and only if

p′(a) = 0.

Proof. Since a is a root of p(x), we have p(x) = (x − a)g(x) where g(x) is a
polynomial. a is a multiple root of p if and only if it is a root of g.

Now taking the derivative, we have

p′(x) = (x− a)g′(x) + g(x)

When x is a, this becomes p′(a) = g(a). Thus, a is a root of g if and only if

p′(a) = 0.



Chapter 2

Finite Fields

2.1 Irreducible polynomials and minimal poly-

nomials

When we are talking about polynomials over a field, most of what we care about
does not change if the polynomial is multiplied by a constant. For instance, if
f(x) is a polynomial over K and α is a root of f(x), then α is also a root

of cf(x) for any element c of K. Similarly, if f(x) is irreducible, then so is

cf(x). Therefore, we often normalize polynomials by dividing by the coefficient
of their highest-degree term. After this normalization, the coefficient of the
highest-degree term is 1. Such polynomials are called monic polynomials. For
instance,

3x2 − 4

is not a monic polynomial over Z5. But after dividing (in Z5) by the coefficient

3 of x2, we get the monic polynomial

x2 − 3

Suppose that K and L are two fields, and that K is a subfield of L (so they have

the same elements 0 and 1, and the same addition and multiplication). Suppose

that p is a monic polynomial over K (equivalently, p is a monic polynomial in

K[x]). Suppose further that p is irreducible over K. We can show that if p

has a root in L—say p(α) = 0 for some α in L—then p is the unique monic

polynomial of smallest degree having this property.

For let f be a monic polynomial over K of minimal degree having α as a root.

45
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Dividing p by f , we have

p(x) = q(x)f(x) + r(x)

where deg(r) < deg(f). Substituting α for x, we see that r(α) = 0. But by
the assumption that f was a monic polynomial of smallest degree having α as
a root, we must have r = 0. This means that f divides p. But p is irreducible.
Therefore, f must be p. (Up to a constant multiple; but since both f and p are

both monic, they are in fact identical.)

Thus, a monic irreducible polynomial is the monic polynomial of minimal degree
(or the minimal polynomial, as we say) of each of its roots.

Conversely, a minimal polynomial must be irreducible. That is, suppose that
f is the monic polynomial of smallest degree having α as a root. If f is not
irreducible, then it factors into two other monic polynomials: f(x) = g(x)h(x).

Substituting α for x, we have 0 = f(α) = g(α)h(α), and so at least one of g(α)

and h(α) must be 0; but this contradicts the minimality of the degree of f .

Thus, we have shown:

2.1 Theorem A monic polynomial over K is irreducible if and only if it is the
minimal polynomial of a root in an extension field L of K.

Note, by the way, that in the case of polynomials of degree 1, the extension
field L could just be K itself. For instance, the polynomial x− 1 is irreducible
over any field, and it is clearly the minimal polynomial of its root 1 (which is

in every field). The interesting cases of this, however, are those in which the
polynomial has degree greater than 1 and in which L properly contains K.

2.2 Corollary If p(x) is an irreducible polynomial over a field K, and if α is a root

of p in an extension field of K, and if f(x) is another polynomial over K such

that f(α) = 0, then p(x)|f(x).

Proof. Divide f by p; we get

f(x) = q(x)p(x) + r(x)

where deg(r) < deg(p). Substituting α for x, we find that r(α) = 0. Since p is

the minimal polynomial for α, we must have r = 0, so p(x)|f(x).

2.2 Algebraic field extensions

Now we are going to show how to make new fields from old ones—to be precise,
how to extend fields to make larger ones. The way to think about this is to
remember how the complex number field C is constructed from the real field R.
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We start with the polynomial p(x) = x2 + 1 which is irreducible over R. (An

equivalent way of expressing this is to say that it is irreducible in R[x].) We
then introduce a new number, which we denote by the symbol i, and which is

such that i2 = −1. That is, i2 + 1 = 0, or to put it another way, i is a root of
p(x). We then consider the set of all polynomials in i. Actually, any polynomial

in i has degree 1: it looks like a + bi, because any higher power of i can be

reduced by successive application of the identity i2 = −1. For instance,

2− 3i + 4i2 − 5i3 + 6i4 = 2− 3i + 4(−1)− 5i(−1) + 6(−1)2

= 4 + 2i

Another way to look at this is to reduce polynomials in i by adding or subtracting

multiples of i2 + 1 (which of course has been defined to be 0). So for instance,

using the same example:

2− 3i + 4i2 − 5i3 + 6i4 = 2− 3i

+ 4i2 − 4(i2 + 1)

− 5i3 + 5i(i2 + 1)

+ 6i4 − 6i2(i2 + 1) + 6(i2 + 1)

= 4 + 2i

Now we are so used to thinking of the complex number i as being an honest
number—an actual point in the complex plane—that we allow ourselves to forget
that originally, it was just a symbol. (In fact, historically, the complex plane

came later.) We could just as well have used any symbol. We could just as well
have used the symbol x. This would make it more obvious that what we are
doing is just reducing polynomials in x by adding and subtracting multiples of

the polynomial x2 + 1:

2− 3x + 4x2 − 5x3 + 6x4 = 2− 3x

+ 4x2 − 4(x2 + 1)

− 5x3 + 5x(x2 + 1)

+ 6x4 − 6x2(x2 + 1) + 6(x2 + 1)

= 4 + 2x

Once we have gotten this far, it’s only a small step to see that what we are
“really” doing is computing the remainder when dividing by the polynomial

x2 + 1:

2− 3x + 4x2 − 5x3 + 6x4 = (6x2 − 5x− 2)(x2 + 1) + (4 + 2x)
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That is, we are throwing away the multiple (6x2 − 5x − 2)(x2 + 1) of x2 + 1,
leaving the remainder 4 + 2x.

This is entirely analogous to forming Zp by taking congruence classes in the ring

Z with respect to the modulus p (in that case, we throw away multiples of the

prime number p); here we are taking congruence classes in the ring R[x] with

respect to the modulus x2 + 1.

We can perform this construction in any polynomial ring: if K is a field, and if
p(x) is an irreducible polynomial in K[x], we can form the congruence classes

with respect to the modulus p(x). The way algebraists usually write this set of
congruence classes is like this:

K[x]/(p(x)) or K[x]/p(x)K[x]

the idea being that p(x)K[x] just means the set of all multiples of p(x) in K[x],

that is,

p(x)K[x] = {p(x)q(x) : q(x) ∈ K[x]}

and this set of polynomials is the 0 congruence class in the family of congruence
classes we are constructing. As far as algebraists are concerned, the the set C

of complex numbers is just the set of congruence classes R[x]/(x2 + 1)R[x].

Incidentally, and for the same reason, another notation for what we have written

as Zp is Z/pZ.

Now as we know, the set of congruence classes (mod p) is conventionally denoted

{0, 1, . . . , p− 1}. There is really an abuse of notation here: the symbol “0”,
which ordinarily represents the integer 0, is here being used to represent the
congruence class pZ. We can do this because the number 0 is the unique number
n in that congruence class that satisfies 0 ≤ n ≤ p − 1. And in general, the
congruence class that an arbitary number n belongs to (mod p) is just the
congruence class that we represent by the number which is the remainder when
n is divided by p (the remainder r being in the interval 0 ≤ r < p).

In the same way, the set of congruence classes K[x]/p(x)K[x] can be represented
by the set of polynomials of degree less than n, where n is the degree of the

polynomial p(x). Any polynomial f belongs to the congruence class represented

by its remainder when divided by p(x).

In this case, however, this abuse of language can be a bit confusing—when we
see the symbol “x”, we normally do not think of a congruence class, let alone a
root of a polynomial. So what we conventionally do is introduce a new symbol.
It could be any symbol; let us use κ. Then instead of writing a polynomial f(x)

with the understanding that this f(x) is congruent to a polynomial of degree less

than n, we write f(κ), with the understanding that f(κ) equals a polynomial
in κ of degree less than n. This is entirely analogous to what goes on when we
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pass from saying

12 ≡ 5 (mod 7)

to

12 = 5 in Z7

In this formulation, p(κ) actually equals 0, and so κ is a root of the polynomial

p(x). This process is called adjoining a root κ of p(x) to the field K (just as C

is produced by adjoining the root i of x2 + 1 to R).

Now notice:

• K[κ] consists of all the polynomials of degree less than n over K.

• Adding elements of K[κ] just consists of adding corresponding coefficients
of the polynomials

• Multiplying an element of K[κ] by an element λ of K can be performed

by multiplying each coefficient of the polynomial in K[κ] by λ.

Therefore, K[κ] is a vector space over K, of dimension n. In particular, if K is

a finite field, then K[κ] is also finite.

K[κ] is also a ring—it is closed under multiplication. To multiply two elements

of K[κ], we just multiply the polynomials as usual and then reduce by dividing
by the polynomial p. That is, we replace the product by the remainder we get
by dividing it by the polynomial p(x).

To be honest about this, we should note that addition and multiplication of

congruence classes of polynomials mod p(x) are both well-defined. This just
amounts to proving analogues of Theorems 1.1 and 1.2. The proofs are exactly
the same.

Now provided p is a prime, Zp = Z/pZ is not only a ring—it is actually a field.

We saw this back in Chapter 1. The same holds true for K[x]/p(x)K[x]:

2.3 Theorem If K is a finite field, and if p(x) is an irreducible polynomial over

K, then K[x]/p(x)K[x] (which we denote by K[κ]) is a field.

Remark This theorem is really true for any field K. But the proof when K is
a finite field is much more elementary than the proof in general, and it is all we
need here.

Proof. K[κ] is obviously a ring—it is closed under multiplication, and so on.

To show it is a field, we only need to prove that every non-zero element in K[κ]
has a multiplicative inverse.
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The proof is essentially the same as that which shows that Zp is a field:

K[κ] is a finite set, as we have just seen. Say its non-zero elements are enu-

merated as {f1(κ), f2(κ), . . . , fm(κ)} (for some finite number m). That is, this

set is just the set of non-zero polynomials over K of degree less than n. Now
if g is any element of this set, consider the set of polynomials that we get by

multiplying each of these polynomials by g (and then reducing by p(x) as usual).
This set is

{g(κ)f1(κ), g(κ)f2(κ), . . . g(κ)fm(κ)}

No two elements of this set are the same. For if g(κ)fi(κ) = g(κ)fj(κ), for

instance, then we would have

g(κ)
(

fi(κ)− fj(κ)
)

= 0

or equivalently,

p(x)|g(x)
(

fi(x) − fj(x)
)

But since p(x) is irreducible and g is a non-zero polynomial of degree less than

the degree of p, this means that p(x) divides fi(x)−fj(x), and since fi(x)−fj(x)

also has degree less than that of p(x), this means that i and j must be equal.

Thus, multiplication by g(κ) just permutes the finite set of non-zero elements of

K[κ], and hence there is some i for which g(κ)fi(κ) = 1. This shows that g(κ)

has a multiplicative inverse in K[κ], and hence K[κ] is a field.

Thus if p(x) is irreducible over K, K[x]/p(x)K[x] = K[κ] is a field that contains
K as a subfield. It is called an algebraic field extension of K.

As we mentioned, this proof does not work for infinite fields K—for instance,
this proof cannot be used to show that C, constructed from R, is a field. But
it works for all the fields we care about here.

κ was constructed so that it is a root of the irreducible polynomial p(x) of degree

n. The only polynomials that have κ as a root are the polynomials that are
divisible by p(x)—any other polynomial f(x) has a non-zero remainder when

divided by p(x), and by definition f(κ) is represented by that remainder and is
therefore non-zero.

Here is an example of this construction: Let us start with Z2, the simplest

finite field. Over this field, the polynomial p(x) = x2 + x + 1 is irreducible. (In
this case, one can verify this fact by simply trying to divide it by polynomials
of smaller degree.) Adjoining a root κ of this polynomial to Z2 yields a field

containing four elements: 0, 1, κ, and κ+1. (These are the four polynomials in

κ of degree 0 or 1 over Z2.) These elements add and multiply as follows:
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+ 0 1 κ κ + 1

0 0 1 κ κ + 1
1 1 0 κ + 1 κ
κ κ κ + 1 0 1

κ + 1 κ + 1 κ 1 0

· 0 1 κ κ + 1

0 0 0 0 0
1 0 1 κ κ + 1
κ 0 κ κ + 1 1

κ + 1 0 κ + 1 1 κ

You can see just by looking at these tables that Z2[κ] is really a field. Note

that its additive group (i.e., just considering it as a group under addition) is
isomorphic to Z2 × Z2. This is because it is the same as the polynomials of
degree 1 over Z2, and these polynomials add by adding the corresponding coef-
ficients. Equivalently, we just have a vector space of dimension 2 over Z2. The

multiplicative group of this field has three elements (1, κ, and κ + 1), and is
cyclic—it is isomorphic to Z3.

Also note that since addition and multiplication are both commutative, these
tables are both symmetric about the main diagonal. So we really only have to
fill in the elements on and above that diagonal to specify these operations.

We want to emphasize that it is crucial in this construction that the polynomial
p(x) be irreducible over K. For if it is not, say p(x) = f(x)g(x) where f and g
are each non-zero polynomials whose degrees are less than the degree of p. Then

we can still adjoin a root κ of p(x). But we will have f(κ)g(κ) = p(κ) = 0, so

f(κ) and g(κ) are non-zero elements in K[κ] whose product is 0, which shows

that K[κ] cannot possibly be a field.

For example, consider the polynomial f(x) = x2 + 2 over Z3. We can adjoin a

root κ to form Z3[κ]. The addition and multiplication tables in Z3[κ] look like
this:
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+ 0 1 2 κ κ + 1 κ + 2 2κ 2κ + 1 2κ + 2

0 0 1 2 κ κ + 1 κ + 2 2κ 2κ + 1 2κ + 2
1 2 0 κ + 1 κ + 2 κ 2κ + 1 2κ + 2 2κ
2 1 κ + 2 κ κ + 1 2κ + 2 2κ 2κ + 1
κ 2κ 2κ + 1 2κ + 2 0 1 2

κ + 1 2κ + 2 2κ 1 2 0
κ + 2 2κ + 1 2 0 1
2κ κ κ + 1 κ + 2

2κ + 1 κ + 2 κ
2κ + 2 κ + 1

· 0 1 2 κ κ + 1 κ + 2 2κ 2κ + 1 2κ + 2

0 0 0 0 0 0 0 0 0 0
1 1 2 κ κ + 1 κ + 2 2κ 2κ + 1 2κ + 2
2 1 2κ 2κ + 2 2κ + 1 κ κ + 2 κ + 1
κ 1 κ + 1 2κ + 1 2 κ + 2 2κ + 2

κ + 1 2κ + 2 0 2κ + 2 0 κ + 1
κ + 2 κ + 2 κ + 2 2κ + 1 0
2κ 1 2κ + 1 κ + 1

2κ + 1 κ + 2 0
2κ + 2 2κ + 2

We see that Z3[κ] has divisors of zero, so it is certainly not a field. This is

because the polynomial x2 + 2 factors over Z3:

x2 + 2 = (x + 1)(x + 2)

Now given an irreducible polynomial p(x), this construction which adjoins a

root κ of p(x) to form K[κ] is quite general, in the following respect:

Suppose that

• K is a finite field containing d elements.

• p(x) is an irreducible polynomial of degree n over K.

• L is a field containing K as a subfield (L is an extension of the field K).

• There is an element α of L that is a root of p(x).

Let K[α] denote the set of all polynomials in α with coefficients in K. K[α] is a

subset of the field L. It is clear that K[α] is closed under addition, subtraction,

and multiplication, but it is not clear that non-zero elements of K[α] have
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multiplicative inverses in K[α]. (They do of course have multiplicative inverses

in the field L, by assumption.) We will show this is true, but for now we will

not assume it. In any case, K[α] has no more than dn elements, because each

element of K[α] has a representation as a polynomial over K of degree less than

n, and there are dn such polynomials. (We will see in a moment that K[α]

actually has exactly dn elements.)

Now let K[κ] be the field we constructed above. We know that K[κ] has exactly

dn elements. We will show that K[κ] is isomorphic to K[α], the isomorphism
being such that κ is identified with α.

The proof of this goes as follows:

1. Each element of K[κ] is a polynomial f(κ). To each such element, we

associate the element f(α) of K[α]. Then addition and multiplication in

K[κ] correspond to addition and multiplication in K[α] of these elements

(since they just correspond to addition and multiplication of corresponding

polynomials, with reduction by p after each multiplication). Thus K[κ] is

mapped into K[α] by this correspondence in a manner that preserves the
operations of addition and multiplication.

2. The only element of K[κ] which is identified with 0 in K[α] is 0 itself. For

an element of K[κ] is just a polynomial f(κ) in κ. If there is any such

non-zero polynomial f in K[x]/p(x)K[x] such that f(α) = 0 in K[α], let

f be such a polynomial of smallest degree. Dividing p(x) by f(x), we get

p(x) = q(x)f(x) + r(x)

and setting x = α, we see that r(α) = 0. But r has degree less than
the degree of f , and so since the degree of f was minimal, r must be
the zero polynomial. But this in turn means that f divides p, which is a
contradiction, because p is irreducible.

Actually, this was just a reworking of the proof of Section 2.1. We could
just as well have argued as follows: If there is any non-zero polynomial f in
K[x]/p(x)K[x] such that f(α) = 0 in K[α] (and hence in the field L), then

by Corollary 2.2, p divides f ; that is f(x) = p(x)q(x). Substituting κ for

x, we see that f(κ) = p(κ)q(κ) = 0, so f(κ) really was 0; or equivalently,

f really was 0 in K[x]/p(x)K[x].

3. Distinct elements of K[κ] correspond under this correspondence with dis-

tinct elements of K[α]. For if there are two elements of K[κ]—call them

f(κ) and g(κ)—such that f(α) = g(α), then the polynomial h = f − g

satisfies h(α) = 0. By what we just showed, h must be 0; i.e., g = h.

4. Therefore K[α] must have no less than dn elements, and so it has exactly
dn elements and the correspondence we have just set up identifies all of
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K[κ] with all of K[α]. So K[α] is isomorphic to K[κ]. In particular, it is

a field—each non-zero element has a multiplicative inverse in K[α].

Thus, K[α] is actually a field extension of K and a subfield of L; we have

K ⊂ K[α] ⊂ L

Now this result is true for every root of the irreducible polynomial p(x) in every

extension field L of K—if α is any such root, K[α] is isomorphic to K[κ], with

α corresponding to κ. This result is really quite significant. For instance, it
enables us to prove the following result immediately:

2.4 Theorem If p(x) is an irreducible polynomial over K, and if α is a root of

p(x) in some extension field, and if the multiplicative order of α is r (that is, if

αi = 1 if and only if i is a multiple of r), then the multiplicative order of any

root of p(x) in any extension field of K is also r.

Proof. The multiplicative order of α has to be the same as the multiplicative

order of κ in K[κ]. But this is true for any other root of p(x) also.

2.3 Finite fields

As a result of all we have proved in the last section, we see that we can construct
a finite field of characteristic p by finding an irreducible polynomial p(x) over

Zp and adjoining a root of this polynomial to Zp. Equivalently, given such a

polynomial p(x), of degree n, just consider the set of polynomials of degree less

than n with coefficients in Zp, and perform multiplication (mod p(x)).

This then raises the question of how to find irreducible polynomials over Zp. In

particular, is there guaranteed to be an irreducible polynomial of degree n for
every positive integer n?

It turns out that there is, but this fact is not obvious. Nevertheless, we can
show that plenty of finite fields exist by an indirect method, which then will
show that such irreducible polynomials really exist.

Let K be a finite field. We have already seen that K has pn elements, where n
is its dimension over its prime field and where p is its characteristic.

Since the multiplicative group K∗ has order pn−1, every element x of K∗ must

satisfy xpn
−1 = 1. (This is simply because the order of any element divides the

order of the group K∗.) This means that each element a of K∗ is a root of the

polynomial xpn
−1− 1, and so x− a|xpn

−1− 1 in Zp[x]. There are exactly pn− 1

elements a of K∗, and xpn
−1 − 1 has each x − a as a factor, so this forms the
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complete factorization of this polynomial:

xpn
−1 − 1 =

∏

a∈K∗

(x− a)

This already, by the way, has a famous consequence in elementary number
theory. Take K to be simply the field Zp. In this case, n = 1, and the elements

of K∗ are just the numbers {1, 2, . . . , p− 1}. We have

xp−1 − 1 =

p−1
∏

i=1

(x− i)

Equating the constant terms on each side, this yields

2.5 Theorem (Wilson’s Theorem) If p is a prime,

(p− 1)! ≡ −1 (mod p)

(For instance, 4! = 24 ≡ −1 (mod 5).)

Now let us reverse this process. To construct a finite field of dimension n over

Zp, we need to adjoin roots of xpn
−1−1 to Zp. It is a little easier if we consider

instead the polynomial xpn − x—this just introduces a factor of x, and so now

every element of K (including 0) will be a root of this polynomial. We will
construct a field in which this polynomial factors into linear factors as follows:

First factor xpn −x into irreducible factors over Zp. Pick one of those factors of

degree greater than 1, and adjoin a root κ1 to form a field Zp[κ1]. Now factor

xpn − x into irreducible factors over this new field. It will have at least one
more linear factor (namely, x − κ1) than before. Pick an irreducible factor of
degree greater than 1 and repeat the process. We build up successively larger
and larger fields until we get—in a finite number of steps—a field L in which

xpn − x factors into linear factors. Say these factors are

xpn − x =

pn

∏

i=1

(x− ai)

Now none of these factors are repeated; that is, no ai occurs twice. This is

because since the derivative of the polynomial f(x) = xpn − x is f ′(x) =

pnxpn
−1 − 1 = −1, f(x) and f ′(x) have no common roots—in fact, f ′(x) is

never 0 at all. Therefore there are pn distinct elements ai.

Let F be the set consisting all the ai. F is a subset of the field L containing pn

elements. F certainly contains 0, since 0pn − 0 = 0, and for the same reason, F
contains 1. We show that F is a field:
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• F is closed under multiplication, because if a and b are in F , we have

apn

= a and bpn

= b, and so

(ab)pn

= apn

bpn

= ab

which shows that ab is also in F .

• F is closed under addition, because if a and b are in F , we have

(a + b)pn

= apn

+ bpn

(Expanding the left-hand side by the binomial theorem, all the coefficients
of the “middle” terms are divisible by p, so those terms drop out in any
field of characteristic p.)

• −1 is in F , because

(−1)pn

=

{

−1 if p is an odd prime

1 ≡ −1 (mod 2) if p = 2

Therefore, if a is in F , also −a = (−1)a is in F .

• If a is in F and a 6= 0, then a has a multiplicative inverse. This follows
by the usual argument: the set of non-zero elements is a finite set closed
under multiplication, and multiplication by any one of them permutes the
set.

Thus, F is a field containing exactly pn elements.

Now that we have proved that a finite field with pn elements exists for each
prime p and each positive integer n, we can show that for each such p and n,
there is an irreducible polynomial p(x) over Zp of order n, which can be used

to construct such a field directly:

2.6 Theorem For each prime p and positive integer n, there is an irreducible poly-
nomial p(x) in Zp[x] of degree n.

Proof. Let K be a field over Zp with pn elements, as constructed above. We

know that this field has a primitive element. Call it a. We know that there is

at least one non-zero polynomial over Zp having a as a root, namely, xpn − x.

Therefore there is one of smallest degree. Call it p(x), and say p(x) has degree

m. p(x) must be irreducible, as we have already seen in Theorem 2.1.

Now the dimension of Zp[a] over Zp is just m, since Zp[a] just consists of all the

polynomials in a of degree less than m.

On the other hand, Zp[a] certainly includes all the powers of a. Since a is a

primitive element, these are all the elements of K. So Zp[a] = K. (If a were
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not a primitive element, Zp[a] would still be a finite field, but it might not be

all of K—it might just be a subfield of K.) Therefore, the dimension of Zp[a]

over Zp must be n.

This shows that m = n, i.e., that p(x) is an irreducible polynomial over Zp of

degree n.

Finally, we can show that any two finite fields of order pn are isomorphic, and
that the ones we have constructed are all there are. To do this, we first need a
lemma:

2.7 Lemma If f(x) is an irreducible polynomial of degree n over Zp, then f(x)|xpn−
x.

Proof. By adjoining a root of f if necessary, we can assume that f(x) has a

root α in an extension field K of Zp. We have already seen that Zp[α] is then

a finite field with pn elements, and that every element of this field (including

α) is a root of the polynomial xpn − x. But then Corollary 2.2 shows that

f(x)|xpn − x.

2.8 Theorem For each prime p and each positive integer n, there is (up to isomor-

phism) exactly one field with pn elements.

Proof. We have already seen that there is at least one such field.

Let f be any irreducible polynomial over Zp of degree n. We know that at least

one such polynomial exists.

Now say K is a field with pn elements. First, we know that the characteristic of
K must be p. For the number of elements in K is a power of the characteristic.

We know that the multiplicative group K∗ of this field is cyclic, so every element

of this field is a root of the polynomial xpn − x. Now let us factor xpn − x into
irreducible polynomials over Zp: we have

xpn − x = g1(x)g2(x) . . . gr(x)

We know that

r
∑

i=1

deg(gi) = pn

We also know that one of these polynomials must be f(x); say g1(x) is f(x).

Now f must have a root α in K, for if not, the number of roots of xpn−x would
only be at most

r
∑

i=2

deg gi < pn
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and this is a contradiction.

So α is in K, and therefore Zp[α] (which is just the set of all polynomials in α

with coefficients in K) is also contained in K. Since both K and Zp[α] have

pn elements, we must have Zp[α] = K. Thus, K is derived from an irreducible

polynomial over Zp of degree n, and any such polynomial gives rise to K, so

they all generate isomorphic fields.

Now we know that any finite field has to have pn elements, where p is the
characteristic of the field and n is its dimension as a vector space over its prime
field. So we have just seen that there is (up to isomorphism) exactly one such

field for each p and n, and it can be constructed from an irreducible polynomial
of degree n over Zp.

The standard notation for a field with q elements is Fq, so we have just con-

structed Fpn , and we have shown that it is unique.

2.4 Primitive polynomials

A primitive polynomial over a field K is a polynomial p with coefficients in K
(i.e., p is in K[x]) that is irreducible over K and is such that if α is a root of p

in an extension field of K, then α is a primitive element of K[α].

That is, p is a primitive polynomial over K if and only if the powers of α are
all the non-zero elements of K[α].

This definition makes sense, since as we saw previously, all the roots of an
irreducible polynomial have the same multiplicative order.

Not every irreducible polynomial is primitive. On the other hand, the construc-
tion at the end of the last section shows that there are primitive polynomials
of every order over Zp. Actually, the same proof shows that there are primitive

polynomials of every order over every finite field.

Here is a simple example: Let us consider polynomials over Zp. Every polyno-

mial of degree 1 (i.e., of the form p(x) = ax + b with a and b in Zp and a 6= 0)

is irreducible. That’s always true for polynomials over any field—non-trivial
first degree polynomials can’t be factored. On the other hand, the polynomial
p(x) = x− a is a primitive polynomial if and only if a is a primitive element of
Zp. So for instance, x − 3 and x − 5 are primitive polynomials over Z7, while

x − a (for a different from 3 and 5) are irreducible but not primitive over Z7.
This is really a degenerate case—the root 3 of x−3 is in the base field Z7 itself,
not in an extension field. The actual definition above glossed over this point,
although it wasn’t actually incorrect.

However, a more convincing example can be arrived at by looking at polynomials
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of degree 4 over Z2. Let us consider the two polynomials

f(x) = x4 + x + 1

g(x) = x4 + x3 + x2 + x + 1

They are both irreducible polynomials. We won’t bother to prove this, but of
course in principle one could verify this by just trying all possible factorizations;
there are only a (small) finite number of them. Therefore they each generate
a 4-dimensional field over Z2, and as we have stated, these two fields must be

the same except for renaming—each is (isomorphic to) F24 = F16. So we can
assume that they are actually the same field.

Now it turns out that f is primitive over Z2, while g is not. It’s easy to see
this. Suppose that α is a root of f and β is a root of g. Then just by using
the polynomial relations f(α) = 0 and g(β) = 0, we can construct the following

tables of powers of α and β:

n αn βn

0 1 1
1 α β
2 α2 β2

3 α3 β3

4 α + 1 β3 + β2 + β + 1
5 α2 + α 1
6 α3 + α2

7 α3 + α + 1
8 α2 + 1
9 α3 + α

10 α2 + α + 1
11 α3 + α2 + α
12 α3 + α2 + α + 1
13 α3 + α2 + 1
14 α3 + 1
15 1

We can see that α has order 15 = 24−1, while β has order 5. Since the non-zero
elements of F16 are just the powers of α, it must be the case that β is a power
of α. (In particular, this is why the order of β has to be a divisor of the order of

α.) Any power of α that has order 5 will do. For instance, α3 clearly has order
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5. And, using the above table of powers of α, we can see that g(α3) = 0:

g(α3) = (α3)4 + (α3)3 + (α3)2 + α3 + 1

= α12 + α9 + α6 + α3 + 1

= α3 + α2 + α + 1 (= β4)

+ α3 + α (= β3)

+ α3 + α2 (= β2)

+ α3 (= β)

+ 1 (= 1)

= 0

Note what is going on here: setting β = α3 creates an isomorphism between

Z2[β] and Z2[α]. There are other isomorphisms as well—for instance, β = α6

would also work. But once we have picked such an isomorphism, we don’t
change it.

It’s important to bear in mind that α and β both generate F16 algebraically. If

as above, we take β = α3, then we can see as in the above computation that

α = β4 + β2 + 1

and so, substituting for β4 and simplifying,

α = β3 + β

So α, and therefore any power of α, is a polynomial in β. Thus even though
β is not a primitive element of F16, it certainly generates it—it’s just that we
need more polynomials in β than just its powers to get all the elements of F16.



Chapter 3

Some Random Number

Generators

In this chapter we give a brief survey of some random number generators that
make use of the theory of finite fields.

3.1 Linear pseudo-congruential generators

A linear pseudo-congruential generator is defined by choosing

• a prime number p,

• integers a ≥ 1 and b ≥ 0,

• an initial value (or “seed”) s0 in the range 0 ≤ s0 < p,

and then recursively computing

sn = asn−1 + b (mod p)

This notation, by the way, always means that the right-hand side is replaced

by the number in the range 1 to p − 1 to which it is congruent (mod p). Such
a sequence is always ultimately periodic. In fact, if si = sj for some i and j,

then si+1 = sj+1, and so on, so that the sequence repeats from that point on.

This also shows that the period length cannot be greater than p. The period
length can of course be p—just set a = 1 and b = 1. This is not a useful source
of pseudo-random numbers, however. What makes a pseudo-random number
generator useful is an involved topic. Here we shall just confine ourselves to
finding generators that have a long period length.

61
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Now it might seem that picking b cleverly would add to the complexity, or at
least the period length of the sequence, but this is really not the case. In fact,
we can clearly get a period length of p − 1 by letting b = 0, choosing s0 in

the range 1 ≤ s0 < p (i.e., making sure that s0 6= 0), and choosing for a any

primitive root (mod p). The numbers sn will then just be the powers of a (mod

p), which are all the numbers from 1 to p− 1 (in a permuted order, of course).

3.2 Higher order linear recursive generators

This is similar, except that we use a higher-order linear recursion. To form a
recursive generator of degree r, we start by picking r initial seeds s0, s1, . . . , sr−1.
and constants c0, c1, . . . , cr−1. The seeds are in the range 0 to p−1, but are not

all 0, and the constants are in the range 0 to p− 1 (and of course they are also

not all 0). Then for n ≥ r, we compute recursively

sn = cr−1sn−1 + cr−2sn−2 + · · ·+ c0sn−r (mod p)

Thus, each successive value of sn is a linear combination (mod p) of the previous

r values, where the coefficients are constant. This enables us, as we will see, to
get a much larger period length.

To avoid trivial complications, we will assume that c0 6= 0. (This is really no
restriction; if it is zero, we just have a recursive generator of degree r−1 instead

of r.)

We define a polynomial in Zp[x] of degree r corresponding to such a higher order

generator by

f(x) = xr − cr−1x
r−1 − cr−2x

r−2 − · · · − c0

The theory of this recursion turns out to be simplest in the case that f is
irreducible over Zp; we will assume that this is the case.

We have to clarify exactly what we mean by the term “period length” for our
sequence {sj}. But once we do, it will turn out that the period length can be

no more than pr − 1, and it will have this value precisely when f is a primitive

polynomial (mod p). The rest of this section is devoted to proving this result.

1. We define a sequence of vectors for n ≥ 0:

vn = 〈sn+r−1, sn+r−2, . . . , sn〉

That is, vn is just the vector in Zr
p whose components are r consecutive terms

in the sequence {si}. Each vn moves down this sequence 1 element. Choosing

the initial set of seeds s0, s1, . . . , sr−1 is just equivalent to choosing an initial

vector v0 = 〈sr−1, sr−2, . . . , s0〉.
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Now let us say precisely what we mean by the period length of the sequence
{si}. It is perfectly possible to have s3 = s8, for instance, without this forcing

s4 = s9. This is because each element sj of the sequence depends, not just on

the previous element of the sequence, but on the previous r elements. On the
other hand, if v3 = v8, for instance, then we know by the recursive formula that
v4 must also equal v9, and in general vi = vi+5 for all i ≥ 3. So when we talk
about the period length of the sequence generated by our recursive formula,
what we really mean is the period length of the sequence of vectors {vi}.
Clearly, vn+1 can be computed from vn; in fact,

vn+1 = 〈
r
∑

i=1

cr−isn+r−i, sn+r−1, sn+r−2, . . . , sn+1〉

where all the components have been shifted to the right one position, the right-
most one discarded, and a new component (computed by the recursive formula)

placed in the left-most position.

This is a linear transformation on Zr
p. Let us denote it by the symbol R (for

“recursion”). R has the matrix representation

R =



















cr−1 cr−2 cr−3 . . . c1 c0

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0



















(Notice that all the elements on the main diagonal are 0 except for the upper

left-hand element.)

Now R is an invertible matrix—its determinant1 is (−1)r−1c0 6= 0. Hence the

inverse of R—call it R−1 exists. In fact, then, all powers Rn of R exist, where
n can be any integer (positive, negative, or 0). This set of powers of R forms
a group. It is a subset of the set of r × r matrices with elements in Zp. There

are only a finite number of such matrices. Therefore, the same argument as at

1I know, I didn’t talk about determinants. Trust me. Either that, or solve for vn in terms
of vn+1 to get an explicit construction for R−1:

R−1 =

0

B

B

B

B

B

B

B

@

0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
1

c0
−

cr−1

c0
−

cr−2

c0
. . . − c2

c0
− c1

c0

1

C

C

C

C

C

C

C

A
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the beginning of Section 1.3.4 shows that
{

Ri
}

is a finite cyclic group. Say its

order is m. (Usually we just say that the order of R is m; this just means that

R has order m in the cyclic group of powers of R.)

Now we have vn+1 = Rvn, and in general, vn = Rnv0. Thus, if R has order

m, then the period of the sequence of vectors {vj} is ≤ m. Further, since R is

invertible, as long as we start from a vector v0 that is not 0 (i.e., as long as not

all of s0, s1, . . . sr−1 are 0), none of the vectors vj will be the 0 vector. Thus,

the period length of the sequence {vj} can be at most pr − 1.

We will show that the period length of the sequence {vj} is pr − 1 if and only

if the order of R is pr − 1.

Suppose first that the period length of the sequence {vj} is pr − 1. Then the

set of vectors v0, v1, . . . is all of (Zr
p)

∗, since there are just pr − 1 elements of

(Zr
p)

∗. Thus, if v is any non-zero vector in Zr
p, we have Rpr

−1v = v. Since this

holds for all non-zero vectors, we must have Rpr
−1 = I; that is, the order of R

is ≤ pr − 1. On the other hand, we just saw that the order of R is ≥ the period
length of the sequence {vj}, so in fact the order of R is pr − 1.

Now we go in the other direction. Suppose that the order of R is pr − 1. We
must show that the period length of the sequence is also pr − 1. Let us pick a
new initial vector

w0 = 〈1, 0, 0, . . . , 0〉

We can see from the recursive formula that

w0 = 〈1, 0, 0, . . . , 0〉
w1 = 〈∗, 1, 0, . . . , 0〉
w2 = 〈∗, ∗, 1, . . . , 0〉

...
wr−1 = 〈∗, ∗, ∗, . . . , 1〉

where “∗” denotes some expression, which may or may not be zero—we don’t
care.

Now the point is this: these vectors w0, w1, . . . , wr−1 span all of Zr
p. This is

because w0 is the “unit vector in the x direction”. We then get the “unit vector
in the y” direction by subtracting some multiple of w0 from w1. We get the
“unit vector in the z direction” by subtracting multiples of w0 and w1 from w2;
and so on. In this way we get r vectors that clearly span the space, and so our
original vectors do also, since the “unit vectors” can be expressed in terms of
them.

Now suppose the period length of the sequence {vi} was less than pr − 1. Then

also the period length of the sequence {wi} starting with w0 would be less than
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pr − 1. (Otherwise, the sequence starting with w0 would be all of (Zr
p)

∗, and

would include the original sequence; and that in turn would mean that the orig-
inal sequence would have period length pr − 1, which would be a contradiction.
So say the period length of the sequence starting with w0 is m < pr − 1. We
know that Rmw0 = w0, and in fact we have

Rmwi = RmRiw0 = Rm+iw0 = RiRmw0 = Riw0 = wi

Thus Rmwi = wi on the spanning set of vectors w0, w1, . . . wr−1. Hence Rm = I
on all of Zr

p. This is a contradiction, since we have assumed that the order of

R was pr − 1.

Thus we have in fact showed that the order of R is pr − 1 if and only if the
period length of the sequence {vi} is pr − 1.

2. Now since f is irreducible2 of degree r, the field Fpr is just the field Zp[α]

obtained by adjoining a root α of f to Zp. Let us look at the linear operator

M defined on Fpr by “multiplication by α”. That is, we define

Mv = αv

for all v in Fpr . Since Fpr is as a vector space equivalent to Zr
p, M has a

representation as a matrix, and this representation is just

M =



















cr−1 1 0 . . . 0 0
cr−2 0 1 . . . 0 0
cr−3 0 0 . . . 0 0

...
...

...
. . .

...
...

c1 0 0 . . . 0 1
c0 0 0 . . . 0 0



















We see that M is just the adjoint of R. (This is the key to the proof.) Since

Mm = I if and only if Rm = (M∗)m = (Mm)∗ = I∗ = I, we see that the order
of M is just the order of R.

Finally, the order of M is just pr− 1 if and only if the root α of f is a primitive
root, i.e., if and only if the polynomial f is a primitive polynomial of degree r
over Zp.

3. Putting these results all together, we have shown that provided f is an
irreducible polynomial over Zp,

f is a primitive polynomial over Zp iff M has order pr − 1

iff R has order pr − 1

iff the period length of {vi} is pr − 1

and the proof is complete.

2This is the only place where the fact that f is irreducible is needed.
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3.3 Inversive congruential generators

An inversive congruential generator is a non-linear recursive generator having
the form
(3.1)

sn+1 =

{

b if sn = 0

as−1
n + b (mod p) if sn 6= 0

where a and b are constants, a 6= 0 (mod p), and s−1
n is the multiplicative inverse

of sn in Zp. Of course we have to initialize the sequence; we will do so by setting

s0 = b

Note that we have to treat the case when sn = 0 separately, since of course 0
does not have a multiplicative inverse in Zp. Setting sn+1 to b in this case is

the only reasonable choice, since b cannot be the value of asn + b in any other
case.

Since each term depends only on the previous one, we see that the maximum
possible period length for such a sequence is p. Flahive and Niederreiter, extend-
ing earlier work of Eichenauer and Lehn, have given a complete characterization
of generators of this form that have period p. Here is how:

First of all, let us associate the polynomial

f(x) = x2 − bx− a

with this recursion. (That is, the coefficients a and b in this quadratic polyno-

mial are determined from the recursive definition.) There are two possibilities:

Case I: f is reducible. In this case, f factors into 2 linear factors in Zp[x]:

f(x) = (x− r)(x − s)

We know that not both of r and s are 0, since otherwise both a and b would
be 0, and we have assumed that a 6= 0. So say r 6= 0. Since f(r) = 0, we
have

r2 − br − a = 0

in Zp. Letting r−1 denote the multiplicative inverse of r in Zp and multi-

plying through by r−1, we get

r = ar−1 + b

But this means that the recursion cannot have order p, since the only way
it could have order p is to visit each element of Zp over and over again,
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but what we have just shown is that once the sequence hits the value r,
it has to stay there.

Therefore, the sequence can only have maximal period p if f is irreducible.
(Not every irreducible f yields a maximal period, however, as we will see

below.)

Case II: f is irreducible. In this case, f does not factor over Zp, but we

know that it does factor over Fp2 . Say it factors as f(x) = (x−α)(x− β)

where α and β are in Fp2 . We can show that in this case, α and β must

be distinct. For suppose they were the same. Then we would have

f(x) =

{

x2 − bx− a

(x− α)2 = x2 − 2αx + α2

so we would have to have b = 2α. There are two cases to consider:

The characteristic p is not 2. In this case, 2 has a multiplicative in-

verse in Zp, and we get α = b/2. That is, α is already in Zp, which

means that f actually is reducible over Zp—but we have assumed

this is not true.

The characteristic p is 2. In this case, since b = 2α, b must be 0.

Hence f(x) = x2 − a. There are only two possibilities:

• f(x) = x2. This is of course reducible.

• f(x) = x2 + 1 = (x + 1)2. And this is also reducible.

So we see that if f is irreducible, its roots in Fp2 must be distinct.

We have seen so far that an inversive congruential generator can only have
maximal period if its associated polynomial f is irreducible, and in that case,
its two roots in Fp2 must be distinct.

The next thing we do is linearize the recursion by making the substitution

(3.2)

sn =
tn+1

tn

Thus, so long as tn 6= 0,

sn =

{

tn+1

tn

a tn−1

tn
+ b

and so we have
(3.3)

tn+1 = btn + atn−1



68 CHAPTER 3. SOME RANDOM NUMBER GENERATORS

This substitution may seem like just a clever unmotivated trick. Flahive and
Niederreiter attempt to motivate it by pointing out that the original non-linear
recursion (3.1) is essentially that encountered in the theory of continued frac-
tions. For our purposes, we don’t need to know that.

Now (3.3) is a second-order linear recursion. We have already seen that there

is a nice theory of such recursions in Section 1.6.4 (page 33), where we used

it to find a formula for the nth term of the Fibonacci sequence. Exactly the
same reasoning applies here, even though now we are considering equations and
vector spaces over Zp, instead of over R. Just as in Section 1.6.4, we know that

there are two special solutions of this recursion:

• 1, α, α2, α3, . . .

• 1, β, β2, β3, . . .

where α and β are the two distinct roots of f(x) in Fp2 . Further, any solution

of the recursive equation 3.3 can be written as a linear combination (over Zp)

of these two solutions. So the special solution sn can be written as

tn = c1α
n + c2β

n

where c1 and c2 have to be determined. They are determined by using the facts

that s0 = b. This forces t0 = 1 and t1 = b. 3 So we get

c1 + c2 = 1

c1α + c2β = b

Solving these two equations for c1 and c2 yields

c1 =
α

α− β

c2 = − β

α− β

and so
(3.4)

tn =
αn+1 − βn+1

α− β

Consecutive values of sn can be computed from this formula and 3.2 until the
point at which tn first becomes 0.

The crux of the matter is now contained in the following lemma, which we have
already done most of the work of proving:

3Actually, any non-zero value for t0 would do, and then t1 would just be b times that value.
So there is no harm in taking t0 = 1; any other value would just multiply all the terms tn by
that value and leave the values of the terms sn unchanged.
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3.1 Lemma Let f(x) = x2 − bx − a is irreducible over Zp, and let α and β be its

roots in Fp2 . Let N be the order of the element β/α in the multiplicative group

F ∗

p2 . Then the period length of the sequence sn generated by (3.1) with x0 = b

is N − 1.

Proof. For all n such that 1 ≤ n < N , βn 6= αn, while βN = αN . Equa-
tion (3.4) then shows that tn 6= 0 for all n such that 0 ≤ n < N−1, and tN−1 = 0.

Equation (3.2) then shows that sn 6= 0 for all n such that 0 ≤ n < N − 2

and sN−2 = 0. Equation (3.1) then shows that sn 6= b for all n such that
1 ≤ n < N − 1, and sN−1 = b, and we are done, since we know that also
s0 = b.

3.2 Theorem If the polynomial f corresponding to an inversive congruential gen-
erator has roots α and β in Fp2 , the period length of the generator is maximal

if and only if the order of β/α in the multiplicative group F ∗

p2 is p + 1.

Proof. 1. If {sn} has a maximal period length, then we have already seen that

f is irreducible, and the lemma then shows that the order of α/β is p + 1.

2. If the order of β/α is p + 1, then f must be irreducible, since otherwise both

β and α (and hence also β/α) would be in Zp and the order of β/α would divide

p− 1. Hence the lemma applies again.

Flahive and Niederreiter say that a polynomial f(x) = x2 − bx− a is an inver-

sive maximal period polynomial (or an IMP polynomial) if the period length of

the associated sequence {sn} is p. The theorem just proved thus characterizes
IMP polynomials. In particular, it turns out that all primitive monic quadratic
polynomials are IMP polynomials:

3.3 Corollary If f is a primitive polynomial, then f is an IMP polynomial.

Proof. If α is a root of f as above, then every element of F ∗

p2 is a power of

α. So in particular, β = αt for some t such that 1 < t < p2 − 1. (t can’t be

1 because we know that β 6= α, and t can’t be p2 − 1 because we know that
β 6= 1.) In fact, we can show that t must be p. The reason is as follows: we

have seen that Fp2 is isomorphic to the fields Zp[α] and Zp[β]. Now in Zp[α],

we know that αt is also a root of f . This means that in Zp[β] (and therefore

also in Fp2), βt is also a root of f . But if t 6= p, then the elements α, αt (which

is β), and αt2 (which is βt) are all distinct, and so f would have to have three
roots, which we know is impossible. Therefore t = p and β = αp.

So we have β/α = αp−1. If then (β/α)
n

= 1, we have αn(p−1) = 1. Since α is a
primitive root, this is true precisely when

p2 − 1|n(p− 1)
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Since p2− 1 = (p + 1)(p− 1), this is the same as saying p + 1|n. Thus the order

of β/α is p + 1, and so by the theorem, f is an IMP polynomial.
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