

TStreams: How to Write a Parallel Program

Kathleen Knobe, Carl D. Offner
Cambridge Research Laboratory
HP Laboratories Cambridge
HPL-2004-193
October 27, 2004*

E-mail: kath.knobe@hp.com, carl.offner@hp.com

TStreams,
parallelism

TStreams is a simple yet powerful parallel programming model which
separates the expression of all potential parallelism in an application both
from the serial computations and also from the target-specific details such
as mapping and scheduling needed to run an application on a particular
architecture.

This separation leads to an efficient and modular way of developing
parallel applications. TStreams programs are able to make use of all kinds
of parallelism-TStreams is not prejudiced in favor of one particular kind,
as parallel programming languages typically are. And the code in a
TStreams application does not have to be rewritten when porting
TStreams from one architecture to another.

In addition, because TStreams is more general than other parallel
programming systems, it has the capability of automatically providing
some facilities, such as automatic checkpoint/restart, that are not even
usually thought of as issues of parallel programming.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

TStreams: How to Write a Parallel Program

Kathleen Knobe

HP Cambridge Research Lab

kath.knobe@hp.com

Carl D. Offner

HP Cambridge Research Lab

carl.offner@hp.com

Abstract

TStreams is a simple yet powerful parallel programming model which
separates the expression of all potential parallelism in an application both
from the serial computations and also from the target-specific details such
as mapping and scheduling needed to run an application on a particular
architecture.

This separation leads to an efficient and modular way of developing par-
allel applications. TStreams programs are able to make use of all kinds of
parallelism—TStreams is not prejudiced in favor of one particular kind, as
parallel programming languages typically are. And the code in a TStreams
application does not have to be rewritten when porting TStreams from
one architecture to another.

In addition, because TStreams is more general than other parallel pro-
gramming systems, it has the capability of automatically providing some

facilities, such as automatic checkpoint/restart, that are not even usually

thought of as issues of parallel programming.

1 Introduction

TStreams is a parallel programming model which is simple yet powerful. As a
consequence, the model directly supports a number of important capabilities.
For instance,

• TStreams code can be used without modification for both serial and par-
allel target platforms.

• Checkpoint/restart is a command-line option and requires no code modi-
fication.

• The decisions about parallelism, distribution, and scheduling can be made
either before execution begins, minimizing runtime overhead, or during
execution, based on more accurate information.

The reason that TStreams has these capabilities is that TStreams is more gen-
eral than other parallel programming models.

TStreams is a programming model that enables the programmer to express all
the potential parallelism in an application. We mean by “potential” parallelism
all types of parallelism available in the application, without regard to the target
architecture.

There are three parts to a TStreams program:

parallel algorithm part: (We sometimes refer to this as the parallel algorithm

level.) This part describes the TStreams objects (items, steps, and tags,

which are all defined below) and the relations between them. It is written
in the TStreams language, which we illustrate in Section 2.4. It expresses
all the potential parallelism in the program. The parallel algorithm part
is the topic of Section 2.

serial part: (We sometimes refer to this as the serial level.) This part describes
the internals of the TStreams objects and expresses the non-parallel com-
putations and data structures in the program. It is written in any con-
ventional programming language. The serial part is almost completely
standard, so aside from explaining what it is in Section 2, we do not
discuss it in depth.

mapping part: This part describes how the potential parallelism in the algo-
rithm is implemented on a particular target. This involves scheduling and
distribution. The mapping part is the topic of Section 3.

Our thesis is this: all current parallel programming languages, such as MPI [3],

OpenMP [7], HPF [4], and streaming languages [2], focus on the mapping part.
Each of these languages was developed with a particular target architecture in
mind. This causes each of these languages to naturally express certain kinds
of parallelism well (for instance, data parallelism or task parallelism) and other

kinds (for instance, pipelined parallelism) poorly or not at all.

By solving the general problem of expressing parallel applications in a target-
independent manner, TStreams can do a better job than each such language,
even on applications that are usually regarded as natural for that language.
And as an added benefit of this more general viewpoint, TStreams leads to new
ways of dealing with situations not normally thought of as issues of parallelism.
We will describe some of these benefits of being general in Section 4.

2

2 The parallel algorithm part

2.1 Basic TStreams Objects

We introduce the fundamentals of the basic TStreams objects by a very simple
program: building a binary tree, as in Figure 1. (The description of these

objects is fleshed out in more detail in Section 2.2.) For simplicity, we assume

that the tree has a fixed depth n where n is known at the start of execution.
We will discuss a more realistic example later.

Figure 1: A binary tree, of depth 5.

There are three kinds of TStreams objects:

items encapsulate data. Each item has

• contents, which is the data that the item holds, and

• an associated tag, which serves to uniquely identify the item.

Conceptually at least, each item is immutable.

steps encapsulate computations. Each step has

• code, written in some standard programming language, and

• an associated tag, which serves to uniquely identify the step.

Conceptually at least, each step executes atomically.

tags encapsulate unique identifiers for both steps and items. Each tag has a
value.

In this example there is an item and a step corresponding to each node in the
tree. The item holds the data associated with the node. The step corresponding
to a node inputs the item corresponding to the same node and produces two
items, one corresponding to each of its children. If the node is a terminal node,
the step does nothing. In addition, there is a tag associated with each node that
simply identifies the node.

3

In our example, the precise form of the value of the tag is not relevant. One
possibility is that the value of the tag of a node is a pair 〈gen,num〉, where gen

is the generation of the node and num identifies the node within its generation.
Another is that the tag is a binary string of length ≤ n, representing a path
starting from the root where each bit indicates one of the two children. Either
of these is fine.

2.2 Spaces and Relations

node
items

node
tags

depth
item

depth
tag

make children
steps

Figure 2: Representation of a TStreams program at the parallel algorithm level.
The program builds a binary tree, starting from the root.

Figure 2 is a graphical representation of this program at the parallel algorithm
level. In such a representation, we do not see tags, items, or steps individually.
What we see are tag spaces, item spaces and step spaces. Each item space is a
collection of items that are naturally related, and similarly for step spaces and
tag spaces. In a little more detail, we have the following spaces:

Item spaces: An item space has a name and represents a collection of individ-
ual items that are natural to view as an single larger entity. The internal
structure of the contents of these items, however, is not visible at the
parallel algorithm level.

4

An item space is represented in the graphical form as a rectangle. In our
example:

• The space of node items contains one item for each node of the tree.

• The space of the depth item contains the single item containing the
fixed tree depth.

Step spaces: A step space has a name and represents a collection of steps that
share the same code. The actual step code, however, is not visible at the
parallel algorithm level. The code of a step can make reference to the
value of the step’s tag.

A step space is represented in the graphical form as an oval. In our
example:

• The space of make children steps contains one such step for each
node in the tree.

Tag spaces: A tag space has a name and represents a collection of individual
tags. The individual tags in a tag space identify individual items in an
item space, steps in a step space or both. The tags might correspond to
subscripts that identify a subsection of an array or a point in the iteration
space of a loop nest. Alternatively, they might correspond to pointers or
database keys. They might in fact be anything that makes sense in the
application. If the tag space only contains a single tag, (e.g., the depth

tag in our example), the actual value of the tag might not be significant
since it is not used to distinguish one item from another.

• The node tag space contains one tag for each node in the tree. Each
such tag corresponds to both an item and a step.

• The depth tag space contains only one tag. This tag corresponds
only to an item.

A TStreams program specifies certain binary relations between these item, step,
and tag spaces:

Prescriptive relations: A prescriptive relation is one from a tag space to
either an item space or a step space. This relation is an assertion that at
the end of the program each available tag in the tag space will correspond
to an available item in the item space or, respectively, to an executed step
in the step space. (The term available is defined precisely below.) The

tag space thus prescribes which items in the item space must ultimately
become available, and also which steps in the step space must ultimately
execute. The value of the tag in the tag space is the value of the tag of
each step and item it prescribes. A tag space may prescribe more than
one item space, and more than one step space.

The prescriptive relation is indicated by a thin arrow in the graphical
form.

5

• The node tag space prescribes the node item space.

When the program finishes execution the node item space will contain
a node item corresponding to each tag in the node tag space.

• The node tag space prescribes the make children step space.

When the program finishes execution, one make children step will
have executed for each tag in the node tag space.

• The depth tag space prescribes the depth item space.

Producer and consumer relations: Producer and consumer relations are
represented by thick arrows in the graphical form.

A producer relation associates an object with the step that produces
it. There is one producer relation in our example:

• from the make children step space to the node item space.

In this example, there is no step that produces a tag; we will see an
example for that later.

A consumer relation indicates which items are consumed by which steps.
There are two consumer relations:

• from the depth item space to the make children step space, and

• from the node item space to the make children step space.

Associated with each consumer relation is a function that converts the
tag of the step to the tag of the item consumed. This function must be
computable, must be a function only of the step tag (so in particular it

cannot use program data), and must have no side effects. In our tree-

building example, this function is simply the identity, but more complex
functions are also common.

We can’t always associate such a function with a producer relation on the
other hand, because the tag of an item produced by the step may depend
on the contents of the items consumed by that step. In other words, the
execution of the step itself defines the tags of its output.

Between a step and an item either a producer or a consumer relation might exist.
Between a tag and an item only a prescriptive relation can exist. Between a

step and a tag either a prescriptive or a producer relation might exist. (In this
example, there are no steps that produce tags, but we will show such a program
below.)

Notice that it makes no sense to say that there is a consumer relation between
a step and a tag. A consumer relation represents the action of a step receiving
information external to itself. A step consumes an item by computing the value
of the tag of that item and then receiving the contents of that item. But a
tag itself contains nothing but its own value, so if a step were to compute that
value, there would be nothing more to receive.

6

All a step can do is use its tag, consume items, perform computations on all
this data, and produce other items and/or tags.

In addition to the producer and consumer relations described above, some items
and tags are available at program start-up from the environment. These are
called initial items and tags. Some items and tags are made available to the
environment upon termination. These are called terminal items and tags. We
consider the relationship between these items (or tags) and the environment as

a producer or consumer relations. In this example, the depth tag, depth item,
the node tags and the single node item corresponding to the root of the tree are
initial and are considered to be “produced” by the environment. All the node
items are terminal and are considered “consumed” by the environment.

As a matter of etymology, the name TStreams stands for “tagged streams”.
The word “stream” is used to describe a collection of data objects produced by
one computation and used by another. In particular, the term “stream” has
sometimes been used to describe a model implementing strict FIFO ordering,
such as in some versions of media processing [8] or as in stream constructs in

some functional languages [1, 6]. In other cases the term “stream” is used to

describe a model in which the items can be processed in an arbitrary order [2].
TStreams describes a third model. In TStreams, there may be constraints on the
ordering; they are not arbitrary; and they reflect the producer and consumer
relations in the program itself which are expressed in terms of tags and may
become apparent only as the program unfolds.

2.3 Generating Tags

In the static tree building program presented above, the tags for the nodes (i.e.,

the tags in the node tag space) are initial tags. We know the entire shape of
the tree to be constructed before we begin executing. But in most tree-based
applications this is not true. In a general dynamically constructed tree, part of
the computation at a node must determine if this node is a leaf or needs to be
further subdivided.

This is not a major change from the previous example as far as the representation
at the parallel algorithm level is concerned. Figure 3 shows that representation
for a dynamic tree builder. If the step in fact actually does make children,
the node tags of the children are produced by the step itself. Notice that in
the static version the node tag space was an initial tag space. In this new
version, however, the tag space that prescribes the nodes starts with one tag
(corresponding to the root node) and grows as the program executes. We can
only determine if a certain step will execute after the step associated with its
parent has completed.

The previous example only contained producer relations between steps and
items. In the dynamic tree builder we have in addition a producer relation
between steps and tags.

7

node
items

node
tags

make children
steps

Figure 3: Representation of a TStreams program at the parallel algorithm level.
The program builds a tree whose full extent is known only at run-time.

2.4 Syntax

Here we briefly present a lexical (rather than graphical) representation of the
parallel algorithm part of a TStreams program. Figure 4 shows how the spaces
and relations in the TStreams version of the static tree builder are represented.

A symbol in angle brackets, like 〈node〉, represents a tag space. A symbol in
square brackets, like [depth], represents an item space. A symbol in parenthe-
ses, like (make children), represents a step space.

Prescription relations, as in the first three lines in Figure 4, are represented by
double colons. The first such relation is between a tag space and a step space; the
remaining two are between tag spaces and item spaces. Producer and consumer
relations, as in the remaining three lines, are represented by arrow. The first
two of these lines denote consumer relations and the last denotes a producer
relation.

While 〈node〉 represents a tag space, we can represent an element in that space

by giving its explicit value, like this: 〈node:0〉; or by giving the value a symbolic

name, like this: 〈node:root〉. An item can be specified by giving its associated

tag value: [node]〈0〉, or [node]〈root〉.

8

〈node〉::(make children)

〈node〉::[node]

〈depth〉::[depth]

[depth]→ (make children)

[node]→ (make children)

(make children)→ [node]

Figure 4: Static tree-builder: spaces and relations. The notation is intended to
remind one of the graphical representation: Angle brackets (like triangles) iden-
tify tag spaces; square brackets (like rectangles) identify item spaces; ordinary
parentheses (like ovals) identify step spaces.

Without fleshing out this language in more detail, it is evident that the parallel
algorithm part of a TStreams program can be represented compactly and clearly
in this manner.

2.5 Characteristics of TStreams

Here are some characteristics of TStreams that taken together give it a unique
flavor different from other parallel programming models.

• Steps are (conceptually) atomic. In addition, steps are functional—the

items and/or tags produced by the step depend only on the value of the
tag of the step and the contents of the input items consumed by the step.

• Items are immutable: The contents of an item can never be changed.
Therefore, one never has to be concerned about using an item before it
is overwritten; it will never be overwritten. This allows the programmer,
compiler, and run-time system a lot of freedom in reordering computa-
tions.

As a consequence of these two properties of steps and items, a step whose
execution has been interrupted, say by a machine failure, can simply
be restarted. Since items are immutable the step’s inputs will not have
changed, and since steps are functional the restarted step will necessarily
produce the same outputs.

As we will note below in Section 4, this property makes it possible to
implement checkpoint/restart in a TStreams program without any instru-
mentation of the program code.

9

• Tags are used to identify both steps and items.

– In their role as prescribers of steps, they help to determine control
flow—they take the place of iteration spaces (e.g. loop nests) and
conditional execution in conventional programs.

Although the tags which prescribe steps are used in determining con-
trol flow, tags themselves simply indicate what steps will get exe-
cuted. They do not specify in what order execution of those steps
must occur. The only ordering constraints on step execution are
those inferred from the producer and consumer relations.

– In their role as identifiers of items, they serve to describe the shape
of an item space. For instance, a 3-dimensional array might be de-
scribed as a space of 1-element items whose associated tags have
3-dimensional values. In analogy with the term iteration space, this
is what is sometimes referred to as data space.

In most other languages data and iteration spaces are handled by separate
mechanisms. In TStreams, tags and tag spaces handle these in a unified
manner.

• The multi-part structure of a TStreams program that isolates the parallel
algorithm level from the underlying serial level decouples steps from each
other and decouples items from each other.

Steps do not use mechanisms in the underlying serial language to refer to
other steps. The serial code within a step may invoke procedures within
the same step. However, a step may not invoke another step.

Items do not use mechanisms in the underlying serial language to refer to
other items. An item may contain a pointer to data within the same item,
but not to another item or part of another item.

• TStreams programs are declarative. For instance, permuting the lines in
Figure 4 does not change the meaning of the program.

• Many programs that we think of as very different are identical at the par-
allel algorithm level, and in fact have the same potential parallelism. For
example, any top-down tree walk looks the same at the parallel algorithm
level, regardless of the nature of the computations in the steps and the
data structures in the items. The fact that all these programs look the
same at the parallel algorithm level means precisely that they all have the
same potential parallelism.

• A step may represent an encapsulated computation that can be used in
different TStreams programs. In this way we could regard steps as primi-
tive operators in a domain-specific language developed for reuse in related
programs.

10

2.6 The abstract operational model

Here we present an abstract operational model that describes the execution of
a TStreams program. This model is consistent with the TStreams semantics,
which is formally specified in a separate document [5].

As a TStreams program executes, each object acquires attributes. (We will

specify these attributes immediately below; but note first that we do not regard
the contents of an item, or the value of a tag, as attributes. Items and tags are

immutable; their attributes can change.)

• Tags have one attribute:

available A tag is available if it is either an initial tag or it has been
produced by the execution of a step.

• Items have two attributes:

prescribed Suppose [I] is an item space which is prescribed by a tag

space 〈T〉. An item in [I] whose tag has value v is prescribed if there

is an available tag in 〈T〉 with the same value.

available An item is available if it is either an initial item or it has been
produced by the execution of a step.

• Steps have the following attributes:

prescribed Suppose (S) is a step space which is prescribed by a tag
space 〈T〉. A step in (S) whose tag has value v is prescribed if there

is an available tag 〈T〉 with the same value.

inputs-available A step is inputs-available if all its input items (i.e.,

all the items that the step needs to consume, as determined by the
consumer relation function) are available.

executed The step has been executed.

We say that a step having the attributes prescribed and inputs-available is en-

abled.

TStreams objects acquire attributes as the program executes. There is only one
restriction on the order in which these attributes may be acquired: A step may
not be executed until it is enabled.

Now here is how these attributes evolve during the execution of our static tree-
building program (Figure 2): At program start-up,

• The single 〈depth〉 tag is available.

• The single [depth] item (whose tag is the 〈depth〉 tag) is available.

11

• All the 〈node〉 tags are available.

• The root [node] item (whose tag is the root 〈node〉 tag) is available.

Given this initial state, without executing any steps, we know that

• The single [depth] item (whose tag is the 〈depth〉 tag) is prescribed be-

cause its tag is available.

• All the [node] items and all the (make children) steps are prescribed

because all the 〈node〉 tags are available.

• The (make children) step whose tag is the root 〈node〉 tag is enabled,
because

– it is prescribed, and

– it is inputs-available because its inputs (the root [node] item and

the single [depth] item) are available.

This enabled step can therefore be executed. As a result of this step execution,
the following things happen.

• The step becomes executed.

• The two new [node] items produced by the step become available

For the same reasons as above, the two steps that will input the two new [node]

items are now enabled.

When the program reaches a point at which no steps are enabled, it terminates.
A program is valid if upon termination

• every prescribed item is available, and

• every prescribed step has been executed.

It turns out that this property of being valid is a property of the program at the
parallel algorithm level, and not of any decisions that are made at the mapping
level, such as scheduling enabled steps. In particular, in a valid program the
order of execution is irrelevant in the sense that at any time during the execution
of the program if more than one step is enabled any one of those steps may be
chosen to execute next without altering the final outcome. In fact several of
them, or even all of them, may execute in parallel. Regardless of the ordering,
by the end of the program, the same steps will have executed, and the same
items and tags will have been produced. In our example, for instance, we might
execute the steps in depth-first or breadth-first order, or in some other order.
The parallel algorithm part of the TStreams program does not itself specify

12

a particular ordering. The producer and consumer relations, however, do put
constraints on the order. Thus, in our tree builder, the tree must be built top-
down. A bottom-up tree builder would constitute a fundamentally different
algorithm.

The class of programs that are valid is the class of well-formed programs, as
defined in [5].

3 The mapping part

In this section we discuss the decisions that need to be made at the mapping
level.

However the decisions are made, we always assume serial execution of the code
within the steps. We are not concerned here with how steps are executed.

Here are the possibilities available to us:

• Scheduling of steps within each processing nodes can be static or dynamic.

• Mapping of items to memory can be static or dynamic.

• Distributing steps across processing nodes can be static or dynamic.

When we say that a decision is statically determined, we mean that the deci-
sion is made before the program starts execution. That is, it is made by the
programmer or by static analysis techniques,or by some combination of these
two.

(Static analysis techniques require access to the consumer relation functions.
However, such techniques do not require access to the code associated with the

steps.)

In general, before execution begins we don’t know all the steps to be executed
or all the items that will be available. So a static decision simply means that
we have a statically known function that implements that decision.

A static decision typically incurs less run-time overhead. Statically computed
decisions are ideal when the both the computation and the system are pre-
dictable. The computation is predictable when the amount of computation and
the communication needed in our program does not depend on the data. The
system is predictable when the number of available processors in the target
machine is constant, the system is dedicated and the system is not faulty.

A dynamic decision typically incurs some overhead cost at runtime. But if the
situation is not predictable, dynamic decisions have the advantage of operat-
ing when more knowledge about the computation or the system is available.
Dynamic decisions are justified when this knowledge can be used effectively.

13

Scheduling steps If the steps are scheduled dynamically, a runtime system
maintains the state for each object as described in Section 2.6. It chooses
among enabled steps for the next one to execute. If on the other hand
the steps are scheduled statically, the static schedule must ensure that the
steps are enabled when they execute.

Mapping of items to memory Although conceptually TStreams items are
immutable, any efficient implementation will reuse memory by storing
distinct items in the same location. Let us say that an item is dead if

• the item is not a terminal item, and

• all steps that consume that item have executed.

Whether the mapping of items to memory is determined statically (i.e., in

the program itself) or dynamically by a run-time system, we must ensure

that an item is dead before its memory is reused.

Distributing steps The distribution decision will assign each step to a proces-
sor and each item to possibly multiple memories. The goal of distribution
is to optimize the load balance, minimize the communication and hide
latency.

In this paper we have assumed that the grain of computation and data (i.e.,

of steps and items) is fixed. We have not discussed a hierarchical version of
TStreams, capable of accommodating varying grain sizes. We are currently
investigating this. In such a hierarchical variant, we again have the possibility
of static or dynamic grain choice.

We currently have two prototypes. One operates with all decisions made stat-
ically. The other has a static distribution of objects across processors but uses
dynamic scheduling and dynamic memory mapping. Both prototypes are writ-
ten in C++. Their underlying run-time systems use MPI for interprocessor
communication.

4 The benefits of being general

With appropriate mappings, a TStreams program can execute efficiently on
a wide range of architectures: SIMD, MIMD, vector, shared and distributed
memory, and streaming architectures, without the restrictions that typically are
associated with them, such as those embodied in SPMD and strictly hierarchical
fork-join constructs.

Rather than describing this in more detail, we turn to some unexpected benefits
we get from the fact that TStreams represents parallelism in a more general
manner than do other languages. These benefits are all ultimately due to the
approach we have taken of isolating the parallel, serial, and mapping parts of
each application. Here are some examples:

14

• We have a large application composed of several parts, some of which
are regular, analyzable, and appropriate for static mapping, while other
parts are data dependent or simply harder to analyze. We can execute
such a program in a hybrid manner: we execute the analyzable parts with
a highly tuned static mapping, and the unanalyzable parts dynamically,
delaying decisions until more information is available.

• We have a low priority TStreams job sharing resources with high priority
jobs. We can make use of idle processing power as follows: When a pro-
cessor becomes idle, we speculate that the processor has time to complete
an enabled step of the low priority job. If it completes, we have advanced
the state of the low priority job. If higher priority work arrives before
the low priority step completes, we can simply drop the low priority step.
Because of the functional nature of the step, no harm is done; the step
can be rerun at a later time, and the high priority work is not delayed.

• We have a TStreams program on a faulty parallel system. As each item or
tag is produced, it is saved in a checkpoint store. When all the consumers
of an item have executed and their outputs have been saved in the store,
that item can be deleted from the store. Thus, the checkpoint store holds
a frontier of the computation. To restart an application after a fault,
simply inject each stored object as if it were just produced. This enables
us to execute a TStreams program in a way that provides all the facilities

of checkpoint/restart without any change to the program itself.

This checkpoint/restart capability is implemented in our dynamically-
scheduled prototype. In particular, this checkpointing capability does not
depend on a deterministic frontier of computation.

• We have a VLIW target. The compilation of the code for each step space
can of course be compiled to use instruction-level parallelism within each
step. For some programs however we might be able to use instruction-level
parallelism between steps, even for unanalyzable programs. Assume we
have two step spaces, (s1) and (s2), each of which has many instances.
Assume we do not know statically which instances can be executed con-
currently. We create a routine named s1-s2 that executes an instance
of (s1) and an instance of (s2). We compile this routine for the VLIW
target assuming that there are no ordering restrictions between the two
step instances—that is, we are free to mix instructions from (s1) and
instructions from (s2) within a single wide-word instruction. Now during
program execution, if step (s1)〈4〉 and step (s2)〈25〉 are both enabled,

we know that there are no dependences among the instructions of these
two steps. Therefore the runtime system can execute the routine s1-s2

with access to the tags and the input items of both steps. The state of
the running program is maintained just as if the two separate steps were
executed.

15

5 Conclusion

We have introduced, TStreams, a new model of parallel computation. Its goals
are

• to support all types of parallelism,

• to support a wide variety of parallel architectures,

• to support a wide variety of execution models, and

• to isolate the distinct aspects of parallel programming.

A TStreams program is divided into three parts:

parallel algorithm part: This represents the abstract parallel algorithm.

serial part: This contains the (serial) code and data structures in the steps
and items.

mapping part: This contains the details of the distribution, mapping and
scheduling of steps and items.

Isolating the program into three parts in this way allows for separate develop-
ment of

• a collection of abstract parallel algorithms.

• a collection of high level primitive operations (steps), and data structures

(items) for some application domain, implemented in a serial language.

• a collection of mappings and runtime systems for specific environments.

The development of a new application then involves starting with these collec-
tions, adding to them and choosing among the available possibilities. Tuning
involves adjusting any of these choices.

This way of developing parallel programs is simple and intuitive.

It should result in improvements in three areas:

The programs will execute more efficiently because they are not arbitrarily con-
strained by a target architecture. The programs will be easier to port because
they are not target-specific. And the program development process itself will
be more efficient because it isolates and modularizes the three parts of parallel
programming.

16

Acknowledgement

We thank Alex Nelson, who has contributed to this project at all levels, from
helping us clarify our ideas to implementing the two TStreams prototypes.

References

[1] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and

Interpretation of Computer Programs. MIT Press (Cambridge, MA) and

McGraw-Hill (New York), second edition, 1996. [QA76.6.A255 1996].

[2] Ian Buck. Brook Specification v0.2. Technical report, Computer Science
Department, Stanford University, Palo Alto, California, 2003. Available at
http://hci.stanford.edu/~winograd/cstr/abstracts/2003-04.html.

[3] Message Passing Interface Forum. MPI-2: Extensions to the Message-

Passing Interface, July 1997. Available at http://www.mpi-forum.org/

docs/docs.html.

[4] High Performance Fortran Forum. High Performance Fortran Language
Specification, Version 2.0, January 1997. Available from the Center for
Research on Parallel Computation, Rice University, Houston, TX, and at
http://www.crpc.rice.edu/HPFF.

[5] Kathleen Knobe and Carl D. Offner. TStreams: A Model of Parallel Com-

putation (Preliminary Report). Technical report, HP Labs Technical Report

HPL-2004-78, 2004. Available at http://www.hpl.hp.com/techreports/

2004/HPL-2004-78.html.

[6] P. J. Landin. A Correspondence Between ALGOL 60 and Church’s Lambda-

Notation: Part I. Communications of the ACM, 8(2):89–101, February 1965.

[7] OpenMP Architecture Review Board. OpenMP Fortran Application Pro-
gram Interface, Version 2.0, November 2000. Available at http://www.

openmp.org/specs.

[8] Umakishore Ramachandran, Rishiyur Nikhil, James Matthew Rehg, Yavor

Angelov, Arnab Paul, Sameer Adhikari, Kenneth Mackenzie, Nissim Harel,
and Kathleen Knobe. Stampede: A Cluster Programming Middleware for
Interactive Stream-oriented Applications. IEEE Transactions on Parallel

and Distributed Systems, 14(11):1140–1154, November 2003.

17

