

Weak Dynamic Single Assignment Form

Carl Offner, Kathleen Knobe
Cambridge Research Laboratory
HP Laboratories Cambridge
HPL-2003-169(R.1)
August 1, 2005*

dynamic single
assignment, static
single assignment,
compiler
optimizations,
parallelism,
intermediate
representations

A good intermediate representation is the key to a good compiler,
because it determines both how we can think about optimizations
and how effective those optimization can be. For example, classical
static single assignment (SSA) form is very successful in serial
compilers for both these reasons. However, SSA form is not very
helpful for the analysis of loop and array based codes for parallel
targets.

We present a new Dynamic Single Assignment (DSA) form,
designed specifically for analysis and transformations of array and
loop-based codes. We present the basic step needed to generate it
from serial code.

Future work will address the use of this intermediate representation
in the analysis and optimization of parallel code.

* Internal Accession Date Only Approved for External Publication
© Copyright Hewlett-Packard Company 2005

Weak Dynamic Single Assignment Form

Carl Offner and Kathleen Knobe

July 15, 2005

Abstract

A good intermediate representation is the key to a good compiler, because it determines both how we
can think about optimizations and how effective those optimization can be. For example, classical
static single assignment (SSA) form is very successful in serial compilers for both these reasons.

However, SSA form is not very helpful for the analysis of loop and array based codes for parallel
targets.

We present a new Dynamic Single Assignment (DSA) form, designed specifically for analysis and

transformations of array and loop-based codes. We present the basic step needed to generate it from
serial code.

Future work will address the use of this intermediate representation in the analysis and optimization
of parallel code.

Contents

Introduction 1

1 Array static single assignment form 2
1.1 Notation and definitions . 2

1.1.1 Programs . 2
1.1.2 Data space . 4
1.1.3 Iteration space . 4
1.1.4 SSA form . 9

1.2 Array SSA form . 11
1.2.1 The naive Array SSA construction . 11
1.2.2 SSA graphs and webs . 14
1.2.3 τw variables: time of entry to the web . 15
1.2.4 φ iteration indices . 18
1.2.5 φ iteration components of τv variables . 18
1.2.6 Extending the subscript map to iteration dimensions 19
1.2.7 Initial Array SSA form . 19
1.2.8 Equivalence of the initial and naive Array SSA constructions 20

1.3 Admissible program transformations . 23
1.3.1 Array SSA form and true dependences . 23
1.3.2 Simplification of if merges . 27
1.3.3 Admissible transformations . 28

1.4 General properties of τw and τv variables . 37
1.4.1 Properties that are true for programs in initial array SSA form 37
1.4.2 Properties that are true for admissible programs 38

2 Weak dynamic single assignment form 41
2.1 Overview . 41
2.2 The space of values at a static reference . 45
2.3 Contributing dimensions . 46

2.3.1 Rewriting corresponding to an arbitrary set of dimensions 46
2.3.2 Valid sets of contributing dimensions . 48
2.3.3 Computation of τv variables . 54
2.3.4 Some general properties . 56

2.4 An algorithm for computing contributing dimensions 58
2.5 Proof of correctness of the algorithm . 62

Bibliography 68

Index 69

i

Introduction

This document describes a compiler intermediate form called weak dynamic single assignment form
(weak DSA) and a sequence of transformation that produce this form from serial code. Programs

in this form have the property that each location is assigned only a single value, although it may
be assigned that value more than once. The importance of Weak DSA is that it constitutes almost
all the work required to convert a program to strong DSA form. Programs in strong DSA form
have the property that each location is assigned to only once. Strong DSA significantly simplifies
analyses and improves optimizations. In particular, existing optimizations applied to a program in
strong DSA form are more effective than those same optimizations applied to the program before
conversion to strong DSA form. The class of transformations that motivated this work were those
that increase the level of parallelism the program exhibits

A variant of weak DSA form was introduced in Knobe (1997). This current report improves on that
work in two ways:

1) The use of classic static single assignment (SSA) in Knobe (1997) uncovered some deficiencies in

that form. Knobe and Sarkar (1998) addressed these deficiencies in a new form called array SSA
form. In particular, the classic SSA form views array updates as modifications to whole arrays.
This means that transformations must maintain the order of array updates in the original program.
Array SSA form provides a mechanism for managing updates at the element level. Therefore it is
not as restricted and allows more aggressive reordering. The weak DSA form presented here uses
this new array SSA instead of classic SSA and is therefore more optimizable.

2) This document is significantly more formal and precise than Knobe (1997). It introduces some

new concepts (for instance, τv variables), gives precise definitions of valid iteration subspaces, valid
sets of contributing dimensions, and the rewriting involved in turning an ordinary program into weak
DSA form, and uses these definitions to give rigorous proofs of a number of properties, including
the correctness of the main algorithm.

Current work not yet completed and not presented here includes optimizations within weak DSA
form, conversion to strong DSA form, and conversion of strong DSA to TStreams, a new model of
parallel computation.

1

Chapter 1

Array static single assignment form

1.1 Notation and definitions

1.1.1 Programs

The programs we analyze are programs that can be reduced to a particular highly structured form.
Here is an informal description of the grammar of our restricted language:

• An expression is an ordinary arithmetic expression having no side effects. It is composed of
literal constants, scalars, array references, and pure functions.

The subscripts of arrays, as well as the arguments of pure functions, are themselves expressions
as defined here.

A reference to the array A may be denoted by A(s1, s2, s3), or by A(k : l, m :n, 3) when we

want to indicate a section.1 A scalar array reference may simply be denoted by A(~k) when we

don’t care to specify the rank of the array. In such a case, ~k always refers to a single value,
not to a general expression that may take on various values in the course of execution of the
program.

• There are three kinds of statements:

assignment statements The left-hand side of an assignment statement is a scalar or a scalar
array reference. The right-hand side is an expression as defined above.

We occasionally write an assignment statement of the form

A(:, :) = . . . B(:, :) . . .

This is just to be interpreted (as in Fortran) as the set of statements that assign—
conceptually in parallel—corresponding values on the right-hand side to corresponding
elements on the left. That is, the assignments happen as if every element on the right-
hand side is evaluated before any element on the left-hand side is assigned.

1If k : l is the entire extent of array A in the first dimension and m :n is the entire extent in the second dimension,
then A(k : l,m :n, 3) can be written simply as A(:, :, 3).

2

1.1. NOTATION AND DEFINITIONS 3

output statements Output statements are of the form

print e

where e is an expression as above (in particular, having no side effects).

input statements Input statements are of the form

read R

where R is a scalar or an array reference, as above.

Our language does not include pointers.

• Other constructs (represented by interior nodes in the parse tree) consist of sequence nodes,
if -then and if -then-else constructs, and loops, which are either Fortran do loops or while
loops.

sequence nodes represent non-terminals in the grammar and nodes in the intermediate rep-
resentation, but “SEQUENCE” is not a keyword in the language. sequence nodes occur in
three places:

– The entire program is a sequence.

– The body of a loop is a sequence.

– Each alternative in a conditional construct is a sequence.

Each while loop is converted to a do loop (with an indeterminate upper bound) by giving it

an explicit loop index. A loop index cannot be assigned to within the body of the loop.

do loop indices are regarded as local to the loop: they have no meaningful value outside the
loop body.

do loop indices are assumed to increase from one iteration of the loop to the next. This is
not really a restriction on the language. We can always rewrite the loop if necessary so that
this is true. Or we can introduce a new loop index that has this property, making the original
loop index a simple function of the new loop index.

We assume that each time a program is executed it has the same input. In particular, this means
that the input, if any, to a program must be regarded as part of the program, and similarly for the
values of any initialized variables and passed parameters.

For simplicity, we will regard a scalar as a 0-dimensional array. So if we say that A is an array, we
include implicitly the possibility that A is actually a scalar.

Such a program can be represented as a tree in the usual manner, with statements as leaf nodes.
The interior nodes in the program tree are loop, if-then-else, and sequence nodes.

We don’t go into very much detail about the semantics of this language: it is quite straightforward.
But we do mention that in a legal program it is inadmissible to refer to the value of a variable that
has not been given a value. (Although such variables may be said to have the value ⊥, this value

may not be used in any statement in the program.)

We will consider how to extend the analysis presented here to programs with goto statements,
programs with subroutines and function calls, and more general, unstructured programs, in future
work.

Definition Two programs are structurally similar or have the same control structure iff the fol-
lowing three conditions are all satisfied:

4 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

1. Their parse trees are structurally the same down to the statement level.

So for instance an assignment statement in one program corresponds to an assignment state-
ment in the other. The expressions in such statements, however, may be quite dissimilar. The
next two items, though, place some constraints on such expressions.

2. Corresponding loop variables have the same names.

3. Corresponding statements that assign to array elements (i.e., assignment statements and read

statements) assign to arrays with the same name.

Note that in particular, no restriction is placed on the values that are assigned—these may differ in
the two programs. And as we will see later, arrays with the same name in the two programs may
have different shapes. So in particular two programs that are structurally similar may still have
very different looking paths of execution, and may compute very different results.

1.1.2 Data space

Each declared object in the program has an associated data space D, which is just Zn where n is

the rank of the data object. So each element of D is an n-tuple, and we denote the jth index of that

n-tuple by dj . (We could in principle simply denote it by j, but we want to distinguish between data

space indices and iteration space indices.) dj thus corresponds to one of the n standard basis vectors

for D, and by an abuse of notation we can identify it with this basis vector. The only subspaces of
D that we are concerned with are those spanned by a subset of these standard basis vectors {di}.

Therefore, it is convenient notationally to regard the data space of an object, and all its subspaces,
simply as sets of elements {di}. We use this convention for all the vector spaces in this paper.

An array reference R consists of an array A of dimension k and a parenthesized list of k subscript
expressions. We define a function σ mapping an array reference R and data space index di to the

ith subscript expression in R. In practice, R is always clear from the context, and so we omit
the reference to R and write σ(di) instead of σ(R, di). For example, if R is the array reference

A(2 ∗ i− 3, 7 ∗ j, i + j), then σ(d2) = 7 ∗ j. An expression like 7 ∗ j is evaluated in the context of a

program state, so it is convenient to view an expression like 7 ∗ j as a function from program states
to integers.

Points in data space are represented as tuples delimited by parentheses—this fits in with our
notation for array references. For instance, the array reference A(2, 17, 1) refers to the point

(2, 17, 1) in the data space of A. The data space point of a k-dimensional array reference A is

thus
(

σ(d1), σ(d2), . . . , σ(dk)
)

.

1.1.3 Iteration space

Each data reference also has an iteration space. The definition of this space is more subtle than
that of data space, because it may differ for different references to the same data object, and also
because there are two notions of iteration space that we need to distinguish:

1. Sometimes we want to label assignment statements with the indices of loops containing them,
as in this program fragment:

1.1. NOTATION AND DEFINITIONS 5

do i = 1, n

do j = 1, m

a(i, j) = i− j !! label = [i, j]

end do
do j = 1, m

a(j, i) = i + j !! label = [i, j]

end do

end do

This enables us to reason about the order of executions of each statement. For instance,
in the second assignment statement, a(2, 5) is assigned later than a(3, 4), because the labels

associated with them are [5, 2] and [4, 3] respectively, and [5, 2] follows [4, 3] in the ordinary

lexicographic order.

That is, we often want a way of distinguishing (and ordering) distinct dynamic references of

the same static reference. For this purpose, we define the iteration space at a data reference
to be the space of tuples of the indices of the loops nested above that reference. If there are no
loops containing the reference, the iteration space contains just one point, which we denote by
⊥. We call this the local iteration space of a data reference. When people talk about “iteration
space”, this is usually what they mean.

Thus, in the program fragment above, each assignment statement has a local iteration space

Z2. Each local iteration space reflects the order of execution of its statement. Note that the
reason the ordering works out correctly is that by our standing assumption, each loop index
increases from one iteration of the loop to the next.

Points in local iteration space are denoted by ordered tuples delimited by square brackets, as
in the examples [i, j] and [5, 2] above.

2. Another kind of iteration space arises from the following consideration: we want to assign
labels to each dynamic execution of every statement in the program, and use these labels to
order all these dynamic statement executions. Figure 1.1 shows a way of doing this for a short

and rather meaningless program. (The construction, however, is perfectly general.)

The figure shows how we can construct a set of labels that reflect the relative order of distinct

dynamic references that do not necessarily correspond to the same static reference. (For
instance, local iteration space does not enable us to reason about the relative order of an
instance of the first assignment statement and an instance of the second assignment statement
in the earlier example above.) We call a data structure that enables us to do this global
iteration space.

The significant properties of a global iteration space (call it G) are these:

• G is a linearly ordered set.

• Any two distinct dynamic computations of statements in the execution of our program
are mapped to distinct elements of G. This mapping preserves the ordering of the com-
putations.

Let us denote for the moment the subset that is the range of this mapping by E . That is, E
is the set of elements of G that correspond to dynamic computations in an execution of the
program. E clearly has a first and a last element, corresponding to the dynamic statements
executed first and last in the run of the program. And every other element of E has in E a
next element and a preceding element.

6 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

short form long form

a(:) = 0 [1λ] [1λ,− ,− ,− ,− ,−]
do i = 1, n [2λ] [2λ,− ,− ,− ,− ,−]

a(i) = f(i) [2λ, i , 1λ] [2λ, i , 1λ,− ,− ,−]
if b(i) > 0 then [2λ, i , 2λ] [2λ, i , 2λ,− ,− ,−]

do j = 1, n [2λ, i , 2λ, 1λ] [2λ, i , 2λ, 1λ,− ,−]
b(j) = b(i)− a(j) [2λ, i , 2λ, 1λ, j , 1λ] [2λ, i , 2λ, 1λ, j , 1λ]

end do

a(i) = b(i) [2λ, i , 2λ, 2λ] [2λ, i , 2λ, 2λ,− ,−]
else

b(i) = a(i) [2λ, i , 2λ, 1λ] [2λ, i , 2λ, 1λ,− ,−]
a(i) = b(i− 1) [2λ, i , 2λ, 2λ] [2λ, i , 2λ, 2λ,− ,−]

end if
end do

print b(3) [3λ] [3λ,− ,− ,− ,− ,−]

Figure 1.1: Positions in global iteration space of the statements in a short sample program.

We can think of G as the set of possible times that might occur in the program, and we can
think of the subset E as the set of actual times that do occur as the program is executed. So

we call E the executed global iteration space2.

The actual construction of our global iteration space can be specified like this: it is set of
tuples whose rank is the height of the program tree. Associated with each level of the tree is
an index. For a sequence, the index denotes the position in that sequence. For loop, it is the
loop index. There is also a value (represented below by “−”) that represents a non-existent
index. If any coordinate has the value “−”, then all subsequent coordinates do. Therefore
we can suppress these coordinates when writing a point in global iteration space, as can be
seen in Figure 1.1. Each legal dynamic statement corresponds to a unique tuple in this global
iteration space, and the normal lexicographic order on tuples corresponds to execution order.

This is the construction we will use in this paper. It is natural, because it reflects the loop
structure of the program. As in the case of local iteration space, the reason the ordering works
out correctly is that by our standing assumption, each loop index increases from one iteration
of the loop to the next.

Just as we use ordered tuples delimited by square brackets to denote points in local iteration
space, we also use them to denote points in global iteration space.

In this example, we have used the convention that the subscript λ indicates a lexical position.
So coordinates of a point in global iteration space that are not subscripted by λ refer to points
in a local iteration space.

Note that statements on different branches of an if construct have identical coordinates. This
works because of course in any execution of the program only one branch can be taken, so no
point in global iteration space is encountered twice.

It is sometimes convenient to have an explicit mapping from global iteration space back into
the program. If the program itself is denoted by P , we will use P also to denote the mapping.

2The same sort of distinction could be made between possible and executed local iteration spaces, but it does not
seem useful to make this distinction.

1.1. NOTATION AND DEFINITIONS 7

That is, if t is a point in the global iteration space of the program P , then P (t) denotes the

program statement that is dynamically executed at (global iteration) time t. If P is then

transformed into a program P ′ say, with the same global iteration space, we could refer to a

corresponding statement P ′(t) in the transformed program.

Speaking informally, we use the word “time” to refer to a point in global iteration space. And
similarly, we use the phrase “at some point during the course of execution of the program”

to refer either to a time t in global iteration space, or to P (t)—the dynamic instance of the
statement corresponding to that point in global iteration space.

τw variables and τv variables (see the section on Array SSA form below) take their values
in global iteration space. In many of our examples, we need to represent a point in global
iteration space, but the only significant dimensions are the local iteration dimensions. In such
a case, we will use the notation

[t1, t2, t3]
g

to denote the point in global iteration space at the current lexical position whose local iteration
coordinates are t1, t2, and t3.

For instance, the point [2λ, i, 1λ] in global iteration space in the example above might have

been written as [i]g. Of course if we did this, we would need to have some way of knowing
what the lexical coordinates were.

Going in the other direction, if t is a point in global iteration space, we use the notation tloc

to denote the corresponding point in the local iteration space at that lexical position. That

is, tloc is the tuple consisting of the non-lexical components of t.

I denotes the local iteration space of a reference. A subspace of the local iteration space is deter-
mined by a corresponding set of loop indices.

For convenience, we denote the loop variable corresponding to the iteration space index ij by I(ij).

For instance in Figure 1.1 at the assignment to b(j), I(i1) = i and I(i2) = j.

Two programs that are structurally similar have the same global iteration spaces. The executed
global iteration spaces, however, may well differ—that is, the actual paths of execution may differ.
We say that two programs that are structurally the same are iteratively similar if the actual paths
of execution are the same:

Definition Two programs P and Q that are structurally similar are iteratively similar iff

1. The executed global iteration space of P is the same as that of Q.

2. The two maps from the executed global iteration spaces of P and Q into the lexical locations
of P and Q take corresponding times into corresponding lexical locations.

Further, we say that P and Q are iteratively similar up to time t iff the two conditions just enumer-
ated hold up to and including time t, although possibly not after t.

The following technical lemma will be needed later.

1.1 Lemma Let P be a program, and let there be an assignment to a variable A (which may be an array

reference) at time t1 in the execution of P . Let there be a later assignment to a variable B at time

t2. (B may or may not be the same as A.)

8 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

Then there is a program Q which is iteratively similar to P up to time t2 and such that

1. All the variables in Q have the same shape as their corresponding variables in P .

2. Each array reference in Q assigned to up to and including time t2 refers to the same array
element as its corresponding reference in P assigned to at the same time.

3. The values assigned to each array reference in Q before time t1 are the same as the corre-
sponding values assigned in P .

4. The value assigned at time t1 in Q is different from that assigned at time t1 in P .

Proof. Q will be created by applying a finite number of simple transformations to P . The number
of these transformations is no more than a small multiple of the number of steps in program execution
between times t1 and t2.

First, let us define a pure function f(s, s0, e, c) as follows: s and s0 are times (i.e., points in the

global iteration space of P). e is an expression. c is a constant expression. f is defined as follows:

f(s, s0, e, c) =

{

e if s 6= s0

c if s = s0

Now we begin our algorithm. Q starts out being the same as P . We step through the executions
of P and Q in parallel until we arrive at time t1. The statement executed at this time is either a
read statement or a statement that assigns a value to A:

• If the statement is a read statement, change the input of the program Q by reading in a value
different from that read in program P at time t1.

• If the statement is an assignment statement, then since we are executing program P , we know
what the value being assigned at time t1 is. Let c be a different value. Let e be the right-hand
side of the assignment statement. Replace the right-hand side of the assignment statement in
Q by the function call f(t, t1, e, c), where t is a representation of the current time.

In either case, what we have done ensures that the value assigned at time t1 in Q differs from that
in P but does not change the behavior of Q in any respect before time t1.

Now we continue the execution of programs P and Q in parallel. We consider each statement
executed at time s, where s starts from the next time after t1 and continues up to and including t2.
For each such statement, we perform the following actions:

• If the statement in P contains an expression that affects control flow—in our language these
are only if guards, while conditions, and do loop bounds—then for each such expression e

(note that e may have already been changed by a previous step), let c be the value of e in P .

Replace e by the function call f(t, s, e, c). This ensures that the control flow at time s in Q is

the same as that in P , and does not change the behavior of Q at any time previous to time s.

• If the statement in P is an assignment statement—say to an element of an array G—then for

each subscript expression e in G, let c be the value of e in P at time s. Replace e by f(t, s, e, c)
in program Q. Also replace the expression e which is the right-hand side of the assignment
statement in the same way.

1.1. NOTATION AND DEFINITIONS 9

• In any other case, do nothing to the statement in Q and continue to the next statement.

It is evident that each of these actions preserves the conditions of the lemma, and so by induction
those conditions are still true when the algorithm concludes at time t2.

1.1.4 SSA form

For the moment, let us assume that our program contains only scalars.

A program is in static single assignment form (SSA form) if each variable is the target of exactly

one assignment in the program text (Cytron et al., 1991).

Figure 1.2 shows a simple program fragment and the result of translating it into SSA form.

a = 0

do i = 1, n

print a

a = a + 1
end do

a0 = 0

do i = 1, n

.a1 = φ(a0, a2)

print a1

a2 = a1 + 1
end do

Figure 1.2: A program and its translation into SSA form. The new statement that is added when
the program is put into SSA form is prefixed by a triangle and typeset in a slightly smaller font.

Thus, programs are converted into SSA form by the introduction of φ assignments. A φ assignment
(or φ statement) is an assignment such as the first statement in the body of the SSA program in

Figure 1.2; its right-hand side is called a φ function. The purpose of a φ function is to choose which
of its arguments should be returned and assigned to the left-hand side of the assignment. As we
have written it here, the φ function is not actually a function—that is, there is no way for it to
decide which of its arguments to pick. This has been the convention in standard SSA expositions,
because SSA form is often not actually used for code generation but only for analysis, and the φ

assignments are subsequently eliminated. When we come to Array SSA form below, we will see how
φ functions can be turned into honest functions.

Note that this φ assignment is prefixed with a triangle and typeset in a slightly smaller font. We
do this consistently in our code in this paper simply as a way of making the code somewhat easier
to read.

Without specifying a specific way of constructing SSA form, but following Cytron et al. (1991), we

say simply that a (scalar program) P ′ is a translation into SSA form of an original source program
P iff it satisfies the following conditions:

1. P ′ has the same control structure as P . The executed global iteration space of P ′ is the same
as that of P with the addition of times corresponding to the added φ assignments, as described
in item 3 below. We use this new executed global iteration space for P as well, by simply
regarding the points in the program P that correspond to these new times as null statements.

In this way, P and P ′ continue to have identical global iteration spaces.

10 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

2. For each variable V in the original program P , each assignment to V has been replaced by an
assignment to a distinct variable Vi, thus leaving the program in SSA form.

We will call these variables {Vi} the SSA variants of the source variable V , or the SSA variables
corresponding to the source variable V .

Note that loop indices have no explicit assignments in the source program, and therefore have
no SSA variants.

3. φ assignments are introduced. One way this can be done is as follows: let the flow graph for
P be constructed with each statement in P being a node of the graph. If two non-null paths

in the flow graph—X
+
→ Z and Y

+
→ Z—converge at a node Z, and in program P nodes X

and Y are assignments to variables Vi and Vj (obtained from the original program variable

V), then a new variable Vk is created, and a φ assignment Vk ← φ(Vi, Vj) has been inserted

at Z in P ′.

We do not, however, presume that this particular way of introducing φ assignments has been
followed. Whatever way is used, however, must maintain the semantics of the original program,
as specified in the last item below.

4. Each use of V in the original program P has been replaced by a mention of one of these new
variables Vi.

5. The value of any variable Vi encountered during execution of a source statement, or defined

by a φ assignment, in the program P ′ (say, at a point t in the global iteration space of P ′) is
the same as the corresponding value of V at the same point in global iteration space in the
program P .

It is the last of these items that ensures that P ′ is semantically equivalent to P . This item as we
have stated it is slightly more general than that stated in Cytron et al. (1991), but it is easily seen

to hold for the construction in that paper.

There is an additional constraint that we place on the SSA construction algorithm: it says that the
algorithm is insensitive to non-structural changes in the program:

If the source programs P and Q are structurally similar, and if P ′ and Q′ are the transformed
versions of P and Q generated by the SSA algorithm, then the numbering of SSA variants and the
placement and names of the arguments of the φ functions is the same in P ′ and Q′.

This says slightly more than that P ′ and Q′ are structurally similar: In particular, the arguments
to the φ functions and the variants assigned to in those assignments are the same in P ′ and Q′.
Further, if V is a variable in an expression evaluated in P , and if the same variable V occurs in an

expression in the same lexical location in Q, then V is replaced by the same variant Vi in P ′ and
Q′.

So for instance, if programs P and Q differ only in the right-hand side of one or more assignment
statements, the algorithm applied to P and Q will produce programs having exactly the same
variables Vi defined in exactly the same positions, and will have exactly the same φ assignments in
exactly the same positions.

This constraint is easily seen to be satisfied for the construction in Cytron et al. (1991), because that
construction depends only on the control flow structure of the source program and the positions of
assignments to variables in the source program.

1.2. ARRAY SSA FORM 11

This constraint is used, in conjunction with Lemma 1.1 in the proof below of Case 2 of Lemma 1.4.

We do not specify a particular algorithm for the construction of SSA form, however. We simply

agree that any program P ′ satisfying the above conditions and the above constraint is an SSA
translation of the program P .

If a loop has a φ assignment on entrance (i.e., at the top of the loop body, as in Figure 1.2), we

sometimes refer to this assignment as a wrap-around φ, because it “wraps around” a value computed
on one iteration of the loop to the next.

For future reference, we point out a simple and very particular property of programs in SSA form.
One could certainly list much stronger properties, but this is all we really will need below:

1.2 Lemma If the source program P containing a loop L is transformed into the SSA form P ′ by our
algorithm, if V is a variable in P , and if

• The transformed program P ′ contains a definition of a variant Vi of V at a φ assignment
inside L.

• There is no source assignment in L of any variant of V whose value can reach the assignment
to Vi by a path entirely contained within the body of L.

then the value assigned to Vi at its definition is an invariant of the loop L.

Proof. Since there is no source assignment inside L that reaches the definition of Vi on a path
that remains in the body of L, the value assigned to Vi must be a value that was assigned in the
original program P to V before the loop was entered, and by condition 5 above, it must be the last
such value that was assigned to V before the loop was entered. This value certainly does not change
as the loop is executed.

This Lemma simply points out that our SSA algorithm never produces a program that looks like
this:

V1 = 1

V2 = 2
do i = 1, 100

.V3 = φ(V1, V4)

.V4 = φ(V2, V3)

end do

1.2 Array SSA form

1.2.1 The naive Array SSA construction

We begin by converting our original source program to Array SSA form. This form was introduced by

Knobe and Sarkar (1998). Rather than just referring to that paper, we will describe the construction
because we need to be a little more precise about some issues in order to handle our subsequent
conversion to dynamic single assignment form.

First, let us note that scalar SSA form can be adapted to apply to arrays, as discussed in Cytron et
al. (1991, pages 460–461). Figure 1.3 shows a simple program involving an array, and its translation

into SSA form.

12 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

a(:) = 0
do i = 1, n

a(i) = a(f(i)) + 1

print a(g(i))
end do

a0(:) = 0
do i = 1, n

.a1 = φ(a0, a3)

a2(i) = a1(f(i)) + 1

.a3 = φ(a1, a2)

print a3(g(i))
end do

Figure 1.3: A program with an array and its translation into SSA form.

In that example, the φ assignment defining a1 is placed exactly where the ordinary scalar SSA

algorithm (whichever one we are using) would place it. We call this a control φ assignment .

In addition, however, another φ assignment is introduced, to assign to a3. The function of this
assignment is to merge the single element assigned to a2(i) into the entire array. Such an assignment
is not needed in a purely scalar program, since in such a program assignment to a scalar redefines
the entire object. We call this assignment a definition φ assignment .

We know a priori that the correct value that must be assigned to each element of an array on the
left-hand side of a φ assignment is one of the values of the corresponding elements of the arrays that
are the arguments to the φ function. We need to find a way of making this selection explicit; that
is, of turning the φ into an honest function.

Now for a given φ function φ(a1, a2, . . . , an), say and a given element ~k, the value returned by the

φ function should be that value in the set
{

a1(~k), a2(~k), . . . , an(~k)
}

which was assigned last. We

can accomplish this by introducing, for each SSA variant ai an auxiliary array τvai such that at

any point in program execution τvai(~k) holds the time in global iteration space at which the value

currently held by ai(~k) was assigned to that element. Think of τv as standing for “time of assignment

to the variant”, or simply as “variant time”.

τvai is easy to compute: After each assignment to an element ai(~k) (e.g., at a source definition)

we simply define τvai(~k) to be the current time. And after each assignment to the whole array ai

(e.g., at a φ assignment to ai), we simply assign to every element of τvai the current time. (See

Figure 1.4.)

We then add in the arrays τvai as additional arguments to the φ functions, as shown in that same
figure. The code on the right-hand side of the same figure shows how the φ functions are interpreted.

Note that although we have introduced new assignment statements into the program to assign to the
τv variables, we regard these statements as being executed simultaneously with their corresponding

source statements. The reason we do this is that these variables (as well as the τw variables to be

defined later) will for the most part not appear in the final code. Further, each τv variable (and

later, τw variable as well) is so closely associated with the variable just defined at the preceding

definition that it makes sense to view it as being defined at the same point in global iteration space.
So no change is made to the global iteration space in adding these assignments.

The τv variables thus turn the φ functions into actual functions, whose values are uniquely deter-
mined by the values of their arguments. This can be useful in scalar SSA form—it is similar to

1.2. ARRAY SSA FORM 13

a0(:) = 0

.τva0(:) = [1λ]

do i = 1, n

.a1 = φ(a0, τva0; a3, τva3)

.τva1 = [2λ, i, 1λ]

a2(i) = a1(f(i)) + 1

.τva2(i) = [2λ, i, 2λ]

.a3 = φ(a1, τva1; a2, τva2)

.τva3 = [2λ, i, 3λ]

print a3(g(i))
end do

a0(:) = 0

.τva0(:) = [1λ]

do i = 1, n

.forall (k = 1 : n)

.a1(k) =

(

a0(k) if τva0(k) > τva3(k)

a3(k) otherwise

.end forall

.τva1 = [2λ, i, 1λ]

a2(i) = a1(f(i)) + 1

.τva2(i) = [2λ, i, 2λ]

.forall (k = 1 : n)

.a3(k) =

(

a1(k) if τva1(k) > τva2(k)

a2(k) otherwise

.end forall

.τva3 = [2λ, i, 3λ]

print a3(g(i))
end do

Figure 1.4: Semantics of the φ functions.

what has been called “gated SSA form” (Ballance et al., 1990)—but it is actually essential in what
we will be doing.

We refer to this form of the program that we have just described as naive Array SSA form. It is not
the final version of Array SSA form that we will construct. But it clearly preserves the semantics

of the original program. To be precise, if P denotes the original source program and P ′ denotes the
naive Array SSA program, then

1. P ′ has the same control structure as P and the same global iteration space.

2. With the exception of loop indices, each variable V in P has been replaced by a collection
{Vi} of variables in P ′ so that each Vi is assigned to in only one lexical location.

3. φ assignments are introduced, as in scalar SSA form, and in addition, definition φ assignments
are introduced after each source definition. Each φ assignment whose arguments are variants
of V defines a new variant of V .

4. Each use of V in the original program is replaced by a mention of one of these new variables
Vi.

5. Corresponding to each variant Vi, a new array τvVi is created. Each assignment to one or
more elements of Vi assigns the current time to the corresponding elements of τvVi.

The variables τvVi are added as explicit arguments to the φ functions, and are used to specify
the selection made by the φ function, as follows:

The φ function

14 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

Vk0
= φ(Vk1

, τvVk1
; . . . ; Vkn

, τvVkn
)

is interpreted as

forall (~k)

Vk0
(~k) =

Vk1
(~k) if τvVk1

(~k) = max
(

τvVk1
(~k), . . . , τvVkn

(~k)
)

. . .

Vkn
(~k) if τvVkn

(~k) = max
(

τvVk1
(~k), . . . , τvVkn

(~k)
)

end forall

6. The value of any array element Vi(~k) encountered during execution of a source statement, or

defined by a φ assignment, in the program P ′ (say, at a point t in the global iteration space of

P ′) is the same as the corresponding value of V (~k) at the same point in global iteration space

in the program P .

The expressions serving as if guards in item 5 above, and also in Figure 1.4 are called Boolean
choice expressions .

Note that the way we have defined τv variables (with their values in global iteration space), we are

guaranteed that the cases in the expression for the value of Vk0
(~k) are all disjoint. In particular,

the value of a φ function is independent of the order of its arguments.

For clarity, we will refer to all the SSA variants of all source program variables as ordinary variables .
This will enable us to distinguish them from τv variables (and later, from τw variables) in descriptive
text. Note in particular that loop indices are not classified as ordinary variables, since they have no
SSA variants.

τv variables (and τw variables, to be defined below) have one characteristic that is quite different
from ordinary variables: as we remarked earlier, the value ⊥ of an ordinary variable simply means
that that variable has not been given a value in the program. Such a value can never be referenced in
the program. For τv variables, however, the value ⊥ is significant: it is actually used in comparisons
in Boolean choice expressions, and so it has real meaning.

1.2.2 SSA graphs and webs

By the SSA graph for a source variable A we mean the directed graph G constructed as follows:

1. The nodes of G are all the lexical references to all the SSA variants of A.

2. The edges of G fall into two classes:

(a) There is an edge from the definition of each SSA variant to each of its uses.

(b) There is an edge from each argument of a φ function to the variant defined by that
function.

It is sometimes also useful to consider what we will call the collapsed SSA graph for a source variable
A. This is the SSA graph with only one node for each variant. So all references to each variant are
identified, and all the edges of the first kind are deleted. That is,

1.2. ARRAY SSA FORM 15

1. The nodes of the collapsed SSA graph for a source variable A are all the SSA variants of A.

2. There is an edge of this graph from each Ai that is an argument of a φ function to the variant
Aj defined by that function.

Note that these graphs only take account of the ordinary variables. τv variables are not represented
in these graphs.

We want to talk about connectedness, and for this purpose only, we will regard SSA graphs and
collapsed SSA graphs as undirected graphs—that is, we just ignore the sense of each edge.

The SSA graph is connected iff the collapsed SSA graph is connected. Since the collapsed graph
is the smaller graph, it is the preferred data structure to use when dealing with connectedness. Of
course it is quite likely that neither of these data structures will actually be constructed. It may, for
instance, be quite possible to show that the SSA graph is connected without actually constructing
it.

If A is an array, then the SSA graph for A is generally connected. If A is a scalar, however, the
SSA graph might be disconnected—each component corresponds to disjoint lifetimes of a variable.
Further, even if A is an array, it turns out that in some cases we can resolve some of the φ functions
so that the SSA graph for A becomes disconnected.

Following Muchnick (1997), we call the set of SSA variables corresponding to the nodes of a con-

nected component of an SSA graph a web. We use the notation web(Ai) to denote the web of
variables containing the SSA variable Ai.

1.2.3 τw variables: time of entry to the web

At any time in the course of execution of the program the variable τvAi(~k) holds the time that the

value currently in Ai(~k) was assigned to Ai(~k). There is another time that we can associate with

Ai(~k), which is no later than τvAi(~k) and often earlier. The variable that holds this new time will

be denoted by τwAi, and it is defined as follows:

Definition For each ordinary variable Ai, there is an associated variable τwAi. At any time t in

the course of execution of the program, τwAi(~k) holds the time at which the value currently in Ai(~k)

was first assigned (at a source definition) to some element of the web containing Ai, subsequently

reaching Ai(~k) by a chain of φ assignments.

To help remember this notation, think of τw as standing for “time of entry to the web”, or simply
as “web time”. τw variables were called @ variables in Knobe and Sarkar (1998).

Thus, if Ai is defined at a source definition, then τwAi(~k) = τvAi(~k) for all ~k. But if Ai is defined

at a φ assignment, then τwAi(~k) < τvAi(~k) for all ~k.

We see just by the definitions that

• τwAi(~k) is the earliest time at which the value currently in Ai(~k) was assigned to some element

of the web containing Ai, subsequently reaching Ai(~k) by a chain of φ assignments.

16 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

• τvAi(~k) is the latest such time. Of course in this case there are no φ assignments at all, and

the value is assigned to Ai(~k) directly.

Further, and again just by its definition, τwAi(~k) is the time in the original source program at which

the value currently in Ai(~k) was computed and assigned to A(~k).

Computing τwAi is straightforward:

• At a source definition, τwAi(~k) is defined to be equal to τvAi(~k).

• At a φ assignment

forall (~k)

Ak0
(~k) =

Ak1
(~k) if τvAk1

(~k) = max
(

τvAk1
(~k), . . . , τvAkn

(~k)
)

. . .

Akn
(~k) if τvAkn

(~k) = max
(

τvAk1
(~k), . . . , τvAkn

(~k)
)

end forall

we extend the φ assignment by adding a definition of τwAk0
to the forall, as follows:

forall (~k)

Ak0
(~k) =

Ak1
(~k) if τvAk1

(~k) = max
(

τvAk1
(~k), . . . , τvAkn

(~k)
)

. . .

Akn
(~k) if τvAkn

(~k) = max
(

τvAk1
(~k), . . . , τvAkn

(~k)
)

τwAk0
(~k) =

τwAk1
(~k) if τvAk1

(~k) = max
(

τvAk1
(~k), . . . , τvAkn

(~k)
)

. . .

τwAkn
(~k) if τvAkn

(~k) = max
(

τvAk1
(~k), . . . , τvAkn

(~k)
)

end forall

We may abbreviate this simply by writing

Ak0
= φ(Ak1

, τvAk1
; . . . ; Akn

, τvAkn
)

τwAk0
= φ(τwAk1

, τvAk1
; . . . ; τwAkn

, τvAkn
)

Figure 1.5 contains a simple scalar example that illustrates the difference between τv and τw vari-
ables.

x = 0

do i = 1, 2
print x

x = 5

end do

Figure 1.5: The value printed on iteration 2 is computed on iteration 1.

In this example, the value printed on iteration 2 is computed on iteration 1. If we convert this
program to SSA form, we have the code in Figure 1.6. The assignments to the τv and τw variables

1.2. ARRAY SSA FORM 17

x0 = 0

.τvx0 = [1λ]

.τwx0 = [1λ]

do i = 1, 2

.x1 = φ(x0, τvx0;x2, τvx2)

.τvx1 = [2λ, i, 1λ]

.τwx1 = φ(τwx0, τvx0; τwx2, τvx2)

print x1

x2 = 5

.τvx2 = [2λ, i, 3λ]

.τwx2 = [2λ, i, 3λ]

end do

Figure 1.6: The code from Figure 1.5 in SSA form, with the τv and τw variables added.

on each iteration of the loop occur with the following values:

value before loop value (i = 1) value (i = 2)

(x0, τwx0, τvx0) (0, [1λ], [1λ])
(x1, τwx1, τvx1) (⊥,⊥,⊥) (0, [1λ], [1]g) (5, [1]g, [2]g)
(x2, τwx2, τvx2) (⊥,⊥,⊥) (5, [1]g, [1]g) (5, [2]g, [2]g)

Thus on iteration 2 of the loop, τwx1 is assigned the value [1]g , which denotes the iteration at which

the value last assigned to x1 (i.e., the value 5) was computed (and assigned to the variable x2).

However, this value was not actually stored into the variable x1 until iteration 2 (that is, at time

τvx1).

The reader may fear that we are suffering from variable pollution at this point. There are several
things to keep in mind:

• These new variables are actually needed for our analysis.

• The τv variables will not appear in generated code.

• In typical cases most or all of the τw variables can be optimized away.

These points will be justified below.

As a matter of notation, by
(

τvAi(~k)
)

j
we mean the jth local iteration component of τvAi(~k). Of

course τvAi(~k) also has lexical components, but we will not extract them by subscripting in this
way. The same convention will be used for extracting iteration components of τw variables.

For example, if at a particular reference τvAi(~k) = [3λ, i, 2λ, j, 2λ], then at that same reference
(

τvAi(~k)
)

2
= j.

18 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

1.2.4 φ iteration indices

A φ assignment, which in naive Array SSA form has the form

A6(:, :, :) = φ
(

A5(:, :, :), τvA5(:, :, :); A4(:, :, :), τvA4(:, :, :)
)

τwA6(:, :, :) = φ
(

τwA5(:, :, :), τvA5(:, :, :); τwA4(:, :, :), τvA4(:, :, :)
)

can be written more explicitly like this:

forall (p, q, r)

A6(p, q, r) =

{

A5(p, q, r) if τvA5(p, q, r) > τvA4(p, q, r)

A4(p, q, r) otherwise

τwA6(p, q, r) =

{

τwA5(p, q, r) if τvA5(p, q, r) > τvA4(p, q, r)

τwA4(p, q, r) otherwise

end forall

Here we have introduced explicit iteration variables p, q, and r to express the computations inside
the φ assignment. We will find it convenient to regard these as representing the values of additional
coordinates in the local iteration space of the statements inside the forall. We call these coordinates
φ iteration coordinates . Just as with other iteration dimensions, they are labeled by indices of the
form ij .

This has the effect of increasing the depth of the local iteration space (and similarly, the global

iteration space) at each φ assignment.

1.2.5 φ iteration components of τv variables

There is a simple result that won’t be needed until later but that is convenient to mention at this
point: consider a φ assignment, say the one illustrated just above in Section 1.2.4.

forall (p, q, r)

A6(p, q, r) =

{

A5(p, q, r) if τvA5(p, q, r) > τvA4(p, q, r)

A4(p, q, r) otherwise

τwA6(p, q, r) =

{

τwA5(p, q, r) if τvA5(p, q, r) > τvA4(p, q, r)

τwA4(p, q, r) otherwise

end forall

Since this forall implements a φ assignment, there is no control φ after it. Therefore it is possible
to have a reference to A6 subsequent to this forall. Say the reference is of the form A6(S1, S2, S3)

where the Si are subscript expressions. Let us say that the control φ iteration variables p, q, and

r are indexed by iteration indices i7, i8, and i9, respectively. Then the value of
(

τvA6(S1, S2, S3)
)

7

(which denotes the value in the “i7-coordinate” of the point in the local iteration space of the

definition of A6 at which A6(S1, S2, S3) was defined, must be S1, since it occurs when p = S1, and

I(i7) = p.

This point is quite immediate, but since we will need to refer to it explicitly below, we isolate it as
a lemma:

1.3 Lemma If

1.2. ARRAY SSA FORM 19

• A(S1, . . . , Sn) is a use of an array that is defined at a φ assignment,

• ik is a φ iteration index of that φ assignment, and dq is the corresponding data index

then
(

τvA(S1, . . . , Sn)
)

k
= Sq.

For example, if in the example above there was a subsequent reference of the form A6(5, 3 ∗ i, i− j),

then
(

τvA6(5, 3 ∗ i, i− j)
)

8
= 3 ∗ i.

1.2.6 Extending the subscript map to iteration dimensions

For convenience, we extend the subscript map σ, which we defined earlier on page 4. As previously
defined, σ takes as input an array reference (which is always implicit) and an index dk into the

data space of the array of the reference. We will extend this so that instead of dk, we can pass

an iteration index ij , say. In such a case, σ(ij) will denote the jth component of the τv variable

associated with that reference.

For instance, suppose R is a reference to an element A
(

σ(d1), σ(d2), σ(d3)
)

of a 3-dimensional array

A inside 4 nested loops. With respect to this reference, we have σ(i2) =
(

τvA(σ(d1), σ(d2), σ(d3))
)

2
.

This is an expression which can be regarded as a function of the program state. If for instance, the
actual array element is A(2, 17, 1) and if this element was last assigned to at time [4, 3, 1, 5]g, then

the current value of the expression denoted by σ(i2) with respect to this reference is 3.

In particular, if the reference is a definition, then σ(ij) is just the loop index corresponding to the

iteration space dimension ij .

Note that σ(ij) at a reference to an array A is defined only for those iteration components ij of the

local iteration space at the definition of A.

Note also that if the reference itself is simply a loop variable I(ij) corresponding to the ij coordinate

of a local iteration space, then σ(ij) = I(ij). This is because in our language a loop variable is

assigned once on entry to each iteration of the loop, and cannot be changed during that iteration.

The reason for this particular definition of σ(ij) will become clear in Section 2.3.1 (page 46), where

we specify how to rewrite a program corresponding to a particular set of dimensions. The definition
itself is used in the main algorithm in Chapter 2, and in particular in Lemma 2.8 (page 57).

1.2.7 Initial Array SSA form

It turns out that we can expose more opportunities for optimization if we can replace the times
represented by τv variables in the Boolean choice expressions of the program in naive Array SSA
form by earlier times. The particular way we will do this is to replace each τv variable in each
Boolean choice expression in each φ function by its corresponding τw variable.

With this change, the program is in what we will call initial Array SSA form. There are two
observations we need to make at this point:

1. The cases in a φ function may no longer be disjoint. It may be, for instance, that τwAi(~k) =

τwAj(~k). (This could never happen with τv variables.) This is really not a problem, because

20 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

if τwAi(~k) = τwAj(~k) then the values assigned at those two times (which are really the same

time) are of course equal, and so the values currently in Ai(~k) and Aj(~k) are equal. Thus

Ai(~k) = Aj(~k), so it really does not matter which of the two variants of Ai is chosen by the φ

function. So while there may be some formal ambiguity in the φ function, it is harmless.

2. The reasoning above on page 12 that shows that the transformation to naive array SSA
form preserves the semantics of the original program shows in much the same way that the

transformation to initial Array SSA form preserves the semantics3.

However, we can also derive the correctness of the transformation to initial Array SSA form
from that of naive Array SSA form by proving a somewhat more general result first. We will
do this next.

1.2.8 Equivalence of the initial and naive Array SSA constructions

Let P be an original source program, and let Pv be the naive Array SSA form of P . We have already
noted that Pv preserves the semantics of P .

Let Pw be the program in initial Array SSA form constructed from Pv as just specified. We will
show that Pw is semantically equivalent to Pv by showing that the transformation from Pv to Pw

leaves invariant the value of each Boolean choice expression. Since it is only those Boolean choice
expressions that were modified, it follows immediately by induction that the control flow in Pw is
the same as that in Pv and that each value computed in Pw is the same as the corresponding value
in Pv. And that means that Pw is semantically equivalent to Pv and thus to P .

1.4 Lemma If A and B are in the same web, and if at some point in the execution of the program

τwA(~k) < τwB(~k) for some ~k, then (at that same point)

τwA(~k) ≤ τvA(~k) < τwB(~k) ≤ τvB(~k)

Proof. We know that the two outer inequalities are automatically true, so we only have to prove
the inner one.

Suppose it is not true. There are two possibilities:

1. τwB(~k) = τvA(~k)

2. τwB(~k) < τvA(~k)

We consider these two cases separately.

3We only have to replace the statement

Now for a given φ function φ(a1 , a2, . . . , an), say and a given element ~k, the value returned by the φ

function should be that value in the set
˘

a1(~k), a2(~k), . . . , an(~k)
¯

which was assigned last.

by the statement

Now for a given φ function φ(a1 , a2, . . . , an), say and a given element ~k, the value returned by the φ

function should be that value in the set
˘

a1(~k), a2(~k), . . . , an(~k)
¯

which entered the web last.

1.2. ARRAY SSA FORM 21

Case 1. In this case we have

τwA(~k) < τwB(~k) = τvA(~k)

Now P
(

τvA(~k)
)

must be a φ assignment, since τwA(~k) < τvA(~k). But this is impossible, since

P
(

τvA(~k)
)

= P
(

τwB(~k)
)

, which must be a source statement. So Case 1 cannot happen.

Case 2. In this case we have

τwA(~k) < τwB(~k) < τvA(~k)(1.1)

We must show that such a relation cannot hold. In doing this, we may make the following
assumption:

τwB(~k) is the last time before time τvA(~k) at which the ~k element
of any member of web(A) was assigned to at a source statement.

(1.2)

Further, we may assume that the value assigned at time τwB(~k) is actually different from that

assigned at time τwA(~k). For if not, we can apply Lemma 1.1 to our original source program

P , with t1 in that lemma being τwB(~k) and t2 being τvA(~k), to create a program Q in which
the values assigned at time t1 in P and Q are different. Because P and Q are structurally
similar, we know that whatever SSA algorithm we are using gives Qv the same SSA structure
as Pv. That is, Qv and Pv have the same SSA variants, numbered the same way, and the same
placement of φ functions with the same arguments.

Further, the variables assigned to in Qv are the same as those in Pv up through time t2, and

so the assumption (1.2) still holds, and in addition relation (1.1) continues to hold in Qv. If
we can show that this leads to a contradiction in Qv, then there must have already been a
contradiction in Pv. (That is, (1.1) must be false in P .) So we will simply assume that the

value assigned at time τwB(~k) is actually different from that assigned at time τwA(~k).

Let us denote the variable in the original program P of which A and B are SSA variants by
X . The inequality above says the following:

1. At time τwA(~k) a value is assigned to the ~k element of some variant of X at a source

statement. We know that at the same time in the original program X(~k) is assigned the
same value by the corresponding source statement.

2. At the later time τwB(~k) a different value is assigned to the ~k element of another variant

of X at a source statement. At that same time in the original program X(~k) is overwritten

by this different value, and this is the last time before time τvA(~k) at which the element

X(~k) is assigned to in P .

3. At the still later time τvA(~k), A(~k) is assigned (by a φ assignment) the value that was

originally computed at time τwA(~k). Again, this value must be the value held by X(~k)

at that time τvA(~k). But this value in X(~k) is no longer the original value computed at

time τwA(~k), since it was overwritten at time τwB(~k).

22 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

Since this is a contradiction, Case 2 cannot happen, and we are done.

1.5 Theorem (Equivalence of the initial and naive Array SSA constructions) The initial Ar-

ray SSA program Pw is semantically equivalent to the original source program. That is, the value

of any array element Ai(~k) encountered in Pw at time t during execution of a source statement or

defined by a φ assignment is the same as the corresponding value A(~k) in the original source program
at the same time t.

Proof. We know that P is semantically equivalent to Pv. Let

Ai = φ(Ai1 , τvAi1 ; . . . ; Aik
, τvAik

)

be any φ assignment in Pv. For a given vector ~k of subscripts, let Aij
(~k) be that element chosen

by the φ function. That is, τvAij
(~k) is the largest of the τv values occurring as arguments to the φ

function corresponding to the subscript vector ~k. Lemma 1.4 then shows that τwAij
(~k) is at least

as great as any other τwAik
(~k) for all indices ik occurring in the φ function. Thus, substituting for

each τvAij
in the φ function the value τwAij

does not change the value returned by the φ. (Recall

that no harm is done if two values τwAij
(~k) and τwAik

(~k) turn out to be equal.) And doing this

consistently throughout the program turns program Pv into Pw with no change in semantics, and
thus concludes the proof.

Note that once the program is in initial Array SSA form, the propagation of τw variables becomes
formally simpler: in naive Array SSA form τw variables would be combined at a φ assignment like
this:

forall (~k)

τwAk0
(~k) =

τwAk1
(~k) if τvAk1

(~k) = max
(

τvAk1
(~k), . . . , τvAkn

(~k)
)

. . .

τwAkn
(~k) if τvAkn

(~k) = max
(

τvAk1
(~k), . . . , τvAkn

(~k)
)

end forall

After replacing the τv variables in these Boolean choice expressions by the corresponding τw vari-
ables, thus putting the program in initial Array SSA form, this combination can be written more
simply as

τwAk0
(~k) = max(τwAk1

, . . . , τwAkn
)

Note by the way that the same argument used in the proof of Theorem 1.5 yields the following
statement, which we will identify for future reference:

1.6 Corollary In the program Pv, the following properties hold:

1. If Ai(~k) is assigned at a source assignment, then the (conceptually simultaneous) assignment

to τwAi(~k) assigns a value in global iteration space greater than the current value of every

other τwAj(~k) for each Aj in web(Ai).

2. If on the other hand Ai is defined by a φ assignment, then for each execution of that assignment

statement, the (conceptually simultaneous) assignment to τwAi causes τwAi to be elementwise

at least as great as the current value of every other τwAj for each Aj in web(Ai).

1.3. ADMISSIBLE PROGRAM TRANSFORMATIONS 23

Proof. This follows immediately from Lemma 1.4.

1.7 Lemma If P is a program in initial Array SSA form and L is a loop in P , and if

• P contains a definition of a variable Vi at a φ assignment inside L.

• There is no source assignment in L of any variable in web(Vi) whose value can reach the

assignment to Vi by a path contained entirely in the body of L.

then the value assigned to Vi at its definition is an invariant of the loop L.

Proof. If Vi is an ordinary variable, this follows immediately from Lemma 1.2 (page 11).

If Vi is a τw variable—say Vi is τwBi—then the φ assignment defining τwBi occurs in conjunction
with a φ assignment defining Bi. Further, since there is no source assignment in L of any τw variable
whose value can reach the assignment to τwBi by a path in L, there must similarly be no source
assignment in L of any variable in web(Bi) whose value can reach Bi by a path in L. So the value

assigned to Bi(~k) is an invariant of the loop L.

Now if τwBi(~k) takes on two different values on two different loop iterations, then Bi(~k) must have
received values that entered the web at two different times, both before the loop was entered. Using
Lemma 1.1, we may assume that these two values are different. But we have just observed that
they must be the same.

1.3 Admissible program transformations

1.3.1 Array SSA form and true dependences

Putting a program in initial Array SSA form can lead to an overly conservative dependence analysis.
Here we give some examples and show how they can be simplified.

Example: spurious cycles of dependences

Suppose we start with the code

A(:) = 0

do i = 1, n

A(i) = A(i) + 1

end do

We know that in this code there is no cycle of dependences around the loop. Nevertheless, if we
insert φ statements in the “obvious” places, we get the following code:

24 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

A0(:) = 0
.τwA0(:) = [1λ]

do i = 1, n

.A1(:) = φ
`

A0(:), τwA0(:); A3(:), τwA3(:)
´

.τwA1(:) = max
`

τwA0(:), τwA3(:)
´

A2(i) = A1(i) + 1

.τwA2(i) = [i]g

.A3(:) = φ
`

A2(:), τwA2(:); A1(:), τwA1(:)
´

.τwA3(:) = max
`

τwA2(:), τwA1(:)
´

end do

In this form, it appears that there is a cycle of dependences, for we have the sequence A2 → A3 →
A1 → A2.

Now a clever compiler might be able to see that there is really no cycle here. However, we do not
have to make it work so hard. The only reason there appears to be a cycle is that we have inserted

a back edge in the dependence graph by placing a φ assignment (defining A1) at the top of the
loop. This φ assignment is actually unnecessary, because its only function is to propagate values
generated within the loop body back to the top of the next iteration. However, no such values are
ever used in a subsequent iteration—that is to say, there is no loop-carried dependence involving
any of the variables Ai. Therefore, the control φ assignment at the top of the loop did not need to
be inserted. We could simply have written the code like this:

A0(:) = 0

.τwA0(:) = [1λ]

do i = 1, n

A1(i) = A0(i) + 1
.τwA1(i) = [i]g

.A2(:) = φ
`

A1(:), τwA1(:); A0(:), τwA0(:)
´

.τwA2(:) = max
`

τwA1(:), τwA0(:)
´

end do

and in this form, it is clear that there is no cycle of dependences in the loop.

Example: dead code

Here is another example:

A(:) = 0

do i = 1, n

A(i) = . . .

if (i == 1) then

· · · = . . . A(i) . . .

else
· · · = . . . A(i− 1) . . .

end if

end do

Again, inserting the initial Array SSA code can result in unnecessary complexity:

1.3. ADMISSIBLE PROGRAM TRANSFORMATIONS 25

A0(:) = 0
.τwA0(:) = [1λ]

do i = 1, n

.A1(:) = φ
`

A0(:), τwA0(:); A3(:), τwA3(:)
´

.τwA1(:) = max
`

τwA0(:), τwA3(:)
´

A2(i) = . . .

.τwA2(i) = [i]g

.A3(:) = φ
`

A2(:), τwA2(:); A1(:), τwA1(:)
´

.τwA3(:) = max
`

τwA2(:), τwA1(:)
´

if (i == 1) then

· · · = . . . A3(i) . . .

else

· · · = . . . A3(i− 1) . . .

end if

end do

Now using a sophisticated form of dependence analysis, the compiler can determine that the reference
to A3(i) is really a reference to A2(i), and similarly the reference to A3(i− 1) is a really a reference

to A2(i−1). After making these substitutions, A1 and A3 are unused except for defining each other.

That is, they occur in a sink loop of the SSA graph, which can therefore be eliminated as dead code.
The final code then is this:

A0(:) = 0

.τwA0(:) = 〈before the loop〉

do i = 1, n

A2(i) = . . .

.τwA2(i) = [i]g

if (i == 1) then

· · · = . . . A2(i) . . .

else

· · · = . . . A2(i− 1) . . .

end if
end do

Of course there will be a φ assignment after this loop merging the values of A0 with those of A1,

unless that assignment is also able to be eliminated (for instance, by the same sort of reasoning).

We perform this simplification systematically on the original Array SSA form: whenever a reference
to an SSA variant A can be proved to be a reference to an element of web(A) that is defined earlier

than A is, the appropriate substitution is made. When this leads to one or more φ assignments
being recognized as dead code, those assignments are then eliminated.

When this is done, it is still true of course that any true dependences in the original source program
remain true dependences in the Array SSA form of the program. If we have done a good job, the
converse should also be true (or approximately true, anyway)—all true dependence edges in the

Array SSA program should now correspond to true dependences in the original program.

26 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

Example: reinstating deleted code

There is a certain circumstance (explained below in Section 2.4) in which a wrap-around φ assign-

ment that has been removed in this way needs to be reinstated, and reinstating such a wrap-around
φ assignment in turn may force other φ assignments to be reinstated. We won’t explain why this

needs to be done here, (other than to assert that it may be necessary to put the program in dy-

namic single assignment form) but we simply give an example of how it works. Suppose we have

the original code

A(:) = 0

do i = 1, n

A
(

f(i)
)

= . . .

· · · = . . . A
(

f(i)
)

. . .

A
(

g(i)
)

= . . .

· · · = . . . A
(

g(i)
)

. . .

end do

After putting in the initial Array SSA code, we have

A0(:) = 0

.τwA0(:) = [1λ]

do i = 1, n

.A1(:) = φ
`

A0(:), τwA0(:); A5(:), τwA5(:)
´

.τwA1(:) = max
`

τwA0(:), τwA5(:)
´

A2

(

f(i)
)

= . . .

.τwA2

`

f(i)
´

= [i]g

.A3(:) = φ
`

A2(:), τwA2(:); A1(:), τwA1(:)
´

.τwA3(:) = max
`

τwA2(:), τwA1(:)
´

· · · = . . . A3

(

f(i)
)

. . .

A4

(

g(i)
)

= . . .

.τwA4

`

g(i)
´

= [i]g

.A5(:) = φ
`

A4(:), τwA4(:); A3(:); τwA3(:)
´

.τwA5(:) = max
`

τwA4(:), τwA3(:)
´

· · · = . . . A5

(

g(i)
)

. . .

end do

Now a good compiler can be expected to understand that the use of A3 in the source assignment is
really a use of A2. Similarly, the use of A5 in the source assignment is really a use of A4.

This makes the assignments to A1, A3, and A5 dead code, and so they can be eliminated, yielding
the following code:

1.3. ADMISSIBLE PROGRAM TRANSFORMATIONS 27

A0(:) = 0
.τwA0(:) = [1λ]

do i = 1, n

A2

(

f(i)
)

= . . .

.τwA2

`

f(i)
´

= [i]g

· · · = . . . A2

(

f(i)
)

. . .

A4

(

g(i)
)

= . . .

.τwA4

`

g(i)
´

= [i]g

· · · = . . . A4

(

g(i)
)

. . .

end do

Now (this will be because the function f is presumably not invertible), we will probably discover
in the course of performing the algorithm described in Section 2.4 that we need to reinsert the

wrap-around φ assignment for web(A2). This assignment defines A1 in terms of A0 and A5, so we
need also to reinsert the φ assignment defining A5 in terms of A4 and A3, which in turn forces us
to reinsert the φ assignment for A3. We thus wind up with the following code:

A0(:) = 0

.τwA0(:) = [1λ]

do i = 1, n

.A1(:) = φ
`

A0(:), τwA0(:); A5(:), τwA5(:)
´

.τwA1(:) = max
`

τwA0(:), τwA5(:)
´

A2

(

f(i)
)

= . . .

.τwA2

`

f(i)
´

= [i]g

.A3(:) = φ
`

A2(:), τwA2(:); A1(:), τwA1(:)
´

.τwA3(:) = max
`

τwA2(:), τwA1(:)
´

· · · = . . . A2

(

f(i)
)

. . .

A4

(

g(i)
)

= . . .

.τwA4

`

g(i)
´

= [i]g

.A5(:) = φ
`

A4(:), τwA4(:); A3(:); τwA3(:)
´

.τwA5(:) = max
`

τwA4(:), τwA3(:)
´

· · · = . . . A4

(

g(i)
)

. . .

end do

Note that in this code, the use of A3 in the source statement has still been replaced by a use of
A2, and similarly the source use of A5 has been replaced by a use of A4. The φ assignments that
were reinserted add additional dependences to the Array SSA program that are not present in the
original program. These additional dependences, however, will not degrade our analysis.

1.3.2 Simplification of if merges

The initial Array SSA code for a control φ merge after an if construct looks like this:

28 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

. . .

A5(:) = . . .

if B then

A6(~k) = . . .

.τwA6(~k) = . . .

.A7 = φ(A6, τwA6;A5, τwA5)

.τwA7 = max(τwA6, τwA5)

end if
.forall (~j)

.A8(~j) =

(

A7(~j) if τwA7(~j) > τwA5(~j)

A5(~j) otherwise

.τwA8(~j) =

(

τwA7(~j) if τwA7(~j) > τwA5(~j)

τwA5(~j) otherwise

.end forall

We can, however give an explicit form to the Boolean choice expression in the φ function:

. . .

A5(:) = . . .

if B then

A6(~k) = . . .

.τwA6(~k) = . . .

.A7 = φ(A6, τwA6;A5, τwA5)

.τwA7 = max(τwA6, τwA5)

end if
.forall (~j)

.A8(~j) =

(

A7(~j) if B

A5(~j) otherwise

.τwA8(~j) =

(

τwA7(~j) if B

τwA5(~j) otherwise

.end forall

Of course we can only do this if we ensure that the value of B introduced in the Boolean choice
expression in the φ function is the same as that which it had in the if guard. We can always arrange
this by saving the value in a temporary if necessary.

This will be very useful to us; we assume this has been done systematically. The significance of
this transformation is that the expression B contains no τw variables. This allows the algorithm in
Chapter 2 to propagate non-trivial values.

1.3.3 Admissible transformations

In preparation for performing the algorithm of the next chapter, we are going to need to apply
some transformations, such as the ones considered above, to the program in order to simplify the
SSA overhead as much as possible. In order that these transformations preserve the semantics of
the program, we need them to preserve certain values in the program. The values that need to be
preserved are the values that could conceivably affect the visible output of the program. So first we
give a precise definition of what has to be preserved:

1.3. ADMISSIBLE PROGRAM TRANSFORMATIONS 29

Given a program P , let us temporarily denote by Gdynamic the directed graph defined as follows:

Its nodes fall into two classes:

• the dynamic references in P . A dynamic reference (see also page 41 below) is a static reference
together with the time at which the static reference occurs. So each static reference may
correspond to more than one dynamic reference.

There is one exception to this: a dynamic reference of an ordinary variable whose value can
be proved to be ⊥ (i.e., whose value has not been assigned within the program) is not a node

in Gdynamic. This is because ⊥ values of ordinary variables can never be referenced in a legal
program.

We do not make this exception for τw variables: as we remarked earlier, values of ⊥ for τw

variables are meaningful and can be referenced in the program. We can’t ignore them.

• expressions that can affect flow of control. In our language these expressions are of two types:

– the Boolean guards in P . Such Boolean guards are the expressions used in if statements
and the Boolean choice expressions in φ functions.

– expressions for loop bounds and increments.

These nodes are also considered dynamically. That is, they are also tagged by the time at
which they are evaluated.

As in the previous item, a dynamic instance of a control flow expression whose value can be
proved to be ⊥ is not a node in Gdynamic.

The edges of Gdynamic are of the following forms:

• There is an edge from every definition to each of its uses.

• There is an edge from each use in a source assignment statement to the reference being defined.

• There is an edge from each use of an ordinary variable in a φ assignment which could be
assigned to the reference being defined. There is also an edge from each corresponding τw

variable to the reference being defined.

(In general, this means that there is an edge from every argument in a φ function to the
reference being defined. However, in the course of performing program transformations, it
may become clear that one or more of these edges can be eliminated.)

• There is an edge from each reference in a control flow expression to the expression itself.

• There is a (control) edge from each control flow expression to every reference defined or used

subsidiary to that expression.

These edges are determined conservatively—a possible use of a definition always gives rise to an
edge, for instance. On the other hand, if we can determine that a use is never reached, or that it
definitely refers to a different element that that at the definition, then no edge is introduced.

Definition The value held by the array element Ai(~k) at time t is ultimately used if there is a

path in the graph Gdynamic starting from the reference to Ai(~k) at time t and ending at a print

statement.

30 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

Of course as we expand the simple language we are considering, there are other conditions under
which we will say that an array element is ultimately used. An assignment to an external variable,
or a return value from a procedure, for instance, would each constitute ultimate use.

It follows immediately from this definition that if some element τwAi(~k) at time t is ultimately used,

then the corresponding element Ai(~k) at time t is also ultimately used. This is because the only use

of τwAi(~k) is to guard references to Ai(~k).

As noted, this definition of ultimate use is conservative. A value is considered to be ultimately used
unless the compiler can prove that it is not.

Our notion of ultimate use is similar but not identical to the notion of live code as defined in Section
7.1 of Cytron et al. (1991).

Certainly any program transformation that we want to allow should preserve values that are ulti-
mately used. There is a somewhat wider class of values and statements that actually need to be
preserved for our purposes—we use the word essential to describe this class:

Definition The value held by the array element Ai(~k) at time t is essential if either

• the value is ultimately used, or

• there is a path in the graph Gdynamic starting from the reference to Ai(~k) at time t and ending

at an expression in a loop header or if guard.

A dynamic instance of a statement (that is, a statement S together with a time t at which it is

executed) is essential iff either

• it is a read statement, or

• it contains a value that is essential.

(Even if a read statement does not assign to a variable that is essential, we regard it as essential,

because it may affect what is read by subsequent read statements.)

Definition We say that a statement S in the program is dead code in any of the following cases:

• S is never executed.

• S is an empty if construct or loop—that is, there are no statements guarded by the if guard
or in the body of the loop.

• S is an assignment statement which assigns to an object none of the values of whose dynamic
instances are essential.

As in the definition of essential statements above, we never characterize a read statement as
dead code, even if it defines a variable that is never used. This is simply because we want
to make sure that it is not deleted, thereby affecting the values read by any subsequent read

statements.

Now each transformation we have considered in Sections 1.3.1 and 1.3.2 falls into one of the following
categories:

1.3. ADMISSIBLE PROGRAM TRANSFORMATIONS 31

T1. Suppose Ai and Aj are ordinary variables in the same web and suppose that Ai(~k) is used in

some statement at some time t.

• If the value held by Ai(~k) at time t is essential, and if it can be proved that at time t,

τwAi(~k) = τwAj(~k) (and therefore that Ai(~k) = Aj(~k) as well), then the use of Ai(~k)

may be replaced by a use of Aj(~k). When this is done, any corresponding use of τwAi(~k)

in the same statement is also replaced by τwAj(~k). (This replacement of τwAi(~k) only

happens if the statement is a φ assignment.)

• If the value held by Ai(~k) at time t is not essential, then

– If the statement is not a φ assignment, it is permissible to replace the use of Ai(~k)

by a use of any Aj(~k), provided that

∗ this substitution does not lead to a run-time exception either at time t or later.

– If the statement is a φ assignment, it is permissible to replace the use of Ai(~k) by

a use of any Aj(~k) and to replace the corresponding use of τwAi(~k) in the same

statement by a corresponding use of τwAj(~k) provided that

∗ τwAj(~k) ≤ τwAi(~k) at time t, and

∗ this substitution does not lead to a run-time exception either at time t or later.

(This substitution in a φ assignment cannot lead to a run-time exception at time t,

but it still might lead to one later.)

In applying this criterion, remember that in accordance with our convention, ~k does not refer
to an expression; it refers to a particular value. In general, of course, we are interested in all
the possible values that occur in the course of execution of the program, because we usually
want to replace an entire expression textually. However, our criterion is expressed in terms of
single values to allow more flexibility.

T2. A Boolean expression in a φ function after an if construct may be replaced, as in Section 1.3.2,
by the Boolean expression which is the if guard (or by a temporary containing that value).

T3. An argument to a φ function can be eliminated if it can be proved that doing so does not
change the value of the φ function.

T4. In conjunction with actions taken because of items 1, 2, and 3, dead code (in the sense defined

above) may be eliminated. When dead code is eliminated,

• The corresponding elements of the executed global iteration space are also eliminated.

• If the eliminated code is an assignment statement assigning to an ordinary variable, then
any original source statement containing a use of that variable must also be dead code,
and is also eliminated.

Definition An admissible transformation is a program transformation of one of these four forms.

1.8 Theorem Let P be a program, and let P ′ be the program which is the result of applying an admissible
transformation to P .

1. The executed global iteration space of P ′ is a subset of that of P .

32 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

2. Every dynamic instance of a read or print statement in P occurs also in P ′ and conversely.

Proof. 1. Since no admissible transformation can change the value of any expression in a loop
header or if guard, the executed global iteration space of P ′ must be a subset of that of P .
In fact, it is identical to that of P unless dead code is eliminated.

2. It is also clear that since read and print statements are essential, they cannot be deleted (and

no construct including them, such as loops or if constructs, can be deleted) by any admissible
transformation.

1.9 Theorem Let P be a program, and let P ′ be the program which is the result of applying an admissible
transformation to P .

1. If τwA′(~k) is the value of a τw variable for some element at time t in P ′, and if τwA(~k) is the
corresponding value at the same time t in P , then

τwA′(~k) ≤ τwA(~k)

If the value held by τwA(~k) at time t is essential, then

τwA′(~k) = τwA(~k)

2. Similarly, if A′(~k) and A(~k) are values of ordinary variables in P ′ and P respectively at the

same time t, and if the value held by A(~k) at time t is essential, then

A′(~k) = A(~k)

Proof. By Theorem 1.8 the executed global iteration space of P ′ is a subset of that of P . It
therefore suffices to walk through the sequence of computations executed in P and compare them

to what (if anything) happens in P ′ at the corresponding times.

Certainly for every array element at the start of the program (i.e., before any statements have been

executed), A′(~k) = A(~k) and τwA′(~k) = τwA(~k).

We therefore let t run over the times in the executed global iteration space of P and we make the
inductive assumption that at all times before time t the conditions of the theorem are satisfied.

Let S be the statement executed in P at time t. Either S is dead code which is deleted by trans-
formation T4, in which case it is not represented in P ′ at all, or S corresponds to a statement S ′

in P ′ which is either the same as S or is derived from S by an admissible transformation.

Suppose first that S is dead code that is deleted in P ′. There are three possibilities:

S is never executed in P . Certainly deleting S in P ′ then has no effect whatsoever, so the state-
ments of the theorem remain true.

S is an empty loop or an empty if construct. In such a case, clearly no variable changes its
value when S is deleted, so the statements of the theorem remain true.

1.3. ADMISSIBLE PROGRAM TRANSFORMATIONS 33

S is an assignment statement. In such a case, the value of the variable defined by S at time

t (whether ordinary or τw) cannot be essential. When the statement is deleted, that value
becomes ⊥. It is immediate that the statements of the theorem remain true in this case as
well.

So we may henceforth assume that S has not been deleted and so corresponds as above to a statement

S′ in P ′. There are five possibilities:

S is a print statement. By the inductive hypothesis, the value of the expression being printed is

the same in P ′ as in P .

S is a read statement. Since none of the admissible transformations apply to a read statement,
and since all previously executed read statements in P have been executed in P ′ as well, the

statement reads the same value in P ′ as in P and so assigns the same value to its variable.

S is a source assignment. There are two possibilities:

S assigns to an ordinary variable A(~k). If the value of A(~k) at time t is essential, then all

the references used in the assignment statement are essential and hence by the inductive
hypothesis have the same values in P ′ as they do in P . The only possible transformation
that could be applied to S is T1, and this would again preserve all the values used in S.
So S′ produces the same value as S.

S assigns to a variable τwA(~k). In such a case, τwA(~k) is set equal to the current time,

which is the same in P ′ as in P , so τwA′(~k) = τwA(~k).

S is a φ assignment. There are two possibilities:

S assigns to a variable τwAi(~k). If transformation T2 is applied to S, then the same value

is automatically produced for τwA′
i(

~k) in P ′ as for τwAi(~k) in P .

In any other case, let τwAj(~k) be any one of the τw variable arguments to the φ function.

One of the following must be true:

• No transformation is applied that affects τwAj(~k). So τwA′
j(

~k) occurs as an argument

to the φ function in P ′. In this case, by the inductive hypothesis, τwA′
j(

~k) ≤ τwAj(~k).

Further, if τwAj(~k) is essential, then again by the inductive hypothesis, τwA′
j(

~k) =

τwAj(~k).

• Transformation T1 is used to replace the argument τwAj(~k) by τwA′
k(~k). When this

transformation is made, we must have τwA′
k(~k) ≤ τwAj(~k). Further, if τwAj(~k) is

essential, then we must have τwA′
j(

~k) = τwAj(~k).

• Transformation T3 is used to drop the argument τwAj(~k) from the φ function, with-

out replacement. Of course this cannot happen if τwAj(~k) is essential.

Since one of these three cases must apply to each argument of the φ function in P , the

value of the φ function in P ′ must be ≤ its value in P . Further, if τwAi(~k) is essential,

then at least one of its arguments (the argument that is selected) must be essential, and

so again τwA′
i(

~k) = τwAi(~k).

34 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

S assigns to an ordinary variable Ai(~k). We only have to consider the case in which Ai(~k)

is essential.

If transformation T2 is used, then as above, the value assigned to Ai(~k) is automatically

preserved in P ′.

In any other case the τw variable corresponding to the variant of Ai(~k) which is assigned

to Ai(~k) by the φ function must also be essential. The same reasoning as above then

shows that the same value will be picked for A′
i(

~k) as for Ai(~k).

S is a loop or an if construct. We have already noted that these statements are unchanged by
any transformation (unless they are deleted, and such deletion is harmless).

The assertions of the theorem therefore remain true at time t, and hence by induction remain true

throughout the execution of P ′.

1.10 Theorem Let P be an original source program, let Pw be the initial Array SSA form of P , and let

P ′ be a program which is the result of applying a sequence of admissible transformations to Pw.

If A is a variable in P , and if Ai is an ordinary variable in P ′ which is in web(A), and if the value

in P ′ held by Ai(~k) at time t is essential, then it is equal to the value held in P at the same time t

by A(~k).

If τwAi is a variable in P ′ and if its value at time t is essential, then the value is equal to that in
Pw at time t.

Proof. Let Pj (0 ≤ j ≤ n) be a sequence of programs such that

• P0 = Pw.

• Pj+1 is produced from Pj by the action of one admissible transformation.

• Pn = P ′.

We already know that the result is true for P0 (that is, when P ′ = P0), even without the qualification

that the value of Ai(~k) at time t is essential.

We proceed by induction. Suppose the result is true for Pj , and suppose that the value of Ai(~k) at

time t in Pj+1 is essential.

First let us note that if we can show that if the value of Ai(~k) was already essential at time t in

Pj+1, then by the inductive hypothesis together with Theorem 1.9(2), Ai(~k) has the same value in

P ′ at time t as it does in P .

The transformation that was applied to Pj to produce Pj+1 was one of the four admissible trans-

formations. We consider them separately:

T3 or T4: No transformation of either of these two forms can change an inessential value into an

essential one. Therefore since the value of Ai(~k) at time t is essential in P ′, it must already
have been essential in P . The result then follows as above.

T2: There are three possibilities:

1.3. ADMISSIBLE PROGRAM TRANSFORMATIONS 35

1. Ai(~k) is in neither the original Boolean expression or the new one. In this case, the value

of Ai(~k) at time t must have been essential in Pj , since the transformation did nothing

that could have affected this property.

2. Ai(~k) is in the original Boolean expression but not in the new one. Since the value of

Ai(~k) at time t is essential in P ′, it must also have been essential in P because the

additional use of Ai(~k) in P cannot have made the value inessential.

3. Ai(~k) is not in the original Boolean expression but is in the new one. In this case, there

are two possibilities:

(a) The fact that the value of Ai(~k) at time t is essential in P ′ is independent of its use

in the Boolean expression. In this case, the value must have been essential in P ′,
since nothing else changed.

(b) The value of Ai(~k) at time t in P ′ occurs on a path from the Boolean expression to
a print statement, a loop header, or an if guard.

We know, in this case, that Ai(~k) is also in the if guard which became that new
Boolean expression. And there must be a similar path from that original if guard

that makes every value in it essential. So again the value Ai(~k) at time t must already
have been essential in P .

Therefore the value of Ai(~k) at time t was already essential in P and so the result follows as

before.

T1: Suppose that the value of Ai(~k) at time t was not essential in P . Then in P ′ there is a path

in Gdynamic from Ai(~k) that makes Ai(~k) essential, and this path did not exist in P . Since

this path was introduced by a substitution of the form T1, it has the form illustrated on the
left-hand side of Figure 1.7. The substitution (in this case of Bq(~u) for Bp(~u)) is indicated by

the dashed line. Bp(~u) is essential, and Ai(~k) occurs somewhere on the path to Bq(~u). The

introduction of the dashed edge (which is a new edge in Gdynamic makes everything on the

path leading up to Bq(~u) essential.

First note that if in fact Ai(~k) is Bq(~u) then we are done, because the substitution requires

that Bq(~u) has the same value as Bp(~u). Since the value of Bp(~u) at time t is essential, it

is (by the inductive hypothesis) equal to the value of B(~u) (which is in this case A(~u) in the

original program at time t, and therefore, the same holds for Bp(~u) = Ai(~k), and we are done.

So let us assume that Ai(~k) is not the same as Bq(~u). It therefore occurs somewhere on the

path in Gdynamic leading to Bq(~u), as illustrated on the left-hand side of the figure.

Now in order for this substitution to be of the form T1, it must be the case that τwBp(~u) =

τw(Bq(~u) at time t. Therefore, the values in Bp(~u) and Bq(~u) entered webBp at the same time

by an assignment to (say) Br(~u). This assignment must be on the path in Gdynamic leading

to the expression involving Bp(~u). This assignment must also be on the path leading from

the reference to Ai(~k) to Bq(~u). Therefore we know that the graph really looks like that on

the right-hand side of Figure 1.7. It is then clear that every dynamic reference on the path

through Ai(~k) is already essential in P , and therefore has the same value in P as in P ′.

36 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

Further, every reference on the path from Br(~u) to Bq(~u) has the same value, since this path

is a path composed entirely of φ assignments. And we know that the value of Bq(~u) at time t

is the same as that of Bp(~u) at time t.

Therefore every dynamic reference that becomes essential by the substitution of Bq(~u) for

Bp(~u) has the same value in P ′ as it did in P .

Exactly the same proof (somewhat simpler, in fact) works for τw variables.

· · · = . . . Bp(~u) . . .

. . . Ai(~k) . . .

Bq(~u) = . . .

Br(~u) = . . .

· · · = . . . Bp(~u) . . .

. . . Ai(~k) . . .

Bq(~u) = . . .

Figure 1.7: Gdynamic subgraphs referred to in the proof of Theorem 1.10

1.11 Theorem A program which is the result of applying a sequence of admissible transformations to
a program in initial Array SSA form reads the same input and produces the same output as in the
original program.

Proof. We have already seen that admissible transformations preserve the sequence and number
of read and print statements. The expressions printed are all essential by definition, and so by
Theorem 1.10 these expressions have the same values as in the original program.

Definition A program which is the result of applying a sequence of admissible transformations to
a program in initial Array SSA form is called an admissible program, provided that it also satisfies
the following constraints:

1.4. GENERAL PROPERTIES OF τW AND τV VARIABLES 37

C1. The program must continue to satisfy the property described in Lemma 1.7 (page 23).

C2. If the right-hand side of an assignment statement contains a τw variable (so in particular this

is a statement that is a φ assignment), then it contains a τw variable for each ordinary variable

on the right-hand side.

This last constraint is introduced only to help in the final proof in Chapter 2. It seems to be satisfied
in every case we have seen so far.

In particular, a program in initial Array SSA form is an admissible program. (That is, the “null

optimization” is trivially an admissible transformation.)

We have seen in Theorem 1.11 that an admissible program has the same visible behavior as the
original source program from which it was derived.

We continue to say that an admissible program is in Array SSA form.

1.4 General properties of τw and τv variables

The properties of τw and τv variables that we have derived above in Section 1.2.8, as well as some
others, continue to hold in programs in initial Array SSA form, and indeed in admissible programs
as well:

1.4.1 Properties that are true for programs in initial array SSA form

Lemma 1.4 and Corollary 1.6 state properties of τv and τw variables that hold true for naive Array
SSA programs. These properties remain true when those programs are transformed into initial
Array SSA form. This is simply because the values of the τv and τw variables are not changed in
this transformation. For ease of reference we restate those results here:

1.12 Lemma If A and B are in the same web, and if at some point in the execution of the program

τwA(~k) < τwB(~k) for some ~k, then (at that same point)

τwA(~k) ≤ τvA(~k) < τwB(~k) ≤ τvB(~k)

1.13 Lemma In a program in initial Array SSA form, the following properties hold:

1. If Ai(~k) is assigned at a source assignment, then the (conceptually simultaneous) assignment

to τwAi(~k) assigns a value in global iteration space greater than the current value of every

other τwAj(~k) for each Aj in web(Ai).

2. If on the other hand Ai is defined by a φ assignment, then for each execution of that assignment
statement, the (conceptually simultaneous) assignment to τwAi causes τwAi to be elementwise

at least as great as the current value of every other τwAj for each Aj in web(Ai).

38 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

1.4.2 Properties that are true for admissible programs

First, we have some properties of admissible programs that are true without qualification:

1.14 Lemma 1. For any ordinary array element Ai(~k), the values of τvAi(~k) and τwAi(~k) are both
non-decreasing in time.

2. At any point in the course of execution of the program, the value in τwAi(~k) is ≤ the time

at which the value currently in Ai(~k) was assigned. That is, at any point in the course of

execution of the program,

τwAi(~k) ≤ τvAi(~k)

3. For any ordinary array element A(~k),

τvτwA(~k) ≡ τvA(~k)

Proof. 1. That τvAi(~k) is non-decreasing follows immediately from the definition.

If τwAi(~k) is defined at a source statement, then successive assignments to it can only increase
its value. If it is defined at a φ assignment, then it is defined as a max of other τw variables,
and by induction it follows that its value is also non-decreasing.

2. This property is true by definition in initial Array SSA programs. No admissible transforma-
tion changes this relation.

3. This just says that τwA(~k) was last assigned at the same time that A(~k) was, which is true
by definition.

In addition, as already noted, we always have τwA ≤ τvA. We also note that

• P (τwA) must be a source statement (i.e., not a φ assignment).

• τwA = τvA iff P (τvA) is a source statement.

The rest of the properties in this section are true with some qualification about one or more values
being essential:

Lemma 1.12 remains true for admissible programs provided that the values of τwA(~k) and τwB(~k)

at the time in question are both essential:

1.15 Theorem If A and B are in the same web, and if at some point in the execution of the program

τwA(~k) < τwB(~k) for some ~k, where the values τwA(~k) and τwB(~k) at that time are both essential,

then (at that same time)

τwA(~k) ≤ τvA(~k) < τwB(~k) ≤ τvB(~k)

Proof. We know that the values of τwA(~k) and τwB(~k) are the same as in the initial Array SSA

form of the program. We also know that the inequalities are true in the initial Array SSA form.

1.4. GENERAL PROPERTIES OF τW AND τV VARIABLES 39

Further, an admissible transformation cannot increase the value of τvA(~k), and by Lemma 1.14(2),

the two outer inequalities are always true. So all the inequalities remain true in the transformed
program P ′.

Lemma 1.13 remains true for admissible programs provided that in the second part we restrict
ourselves to values that are essential:

1.16 Theorem In an admissible program, the following properties hold:

1. If Ai(~k) is assigned at a source assignment, then the (conceptually simultaneous) assignment

to τwAi(~k) assigns a value in global iteration space greater than every other τwAj(~k) for each

Aj in web(Ai).

2. If on the other hand Ai is defined by a φ assignment, then for each execution of that assign-

ment statement, if τwAi(~k) is an element of τwAi whose value is essential, the (conceptually

simultaneous) assignment to τwAi(~k) causes τwAi(~k) to be at least as great as every other

τwAj(~k) for each Aj in web(Ai).

Proof. 1. This remains true for the same reason as before: the value assigned to τwAi(~k) is
the time of execution of the statement which is certainly greater than any previous time that
could have been assigned or propagated in the program up to that point.

2. We know that this is true for programs in initial Array SSA form. We know by Theorem 1.10

(page 34) that since the value of τwAi(~k) is essential, its value is the same as the value it
started out with in the original initial Array SSA form of the program. And by Theorem 1.9,

all the other values τwAj(~k) are no greater than they were in the original initial Array SSA

form. Therefore the property persists in the transformed program.

To see why we need the stipulation that τwAi(~k) be essential in part 2 of the theorem, consider the
code in Figure 1.8.

We, and hopefully our compiler, can figure out that the use of A5(2 ∗ i) must refer either to A0 or
to A4—that is, the use of A3 and τwA3 in the definition of A5 are really resolved to uses of A0 and
τwA0. Thus, we can replace the definition of A5 by

A5 = φ(A4, τwA4; A0, τwA0)

When we do this, note that subsequent to the definition of A5, we have

τwA5(1) = τwA0(1) < τwA1(1)

which might seem like a counterexample to Theorem 1.16, except that (assuming there is no other

code using A5) the value τwA5(1) is not essential. (In fact, in this example, it’s not used at all.)

Next we exhibit a relation between τvA and τwA that holds for ordinary variables A in any admissible
program. As usual, we denote the program by P , and the mapping from global iteration space to

program statements is thus denoted by t 7→ P (t). (We introduced this notation on page 6.) So

P (τwA) is the statement at which the value ultimately assigned to A at time τvA enters web(A).

1.17 Theorem In an admissible program, the following properties hold:

40 CHAPTER 1. ARRAY STATIC SINGLE ASSIGNMENT FORM

A0(:) = . . .
do i = 1, 2 ∗ n− 1, 2

A1(i) = . . .

.A2 = φ(A0, τwA0;A1, τwA1)

end do

.A3 = φ(A2, τwA2; A0; τwA0)

A4(2) = 0

.A5 = φ(A4, τwA4; A3, τwA3)

do i = 1, n

. . .

· · · = . . . A5(2 ∗ i) . . .

. . .

end do

Figure 1.8: Code that illustrates why we need to restrict ourselves to values that are essential. The
assignments to τw variables have been suppressed for clarity; they occur in the actual code.

1. Suppose S is a source statement that is executed at some time t. If the array element Ai(~k)

occurs as a use in S at time t, and if the value held by τwAi(~k) at time t is essential, then

τwAi(~k) is greater than or equal to all other τwAj(~k) for all Aj in web(Ai).

2. Suppose S is a φ assignment defining τwAi. If τwAi(~k) is defined by S at time t and is
essential, then one of the arguments to the φ function in S has a value that is maximal among

all the values
{

τwAj(~k) : Aj ∈ web(Ai)
}

at time t.

Proof. 1. First of all, this is true in a program in initial Array SSA form for the following

reason: By Lemma 1.13, τwAi(~k) is the maximum value of τwAj(~k) for all Aj in web(Ai).

Theorem 1.9 (page 32) then shows that τwAi(~k) maintains its value in any admissibly trans-

formed program, while all other values τwAj(~k) are no greater than their values in the original

initial Array SSA program, so this property persists in any admissible program.

2. This follows immediately from Theorem 1.16: since the assignment to τwAi(~k) causes τwAi(~k)

to be at least as great as every other τwAj(~k) for each Aj in web(Ai), some element τwAj(~k)

in the web whose value is greatest just prior to execution of S must occur as an argument to
the φ function in S.

Chapter 2

Weak dynamic single assignment

form

2.1 Overview

We start by stating the problem we are addressing, and giving an overview of our approach to it.
Precise definitions come afterward.

We start with an admissible program P in array static single-assignment form. (That is, admissible

transformations may have been applied to P after it was put in initial Array SSA form, and the
program continues to satisfy the constraints C1 and C2 on page 37.) Any computed value in the
original program that is essential is computed to be the same in P . Values that were not essential in

the original program may be computed differently (or not at all) in P . From now on, however, we
can disregard this consideration. We simply take the admissible program P as our starting point,
and we regard whatever it computes as essential.

In general, we will denote a reference to a scalar or an array element simply by R. However, there
are two distinct kinds of references that we have to deal with:

• The static reference (i.e., the reference produced by putting the program in array static single

assignment form). We sometimes refer to this as Rs when we need to be precise.

• A dynamic reference corresponding to this static reference. In general, the static reference
Rs may occur dynamically more than once during the execution of the program. Each such
dynamic reference can be referred to as Rd to be precise. Note that two dynamic references
corresponding to the same static reference may refer to the same or to different array elements.

Definition A program is in dynamic single assignment form if no scalar or array element is assigned
to more than once in the course of execution of the program.

Below we will define a notion of weak dynamic single assignment form. When we want to emphasize
the distinction, we may refer to dynamic single assignment form as strong dynamic single assignment
form.

Our ultimate aim is to find a transformed program P ′ such that

41

42 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

1. Each dynamic reference Rd in P has a well-defined corresponding dynamic reference R′
d in P ′.

(The map from Rd to R′
d may be many-to-one.)

2. P ′ is equivalent to P in the following sense: If a dynamic reference Rd in P to an ordinary

array element or ordinary scalar variable has the value v, then the corresponding reference R′
d

in P ′ has that same value.

3. (“P ′ is not too small.”) P ′ has the dynamic single assignment (DSA) property.

4. (“P ′ is not too large.”) P ′ is a minimal extension of P , in a sense to be described below.

We can always achieve the first three conditions by expanding each data reference by its iteration
space dimensions. Then we have to find some way of making sure that values fetched in the
transformed program correspond to the ones originally stored. We refer to this as the maximal
expansion.

When we do this, however, there may well be dimensions that are redundant. For instance, suppose
we start with the loop nest

do j = 1, m

do i = 1, n

A(i) = i

end do

end do

(where we have suppressed the initial Array SSA overhead).

A maximal expansion would look like this:

do j = 1, m

do i = 1, n

A(i)[i, j] = i

end do
end do

However, the added iteration dimensions are really not needed: Since each assignment to A assigns
a value that depends only on i, the minimal dynamic single assignment form would really be one in
which no additional dimensions were added and in which the j loop is eliminated entirely:

do i = 1, n

A(i) = i

end do

However, we will not achieve this DSA form in one step. Rather, we will first perform a transforma-
tion that simply changes the shape of each data object to its “natural form”, leaving the iteration
structure of the program unchanged. This will leave the original loop nest unchanged. Now this is
not in DSA form, because each array element A(i) is assigned to m times. However, it does have

the property that each assignment to A(i) has the same value. We say that a program with this
property is in weak dynamic single assignment form:

Definition 1. A program is in weak dynamic single assignment (weak DSA) form iff

• it is in SSA form1, and

1Strictly speaking, this is not a requirement. For instance, code such as this

2.1. OVERVIEW 43

• any two dynamic assignments to a scalar or an array element assign the same value.

2. A program is in weak dynamic single assignment form up to time t iff

(a) it is in SSA form, and

(b) any two dynamic assignments to a scalar or an array element occurring at or before time
t assign the same value.

It is important to note that ordinary variables act rather differently from τw variables in programs
in weak DSA form. In either kind of program, an ordinary variable can be referenced only after it
has been defined. Therefore, it can have only one value that is actually used in the program. For a
τw variable, however, the value ⊥ is meaningful, and so in a weak DSA program, a τw variable may
have two values that are used in the program—in such a case, the first value must be ⊥. We do

not regard assignments of ⊥ to a τw variable as violating the weak DSA condition. (And we don’t

regard “assignments” of ⊥ to ordinary variables as assignments at all.)

The algorithm we describe in this chapter starts with a program in Array SSA form and produces
a semantically equivalent program in weak DSA form. The transformed program P ′ produced by
this algorithm satisfies the four conditions listed above with two changes:

• Condition 1 is strengthened: the map from Rd to R′
d is one-to-one. This is because we are

not changing the iterative structure of the program—just the shape of the data objects in the
program.

• Condition 3 is weakened: P ′ has the weak DSA property.

In future work we will show how to subsequently change this into a program in DSA form by
restructuring the program and eliminating redundant loops.

In the example above, an iteration dimension, which might have been added, was found to be
unnecessary. It is also possible that a data dimension (which is already present in the source

program) may be deleted because it is redundant. For instance, if the original program were written

like this:

do j = 1, n

do i = 1, n

A(i, j) = i

end do

end do

then just as before, we could conclude that the data dimension d2 is unnecessary, and delete it,
again yielding the weak DSA form

do i = 1, n
if b(i) then

s(i) = 2
else

s(i) = 3
end if

end do

is in dynamic single assignment form without being in SSA form, since each element of the array s is assigned to
exactly once. Nevertheless, since our algorithm starts with a program in Array SSA form and maintains this property,
there is no harm in asserting this.

44 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

do j = 1, n

do i = 1, n

A(i) = i

end do
end do

In deciding whether a dimension is needed, we have to consider its role:

• Some data space dimensions are needed, as they are in the original program, to ensure that
distinct values are stored in places from which they can be retrieved.

In the examples above, the subscript expressions are so trivial that this consideration is hardly
apparent; but it is easy to see that complex subscript expressions add meaning to a program
that cannot simply be discarded.

The key to dealing with this is the relation between a definition and its uses. For instance,
(again ignoring the initial Array SSA code) suppose the original program looked like this:

do j = 1, n

do i = 1, n

A(i, i + j − 2) = i

. . .

· · · = . . . A(i, j) . . .

end do

end do

Then it’s intuitively pretty clear that both dimensions of A are needed. On the other hand, if
the original source looked like this:

do j = 1, n

do i = 1, n

A(i, i + j − 2) = i

. . .

· · · = . . . A(i, i + j − 2) . . .

end do

end do

then again only 1 dimension is needed2.

• Some iteration space dimensions are needed to ensure that the program is in weak dynamic
single-assignment form. That is, overwriting an element of an existing data object gives rise
to an expansion of that object over an iteration space dimension. Equivalently, iteration
space dimensions are used to distinguish different values written to the same data location at
different times in the execution of the program.

We call the final set of dimensions that we arrive at for a data object the set of contributing
dimensions of that object. We regard the set of contributing dimensions as describing the “natural
shape” of the object. It takes into account essential dimensions in the shape originally given in the
program P and also any reuse that may occur during execution of the program. That is, the set

of contributing dimensions may include some (but possibly not all) of the original dimensions from

2Actually, our algorithm will give only one dimension to the defined object in either case. In the first example,
however, the variable assigned to at the immediately following definition φ assignment will have two dimensions.

2.2. THE SPACE OF VALUES AT A STATIC REFERENCE 45

the declared rank of the object, and may also include some (but possibly not all) dimensions that

come from the iteration space, which represent reuse of elements of the original object.

In many cases, even when a minimal transformed program P ′ can be effectively found, it may
not be unique. For this reason, it is important to note that a dimension, in and of itself, is not a
contributing dimension. There may be more than one set of contributing dimensions for an array,
and so a particular dimension may belong to one set but not the other.

Our practice will be, when given a choice between data space and iteration space, to favor the data
space. That is, we will keep a data space dimension rather than eliminating it and introducing an
iteration space dimension. There are two reasons for this—a moral reason and a practical reason:

moral reason: This leaves the program looking as much as possible like the original program. The
original shapes of arrays in the program had some meaning for the programmer. In general,
it makes sense to try to preserve this meaning rather than to ignore it.

practical reason: Added iteration dimensions lead (see Section 2.3.1 below) to the introduction

of τv variables into the code. We can always eliminate explicit references to τv variables (see

Section 2.3.3), but it may be that we have to make the code more complicated in order to do
this. So it is better to add as few iteration dimensions as possible.

These two reasons are actually quite closely related.

2.2 The space of values at a static reference

ByM let us denote the direct sum of data space and local iteration space. Since we regard D and
I simply as sets of basis elements, it is natural to writeM = D ∪ I.

For each static reference Rs, the values of the subscripts together with the (dynamic) point in local
iteration space determine the element referenced and its value. That is to say, the element referenced
and its value at a dynamic reference corresponding to Rs are determined by its position in D and
in I, or simply in M.

Sometimes we do not care about the elements being referenced by Rs; we care only about the set of
values assumed by Rs during execution of the program. This set of values is completely parametrized
by the local iteration space I. And it may even be that a subspace of the local iteration space is all
that is necessary to parametrize these values. For instance, in Figure 2.1, the local iteration space is
{i1, i2}. But the set of values can be parametrized simply by {i1}. For this reason, it is convenient

for us to define the notion of a valid iteration subspace S at a (static) reference R; this will be a

subspace of the local iteration space I at R such that the value of R is determined by the indices
in S.

Definition S is a valid iteration subspace at a static reference Rs iff all dynamic references Rd at
the static reference Rs having the same values of the indices {I(i) : i ∈ S} at that reference have the

same value.

More generally, S is a valid iteration subspace at an expression e iff all evaluations of e at times

having the same values of the indices {I(i) : i ∈ S} have the same value.

So in particular, I is itself a valid iteration subspace.

46 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

do j = 1, n

do i = 1, n
A(i, j) = i

end do
end do

Figure 2.1: A reference to a 2-dimensional array with a 1-dimensional valid iteration subspace.

In Figure 2.2, {i1} and {i2} are both valid iteration subspaces. This shows that a minimal valid
iteration subspace is not necessarily unique.

do j = 1, n

do i = 1, n

. . .

if (i == j) then
A(i, j) = i

end if

. . .

end do

end do

Figure 2.2: A reference to a 2-dimensional array with two different 1-dimensional valid iteration
subspaces.

It is useful to keep this distinction in mind:

• The local iteration space at a static reference Rs parametrizes the dynamic references Rd

corresponding to Rs.

• Each valid iteration subspace at a static reference Rs parametrizes the set of values assumed
by the dynamic references Rd corresponding to Rs.

2.3 Contributing dimensions

2.3.1 Rewriting corresponding to an arbitrary set of dimensions

For each data object A, let I denote the local iteration space at the (static single) assignment to A.
Say I has rank n. Let D be the data space of A, and say it has rank m.

A subspace of M can be denoted by C =
{

dj1 , . . . , djp
, ik1

, . . . , ikq

}

, where {djr
: 1 ≤ r ≤ p} is a

subset of the data space dimensions D and {iks
: 1 ≤ s ≤ q} is a subset of the local iteration space

dimensions I.

2.3. CONTRIBUTING DIMENSIONS 47

Each such subspace C determines a rewriting of the program P , creating a transformed program P ′,
in the following way:

P ′ is the same as P with the exception that the array A is replaced consistently with an array AC ,
as follows:

1. AC has rank p + q.

2. Each reference A
(

σ(d1), . . . , σ(dm)
)

to A is rewritten as

AC
(

σ(dj1), . . . , σ(djp
)
)[

τvA
(

σ(d1), . . . , σ(dm)
)

k1

, . . . , τvA
(

σ(d1), . . . , σ(dm)
)

kq

]

As usual, the notation

τvA
(

σ(d1), . . . , σ(dm)
)

k1

refers to the kth
1 component of the q-tuple τvA

(

σ(d1), . . . , σ(dm)
)loc

.

Note that because of the way we have defined σ(ij) (page 19), the rewritten reference to A can also

be represented as

AC
(

σ(dj1), . . . , σ(djp
)
)[

σ(ik1
), . . . , σ(ikq

)
]

This is the reason we defined σ on iteration indices the way we did.

In this way we replace A by a new array AC whose data space is C. This rewriting, while it changes
the form of the references to A, does not change the control structure of the program.

More precisely, this rewriting changes the original Array SSA program only in the following respects:

• It may remove some data subscripts from array references.

• It may add some iteration subscripts to array references.

The rewriting leaves everything else in the program alone. In particular, no modifications are made
to any of the following:

• The static forms of loops, loop nesting, if constructs, and in general anything that could change
the control flow graph.

• Computations.

• Array names.

The term “rewriting”, when used in this chapter, always has the meaning defined above.

Of course this rewriting only makes sense if the τv values in the added iteration coordinates actually
have meaningful values where they are needed. For this reason, we make the following restriction:

The subspace C used to rewrite a variable which is live on entry is simply that variable’s
data space.

48 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

This restriction is explicitly satisfied by the algorithm we will present later for computing sets of

contributing dimensions (which is what the subspaces C will be).

While this rewriting may at first look somewhat strange and intimidating, it will become evident
that it is really quite natural. On page 53 we give an example of this rewriting, and also exhibit the
fact that in practice it is capable of being simplified quite a bit.

Note, by the way, that if A is actually a τw variable (say A = τwB), then the rewriting would

introduce variables of the form τvτwB. As we have seen in Lemma 1.14(3) (page 38), such a variable
can be simply written as τvB, and that is what we do.

Note that the rewritten program is structurally similar to the original program. The two programs
may not be iteratively similar, however. If C = ∅ for each array, for instance, then in the rewritten
program each array becomes a scalar, and in any but the most trivial programs one could expect
the actual path of execution to differ. This would obviously be true, for instance, if any Boolean
expression in an if construct involved array references.

If P and P ′ are iteratively similar, however, there is a 1-1 correspondence between the dynamic

references in P and P ′.

2.3.2 Valid sets of contributing dimensions

By a valid set of contributing dimensions for a variable A we mean a set of dimensions that intuitively
captures the natural shape of A:

Definition A valid set of contributing dimensions for a variable A is a subspace

C =
{

dj1 , . . . , djp
, ik1

, . . . , ikq

}

⊆M

such that when we rewrite the program P to get a program P ′ by replacing each reference to A by a

reference to AC as above,

Property A: P ′ has the weak dynamic single assignment property for AC : Any two dynamic as-

signments to an element of AC in P ′ assign the same value.

Property B: P ′ and P are iteratively similar.

Property C: Each dynamic reference in P to an element of an array has the same value as the
corresponding dynamic reference in P ′. (By “corresponding”, here we mean “occurring at the

same time in P ′”.)

Note that this must be true for references to all the variables in P . Only references to A are
rewritten, however, and for those references, this property can be stated as follows:

Each dynamic reference A
(

σ(d1), . . . , σ(dm)
)

in P at a point t in its local iteration space has

the same value as the corresponding reference

AC
(

σ(dj1), . . . , σ(djp
)
)[

τvA
(

σ(d1), . . . , σ(dm)
)

k1

, . . . , τvA
(

σ(d1), . . . , σ(dm)
)

kq

]

at the same point t in P ′.

2.3. CONTRIBUTING DIMENSIONS 49

Thus, unlike a valid iteration subspace, which is an attribute of a reference, and which may differ
at different references to the same object A, a valid set of contributing dimensions is an attribute
of the object A itself.

In any case, given a candidate set of dimensions C, we need in principle to check the above properties
A, B, and C to see whether or not C is a valid set of contributing dimensions. It turns out, however,
that these properties are not independent; in fact, A implies B and C for all ordinary variables, and
A also implies B and C for τw variables under an additional condition. To prove this, we first prove
a lemma which contains the kernel of the argument:

2.1 Lemma Let program P be rewritten to become program P ′ using a set of dimensions C for the array
A in P . Let us assume that under this rewriting,

• P ′ is iteratively similar to P up through some time t.

• Every assignment before time t assigns the same value in P ′ as in P .

• P ′ is in weak dynamic single assignment form with respect to the variable A for all times
before t.

Further, let Rdef and Ruse denote dynamic references to fixed elements of A in program P , and let

R′
def and R′

use denote dynamic references to AC in program P ′. We assume that Ruse and R′
use both

occur at time t, and that the specific relations between these four references are given in Figure 2.3.

Then under the conditions stated in that figure, R′
use has the same value as R′

def.

Program P Program P ′

Rdef: a value is assigned to an element of A.

R′
def: a value is assigned to an element of AC .

R′
def is at the same point in global iteration

space in program P ′ as Rdef is in program
P .

No further assignment is made to that
element of A before Ruse

Ruse: retrieves the value of that element of A

that was assigned at Rdef. Ruse is referenced
at time t.

R′
use: this is the dynamic reference that is at

the same point t in global iteration space in
program P ′ as Ruse is in program P .

Since the executed global iteration
space in program P ′ is the same as
that in program P up through time t,
we know that R′

use occurs later than
R′

def.

Figure 2.3: Four dynamic references used in Lemma 2.1.

Remark This lemma is one step in the process of showing that actually the values of all four
references are equal. Of course we already know by assumption that Ruse has the same value as
Rdef.

50 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

Proof. 1. We first show that the subscripts in R′
use have the same values as those in R′

def.

Let us use the notation υ(dk) or υ(ik) to refer to the value of σ(dk) or σ(ik) at a particular time.

(The time will always be understood from the context.)

We can write

Rdef = A
(

σdef(d1), . . . , σ
def(dm)

)

Ruse = A
(

σuse(d1), . . . , σ
use(dm)

)

Since Rdef and Ruse refer to the same element of A, we know that the values of their corresponding
subscripts are equal, and so we can write them simply as υ(di):

υ(di) = υdef(di) = υuse(di) for all i

Further, we can say that Rdef occurs at the point [υ(i1), . . . , υ(in)] in its local iteration space in P ,

and the value of τvA at Ruse is

τvA
(

υ(d1), . . . , υ(dm)
)loc

=
[

τvA
(

υ(d1), . . . , υ(dm)
)

1
, . . . , τvA

(

υ(d1), . . . , υ(dm)
)

n

]

where for each 1 ≤ k ≤ n, τvA
(

σ(d1), . . . , σ(dm)
)

k
at Ruse has the same value as σ(ik) at Rdef. This

is just because τv is defined to hold the value in global iteration space at which the associated array
element was last assigned to.

Now the value of R′
def is

AC
(

υ(dj1), . . . , υ(djp
)
)[

υ(ik1
), . . . , υ(ikq

)
]

Here the quantity in brackets is just the position of Rdef in its local iteration space I, projected

onto the local iteration space component C ∩ I of C which is used to rewrite R′
def.

Similarly, the value of R′
use is

AC
(

υ(dj1), . . . , υ(djp
)
)[

τvA
(

υ(d1), . . . , υ(dm)
)

k1

, . . . , τvA
(

υ(d1), . . . , υ(dm)
)

kq

]

We see that the quantity in brackets is just the position τvA
(

υ(d1), . . . , υ(dm)
)loc

of Rdef in its local

iteration space I, projected onto the local iteration space component C ∩ I of the same C.

Thus, each subscript in R′
use has the same value as its corresponding subscript in R′

def.

2. It follows that the value of R′
use is one of the values assigned before time t at one of the dynamic

references to AC that assigns to the array element defined at R′
def. And one of these values is the

value of R′
def itself.

But by assumption, program P ′ has the weak dynamic single assignment property with respect to

AC for all times before time t. Therefore, all the values assigned to our fixed element of AC at that
set of dynamic references corresponding to the static reference at R′

def are the same. We therefore

conclude that the value of R′
use is the same as the value of R′

def.

2.2 Theorem If program P is rewritten to become program P ′ using a set of dimensions C for the array
A in P , and if for some time t in the global iteration space of P

2.3. CONTRIBUTING DIMENSIONS 51

• P ′ has the weak dynamic single assignment property for the transformed array AC for all times
before t, and

• either

– A is an ordinary variable, or

– A is a τw variable and has the property that if for any time s ≤ t, P and P ′ are iteratively

similar up through time s and if R′
use is a use of AC at time s in P ′ whose value is not

⊥, then the corresponding use Ruse in P is also not ⊥,

then Properties B and C hold up through time t.

Proof. The proof is by induction: we take each dynamic statement, in execution order, and within
each statement we consider the references in the order in which they would be evaluated. That
is, within each statement we consider uses before defs, and we consider the references within the

subscripts of an array reference R before we consider the reference R. We will prove that P ′ and
P are iteratively similar up through time t and that at each time s ≤ t each reference R′ in the
transformed program has the same value as the corresponding reference R in the original program.
So the inductive assumption, which is vacuously true at the start of the program, is that

• P and P ′ are iteratively similar up through time s, and

• each reference R′ that has been considered at a time previous to s, as well as each reference

R′ that has been considered at time s previously to the current reference, has the same value
as its corresponding reference R.

(By our assumption, any variable live on entry is not changed by rewriting and so is the same

in P ′ as in P , which is why this part of the inductive assumption is true at the start of the

program.)

We consider the various kinds of references that can occur at time s:

Case I. The reference R is a definition of some object B in P , with a corresponding defining
reference R′ in P ′. B may or may not be the same as A. By the inductive assumption, the
values of the right-hand sides are identical, and so the value assigned to R equals the value
assigned to R′.

That handles Case I, but there are some comments we need to make for future reference:

B is different from A in P . In this case, the shape of R is the same as that of R′—that
is, they have the same number of subscripts. By the inductive assumption, we know
therefore that the subscripts of R have the same values as the subscripts of R′. Therefore,

the element of B (in P) that is being assigned to is the same element that is assigned to

in P ′.

B is the same as A in P . Here the elements of R and R′ are not guaranteed to be the same,
since A was rewritten and so the shape of R may differ from that of R′. But in any case,
we note the following, which will be used below: If this defining reference R is the same
as Rdef in the notation used in the lemma, we have just shown (simply by the inductive

assumption) that the value of Rdef is the same as the value of R′
def.

52 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

Case II. The reference is to a use of some array B. There are two sub-cases to consider:

B is different from A in P . Since only A is rewritten, the subscripts of R (which are sub-

scripts of B) correspond to the subscripts of R′. By the inductive assumption, the value

of each subscript of R has the same value as the corresponding subscript of R′. Therefore
R refers to the same element as R′. By Case I (first subcase), the values assigned to

these two elements in P and P ′ are equal. Therefore, the values of R and R′ are equal.

B is the same as A in P . Thus, R′ is a use of AC in P ′. If A is a τw variable and the value
of R is not ⊥, then R is a use of an element of A defined at a previous definition Rdef.
By the lemma, R′ has the same value as the corresponding definition R′

def in P ′, and

therefore the value of R′ is not ⊥. To put this another way, if the value of R′ is ⊥, then
the value of R must also be ⊥, and we are done with this case.

In any other case (that is, when R′, which now may be an ordinary variable or a τw

variable, is not ⊥), R must also not be ⊥, for the following reasons:

• A reference to an ordinary variable that is actually reached in a program cannot be
a reference to an unassigned value. So if R refers to an ordinary variable, then it
automatically has a value different from ⊥.

• If on the other hand R (and therefore also R′) refers to a τw variable, then the

assumption in the theorem guarantees that the value of R is not ⊥, since the value
of R′ is now being assumed to be different from ⊥.

Thus, we have the situation described in the lemma, and so we can regard R as Ruse and
R′ as R′

use. We then need to show that the value of R′
use is the same as the value of Ruse.

Now we know by definition that the value of Ruse is the same as the value of Rdef . Case

I (second sub-case) showed that the value of Rdef is the same as that of R′
def . (These

definitions must have been considered previously in the induction.) And we showed in

the lemma that the value of R′
def is the same as that of R′

use. This proves the result.

This shows that property C is satisfied. If the references Ruse and R′
use are part of Booleans used

to determine control flow, this also shows that property B is satisfied.

Thus Properties B and C hold up through time t.

2.3 Theorem If program P is rewritten to become program P ′ using a set of dimensions C for the array
A in P , and if

• P ′ has the weak dynamic single assignment property for the transformed array AC and

• either

– A is an ordinary variable, or

– A is a τw variable and has the property that if for any time s, P and P ′ are iteratively

similar up through time s and if R′
use is a use of AC at time s in P ′ whose value is not

⊥, then the corresponding use Ruse in P is also not ⊥,

then C is a valid set of contributing dimensions for A.

Proof. This is an immediate corollary of Theorem 2.2.

2.3. CONTRIBUTING DIMENSIONS 53

2.4 Corollary For each ordinary variable A, any valid iteration subspace at the defining reference of
A is a valid set of contributing dimensions for A.

Proof. This is true simply because a valid iteration subspace at the defining reference of A

parametrizes the values assigned to A at that lexical point in the program, and so rewriting the
program using that valid iteration subspace for C puts the program in weak DSA form with respect
to A.

For example, consider the following source code:

do i = 1, n

A
(

f(i)
)

= i

. . .

· · · = . . . A
(

g(i)
)

. . .

end do

The initial Array SSA form looks something like this, where the definition of A(f(i)) becomes a

definition of the variant A5(f(i)), and where A4 is the most recently assigned version of A in web(A5)
prior to the execution of the definition of A5 in the loop:

do i = 1, n

A4(:) = . . .

.τwA4(:) = . . .

A5

(

f(i)
)

= i

.τwA5

`

f(i)
´

= [i]g

.forall (k)

.A6(k) =

(

A5(k) if k = f(i)

A4(k) otherwise

.τwA6(k) =

(

τwA5(k) if k = f(i)

τwA4(k) otherwise

.end forall

. . .

· · · = . . . A6(g(i)) . . .

end do

Certainly a valid iteration subspace at the definition of A5 is {i1} (corresponding to the loop variable

i). Similarly, a valid iteration subspace at the definition of A6 is {i1, i2}, where again i1 corresponds

to the loop variable i, and i2 corresponds to the forall variable k.

Rewriting the code using these two valid iteration subspaces to rewrite the references to A5 and A6

respectively yields the following:

54 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

do i = 1, n

A4(:) = . . .

.τwA4(:) = . . .

AC
5 [i] = i ! Substitution 1

.τwA5

`

f(i)
´

= [i]g

.forall (k)

.AC
6
[i, k] =

(

AC
5
[i] if k = f(i)

A4(k) otherwise
! Substitution 2

.τwA6(k) =

(

τwA5(k) if k = f(i)

τwA4(k) otherwise

.end forall

. . .

· · · = . . . AC
6

[

i, g(i)
]

. . . ! Substitution 3

end do

where the indicated substitutions are made as follows:

Substitution 1: τvA5

(

f(i)
)

= [i], so A5

(

f(i)
)

is replaced by AC
5

[

τvA5

(

f(i)
)]

= AC
5 [i].

Substitution 2: On the right-hand side, τvA5(k) is only needed when k = f(i), and we know that

τvA5

(

f(i)
)

= [i].

On the left-hand side, τvA6(k) = [i, k].

Substitution 3: τvA6

(

g(i)
)

=
[

i, g(i)
]

It is evident that this rewritten code is semantically equivalent to the original code, and (with respect

to the ordinary variables) is in weak DSA form. In fact, it is actually in DSA form with respect to

the ordinary variables, because the minimal valid iteration subspace at the defining reference to A5

is the entire local iteration space at that point, and similarly for A6.

2.3.3 Computation of τv variables

In the rewriting of the last example, all explicit references to τv variables were eliminated. This will
always be true. We give part of the explanation here.

Let us consider a reference to a variable A, which may be an ordinary variable or a τw variable. A
reference to τvA will only occur in a rewritten reference to A where there is an iteration dimension

(say ik) in the set C(A) of contributing dimensions of A. In such a case, it is the ik-coordinate of
τvA that appears. Let I denote the loop variable corresponding to the iteration dimension ik. Since
ik is in C, it must be in the local iteration space at the definition of A. That is, the definition of A

must be inside the I loop.

We will show that if certain constraints are satisfied, the reference to τvA(~k)ik
can be replaced by

an explicit expression. The constraints are these:

• For each path from the definition of an array element whose value is essential to a lexically
forward use within the I loop, the element used was assigned at the definition on the same
iteration of the loop.

2.3. CONTRIBUTING DIMENSIONS 55

• If the use is lexically backward but still in the I loop, the element used was assigned at the
definition on the previous iteration of the loop, if there was such an iteration. If there was no
such iteration, the value of τv must be ⊥.

• If the use is outside the I loop, the element used was assigned on the last iteration of the I

loop the last time that loop was executed before the current use.

These constraints are automatically satisfied for programs in initial Array SSA form (even in the

stronger form where we omit the qualification that the value of the array element be essential).
There are admissible programs, however, for which they are not satisfied. We will see that in case

these constraints are not satisfied, the algorithm itself (Section 2.4) will insure that τvA(~k)ik
can be

replaced.

So now let us assume that these constraints hold, and let us consider the different kinds of references

there can be to A. For each such reference A(~k) we will examine τvA(~k)ik
.

If the reference is the definition of A (whether a source definition or a definition in a φ assignment),
then the value of τvA is just the current point in local iteration space. By our convention, if the
definition is in a φ assignment, this local iteration space includes components for dimensions of the
forall implementing the φ computation (i.e., the φ iteration coordinates).

So now we may assume that the reference is a use of A. We will further assume that the value of the
element of A is actually essential, since otherwise we really don’t care about the reference at all—in
particular, we don’t care which element it refers to. (We do have to be careful not to introduce

arithmetic exceptions. We assume we can do this.)

If A was defined by a φ assignment, then the value of τvA (which is a point in the global iteration

space at the definition of A) includes components for the dimensions of the forall that implements

the φ assignment. The values of those components are just the original (data space) coordinates of

the reference A. (This is from Lemma 1.3.) In the last example, for instance, A6 was defined by a

φ assignment. The iteration variable of that φ assignment is k, and at the reference A6(g(i)), the

value of the data space coordinate corresponding to k is g(i). This is where the g(i) in the rewritten

reference A6[i, g(i)] comes from.

Next, we show how to compute the remaining components in τvA. We enumerate the different kinds

of use references of A(~k). Based on the three properties enumerated above, we immediately see the
following:

1. If the reference occurs in the I loop lexically after the definition of A, then τvA(~k)ik
= I .

2. If the reference occurs in the I loop lexically before the definition of A, then

τvA(~k)ik
=

I − 1
if I is greater than the initial
bound of the loop

the value of the terminal bound
of the loop the last time the loop
was executed

if I equals the initial bound of the
loop, and if the loop was previ-
ously executed

⊥
in any other case. In fact, in such
a case, τv itself equals ⊥.

56 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

3. If the reference occurs outside the I loop, then τvA(~k)ik
is the last value of I taken on in the

last iteration of the loop.

Thus, while we use the notation τv, its value is always known (at least symbolically) at compile-time.

It is important to note that this reasoning is possible only because of the restricted nature of our
language. Adding arbitrary control flow, for instance, would make this problem much more difficult.

The preceding discussion can be summarized as follows:

2.5 Theorem If R = A
(

σ(d1), . . . , σ(dm)
)

is an essential dynamic reference, and if the conditions at

the top of this section are satisfied, then each component of τvA
(

σ(d1), . . . , σ(dm)
)

is determined as

follows:

1. If the component is in a φ iteration dimension, its value is one of the subscripts σ(d1). The
subscript is determined by the iteration dimension.

2. If the component is in an iteration dimension belonging to a loop not reflected in the current
local iteration space, then the value of the component is the last value of the loop variable of
that loop.

3. Otherwise, if the index of the component is ik, corresponding to the loop variable Ik, then the
value of the component is one of the values

• Ik

• Ik − 1

• the upper bound of the loop the previous time it was executed

• ⊥ (in which case τvA
(

σ(d1), . . . , σ(dm)
)

is ⊥)

and a simple expression can be written to produce the correct value.

The reader may be concerned that the three conditions needed for this theorem are unreasonably
stringent. It is true that they are stringent, but there are two things to notice:

1. If we really need to apply this theorem, then the algorithm to be presented will ensure that
these conditions apply, by reintroducing enough of the naive array SSA overhead to make the
conditions true.

2. In many cases, however, we don’t actually care, because there are no iteration dimensions in C
that need to be introduced. If iteration dimensions really need to be introduced, this indicates
that the program really is quite complex in its data access patterns, and the overhead that we
need to reintroduce is not at all spurious.

2.3.4 Some general properties

Here we collect some general properties of valid sets of contributing dimensions and valid iteration
subspaces that are used below in constructing an algorithm for their computation.

In these lemmas, e denotes an expression. S(e) denotes a valid iteration subspace for e. A denotes

an array, and C(A) denotes a valid set of contributing dimensions for A.

2.3. CONTRIBUTING DIMENSIONS 57

2.6 Lemma 1. If e is a literal constant, then ∅ is a valid iteration subspace for e.

2. If e = I(ij) is a loop index in position j in the local iteration space, then {ij} is a valid

iteration subspace for e.

Proof. 1. No loop index can affect the value of e, so ∅ is a valid iteration subspace for e.

2. Since I(ij) cannot be assigned to within the body of its loop, its value is independent of any

other loop index, so {ij} is a valid iteration subspace for e.

2.7 Lemma If e is a function of the set of expressions {e1, e2, . . . , en} and if S(ei) is a valid iteration

subspace of ei for each i, then
⋃n

i=1 S(ei) is a valid iteration subspace of e.

Proof. The values {I(ij) : ij ∈
⋃n

i=1 S(ei)} determine the values of {e1, . . . , en}, which in turn

determine the value of e.

Of course in applications of this lemma one would choose the set {e1, . . . , en} so that e is not a
function of any proper subset, in order to make the computed valid iteration subspace of e as small
as possible.

2.8 Lemma If e is any expression and if R runs over the references in e, then

⋃

R

⋃

m∈C(R)

S
(

σ(m)
)

is a valid iteration subspace for e.3

Proof. Since e is a function of the references R, by Lemma 2.7 it is enough to show that for any
reference R—say, to an array A—

S ←
⋃

m∈C(R)

S
(

σ(m)
)

(2.1)

defines a valid iteration subspace for R.

Now since C(A) is a valid set of contributing dimensions, rewriting A in terms of C puts the program

in weak DSA form with respect to A. That is, any two dynamic references to

AC
(

σ(dj1), . . . , σ(djp
)
)[

τvA
(

σ(d1), . . . , σ(dm)
)

k1

, . . . , τvA
(

σ(d1), . . . , σ(dm)
)

kq

]

having the same subscripts have the same values. But these subscripts are just the values

{σ(m) : m ∈ C(R)}

and these values are determined by S.

2.9 Lemma If LHS = RHS is an assignment statement and if S(RHS) is a valid iteration subspace

of RHS, then S(RHS) is also a valid iteration subspace of LHS.

3By a harmless abuse of notation, we are writing C(R) where we really should have written C(A) where A is the
array referred to in the reference R.

58 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

Remark Note that the assignment statement in this lemma does not necessarily have to be a source
assignment. It might be a φ assignment, for example.

Proof. Any loop index that cannot affect the value of RHS cannot affect the value of LHS either.

2.10 Lemma If an object Ak is defined at a source definition, and if

• R is the defining reference, and

• R has data space D and iteration space I, and

• S ⊆ I is a valid iteration subspace for R, and

• C is any subset of D ∪ I such that for each i ∈ S, I(i) is a function of {σ(m) : m ∈ C}

then C is a valid set of contributing dimensions for Ak.

Proof. First, since the set {σ(m) : m ∈ C} parametrizes the valid iteration subspace S at R, rewrit-
ing the references to Ak by means of this set of dimensions gives rise to a transformed program with
the weak dynamic single assignment property.

Theorem 2.3 then shows that C is a valid set of contributing dimensions for Ak.

2.4 An algorithm for computing contributing dimensions

We are now ready to present an algorithm that computes valid sets of contributing dimensions for
each array in the program.

The algorithm is an increasing algorithm. Each expression (and sub-expression) is given an attribute

S(for “valid iteration subspace”) and each array name is given an attribute C(for “valid set of

contributing dimensions”). These attributes are initialized in a particular fashion, and then an
increasing iterative process is performed. We will prove that when this process terminates, each S
at an array reference is a valid iteration subspace for that array reference and each C is a valid set
of contributing dimensions for its array.

We first need some notation.

Definition If e is an expression, a subexpression s of e is primary with respect to e iff both of the
following conditions are satisfied:

1. s is one of the following kinds of expressions:

• a literal constant

• a loop variable

• a scalar or array reference

• a pure function

2. s is not a proper subexpression of any other subexpression of e that is primary with respect to
e

2.4. AN ALGORITHM FOR COMPUTING CONTRIBUTING DIMENSIONS 59

This definition does not preclude the possibility that e is itself primary with respect to e; i.e., that
s = e. For instance, if e is a literal constant, then it is primary with respect to itself. We may omit
the phrase “with respect to . . . ” if the context is clear. In fact, we will use the phrase “the primary
expressions in e” as a shorthand for “the subexpressions of e that are primary with respect to e”.

Every expression in our language is built up out of primary expressions using only the common
arithmetic operations. The subscripts of an array reference themselves, as well as the actual argu-
ments to pure functions, are expressions which are in turn made up from other primary expressions
in the same way. For instance, in the expression

2 ∗
(

A
(

3 + B(C(i + j)), f(j + x)− 11
)

+ 3
)

+ E(i) + 5

which we assume is contained in loops on i and j, and in which A, B, and C are arrays and f is a
pure function, the primary expressions are

• 2

• A
(

3 + B(C(i + j)), f(j + x)− 11
)

• 3

• E(i)

• 5

The primary expressions in the first subscript of A are

• 3

• B(C(i + j))

The primary expressions in the second subscript of A are

• f(j + x)

• 11

The subscript of B consists of one primary expression:

• C(i + j)

The argument of f consists of two primary expressions:

• j—a loop variable

• x—a scalar reference

and so on.

Primary expressions have the following property: each path from the root of an expression tree for
an expression e to its leaves reaches a subexpression s that is primary with respect to e. e is a

(pure) function of the set of these primary subexpressions s.

Here now is the algorithm:

60 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

Initialization

• For each variable that is live on entry (e.g., a passed parameter to a subroutine), C is
initialized to the data space of that variable.

• At a source definition, say of A, C(τwA) is initialized to the union of the data space of A

with the local iteration space. (That is, it is given its maximal possible value.)

• For all other variables, C is initialized to ∅.

• At a read statement, S of the variable being read is initialized to the entire local iteration
space.

• At a reference I(ij) to a loop index, S is initialized to {ij}.

• At all other expressions, S is initialized to ∅.

Iterative Computation

The following actions are iterated until no further change takes place. RHS denotes the
right-hand side of an arbitrary assignment statement in the program, and LHS denotes the
corresponding left-hand side.

1. For each expression e on the right-hand side of an assignment statement, we compute
S(e) by

S(e)←
⋃

P

S(P)

where P runs over the primary expressions composing e.

2. For each pure function reference f , we compute S(f) by

S(f)←
⋃

a

S(a)

where a runs over the actual arguments of f .

Note in particular that a φ function is a pure function.

3. For each array reference R that is used (i.e., is not being defined), we compute S(R) by

S(R) ←
⋃

m∈C(R)

S
(

σ(m)
)

4. For each statement LHS = RHS, we compute S(LHS) by

S(LHS)← S(RHS)

5. For each data object A other than variables live on entry, we compute C(A) at its defining

reference R (which is either the left-hand side of an assignment statement or is the variable

in a read statement) as follows: consider the family of sets {C1} with C(A) ⊆ C1 ⊆ M

such that:

• For each i ∈ S(A), I(i) is a function of {σ(m) : m ∈ C1}.

• In addition, the conclusion of Theorem 2.5 holds for each i ∈ C1 ∩ I.

2.4. AN ALGORITHM FOR COMPUTING CONTRIBUTING DIMENSIONS 61

Note that there will always be at least one C1 that satisfies the first of these two conditions.
The second condition is vacuously satisfied if the program is in initial Array SSA form.
Subsequent transformations may have caused it no longer to be true.

If there is no C1 satisfying both conditions, then (this is part of the algorithm) reinsert

enough of the initial Array SSA machinery so that the conclusion of Theorem 2.5 holds
for at least one C1 satisfying the first condition.

Note that this may cause an additional iteration dimension to appear, because of the
initialization of S of the right-hand side of an introduced wrap-around φ assignment.

Of those sets C1 having minimal cardinality, choose one that has the least number of
iteration dimensions. (N.B. This is the way we favor data space over iteration space, as

mentioned on page 45.) Set C(A)← C1.

Remarks

• The reason for the maximal initialization of τw variables is somewhat subtle: From one point
of view, it is simply what we need to make the proof of correctness of the algorithm work.
There is, however, some intuition behind it as well:

For an ordinary array variable, an element whose value is undefined at a certain point in the
program has no significance—a legal program can never reference such an element until it has
been given a value. For a τw variable, however, an element whose value has not been assigned
in the program is understood to have the value ⊥, and this is a meaningful value, because it
really is used in Boolean choice expressions in φ functions.

Therefore, any valid set of contributing dimensions has to be large enough to describe the
entire array at any point in the program, even when it is only partially defined. This is what
causes us to give C its maximal value for such variables.

It is important, however, to realize that in typical cases, almost all of these variables can be
optimized away. We have given some examples of this already, and we will discuss this in
greater detail in later chapters. In addition, there are some other simplifications that can be
made, the discussion of which we also defer.

• Action 1 can really be thought of as a special case of action 2.

• Action 2 corresponds to Lemma 2.7.

• Action 3 corresponds to Lemma 2.8.

• Action 4 corresponds to Lemma 2.9.

• Action 5 corresponds to Lemma 2.10.

• The algorithm is not deterministic: an arbitrary choice may be possible in action 5.

• The reason for the second condition in action 5 is to insure that when the program is ultimately
rewritten in weak DSA form, the values of any necessary τv variables can be replaced by
expressions not involving τv variables, thereby eliminating all τv variables from the program.
If this were not possible, then the τv variables would themselves have to be rewritten in weak
DSA form, and this could lead us into an endless recursion.

62 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

2.5 Proof of correctness of the algorithm

In this section P will be our admissible program, and P ′ will be P rewritten using the sets C of each
array as computed by the algorithm of the last section.

2.11 Lemma The algorithm of the previous section terminates in a finite number of steps.

Proof. This is simply because the algorithm is an increasing algorithm—at each step, each value
of S and C either remains the same or becomes larger, and the set of possible values of each S and
C is finite.

In reading the next lemma, it is helpful to consider the program fragment

A0 = . . .

do i = 1, n

.A1 = φ(A0, A3)

A2(i) = i

.forall (k = 1 : n)

.A3(k) =

(

A2(k) if k = i

A1(k) otherwise

.end forall

. . .

· · · = . . . A3

(

f(i)
)

. . .

. . .

end do

The lemma generalizes the fact that in this example our algorithm will produce C(A3) = {d1, i1},

where d1 is the (only) data dimension of A3 and i1 is the iteration dimension corresponding to the
loop variable i.

2.12 Lemma Suppose a variable A (which may be an ordinary variable or a τw variable) is defined at a φ

assignment. (So each argument E of the φ function is either an ordinary variable or a τw variable.)

At the conclusion of the algorithm C(A) contains

• all the data dimensions of each C(E) as E runs over all the arguments of the φ function,
together with

• each iteration dimension ij of each C(E) where E runs over those arguments of the φ function

such that both E and A are defined within the loop corresponding to ij .

Proof. The φ assignment looks like this:

forall (k1, k2, . . . , kn)

A(k1, k2, . . . , kn) = φ
(

. . . , E(k1, k2, . . . , kn), . . .
)

end forall

By action 3, S(E) (by which we really mean S of the reference to E on the right-hand side) includes

all the φ iteration coordinates that correspond to data dimensions in C(E).

2.5. PROOF OF CORRECTNESS OF THE ALGORITHM 63

Further, if E is an argument of the φ function such that both E and A are defined within a loop

whose loop variable is I(ij), and if ij is in C(E), then ij is in S(E), for the following reason: by

action 3, S
(

σ(ij)
)

is contained in S(E). It is therefore enough to show that S
(

σ(ij)
)

= {ij}.

Now by action 5 the conclusion of Theorem 2.5 holds. Therefore, σ(ij), which is τvE(k1, k2, . . . , kn)j ,

is either I(ij) or I(ij) − 1. (It can’t be constant, because the loop corresponding to dimension ij

contains both the definition of E and the φ assignment which uses it.) Therefore, S
(

σ(ij)
)

= {ij},

so ij is an element of S(E).

By actions 1, 2, and 4, S(A) (by which we really mean S of the reference to A on the left-hand side)

includes the same set of iteration coordinates. By action 5, C(A) then must include all the data

dimensions in C(E) together with the iteration dimension ij .

2.13 Lemma If a variable τwBi is defined at a source definition and if there is a path in the (directed)
SSA graph from the definition of τwBi to the definition of a variant τwBj , then at the conclusion of

the algorithm

• The data dimensions in C(τwBj) include all the dimensions of τwBj (which are also all the

declared dimensions of Bi).

• The iteration dimensions in C(τwBj) include all the iteration dimensions at the definition of

Bi corresponding to loops containing the entire path from the definition of Bi to the definition
of Bj .

Proof. We know by the way the algorithm is initialized that C(τwBi) includes all the data and
iteration dimensions at the definition of Bi.

Proceed by induction down the path in the SSA graph. Let us say that L is a loop containing the
path from the definition of τwBi to the definition of τwBj , and say L corresponds to the iteration

dimension im.

Each edge in the path is one of the following two forms:

1. An edge from a definition of τwBp to a use of τwBp. Nothing really happens on such an edge

as far as C(τwBp) is concerned, since C(τwBp) is an attribute of the variable τwBp, not of a

particular reference to it.

2. An edge from a use of τwBp as an argument to a φ function defining τwBq . Lemma 2.12

shows that all the data dimensions together with the iteration dimension im are propagated

to C(τwBq).

2.14 Lemma If

• P and P ′ are iteratively similar up through time t,

• each data object in P has the same value as its corresponding object in P ′ at each time before
t,

• R is a dynamic use of a variable τwB in P at time t,

• R′ is the corresponding dynamic use of τwBC(τwB) in P ′ at time t,

64 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

then if the value of R′ is not ⊥, then the value of R is also not ⊥.

Proof. Suppose first that there is no path in the SSA graph from a source definition to the

definition of τwB. Then each element of τwB must always be ⊥, and the same holds for τwBC(τwB),
so the lemma is vacuously true for this case.

Otherwise Lemma 2.13 shows that R′ has all the data dimensions of τwB. And by assumption

the subscripts in those dimensions are the same in R′ and in R. Since R′ is not ⊥, the element
it refers to was defined. The corresponding element (with the iteration dimensions removed) in P

was therefore also defined, at the same time, and R is a reference to that element. (R is a reference

to that element because the data subscripts in R and R′ are the same, their values having been

determined before time t.) Therefore R is not ⊥.

2.15 Lemma If P ′ has the weak dynamic single assignment property for all times before t (that is,

property A holds for all times before t), then properties B and C hold up through time t.

Proof. We proceed by induction. To clarify the notation, let s0 < s ≤ t be elements of the
executed global iteration space of the program P , and say s is the successor of s0.

The inductive hypothesis H(τ) (where τ is any time in the executed global iteration space of P) is
the following statement:

1. P and P ′ are iteratively similar up through time τ .

2. each data object in P has the same value as its corresponding object in P ′ at each
time up through time τ .

3. If R is a dynamic use of a variable τwB in P at any time τ ′ ≤ τ and R′ is the

corresponding dynamic use of τwBC(τwB) in P ′ at the same time τ ′, and if the value

of R′ is not ⊥, then the value of R is also not ⊥.

H(τ) is automatically satisfied when τ is the time of the start of execution of the program. So let

us assume that H(s0) is satisfied.

By condition 2, condition 1 continues to be true when τ = s (i.e., P and P ′ are iteratively similar

up through time s).

Lemma 2.14 then shows that condition 3 remains true when τ = s (that is, for every τ ′ ≤ s).

Theorem 2.2 (together with the fact that P ′ has the weak dynamic single assignment property up

through time s0) then shows that properties B and C hold at time s—that is, that conditions 1

and 2 hold for τ = s. (We already know that condition 1 holds at time s in any case.) Thus H(s)
is satisfied; this is the inductive step.

Now since P ′ has the weak dynamic single assignment property for all times before t, we see therefore
by induction that H(t) is true. Conditions 1 and 2 then state exactly that conditions B and C hold
up through time t.

2.16 Lemma In order to show that the sets of dimensions C computed by the algorithm of the previous
section are valid sets of contributing dimensions, it suffices to show that rewriting by means of these
sets of dimensions puts the program in weak DSA form.

Proof. This follows immediately from the previous Lemma 2.15.

2.5. PROOF OF CORRECTNESS OF THE ALGORITHM 65

2.17 Theorem The algorithm of the last section correctly computes a valid iteration space and a valid
set of contributing dimensions for each variable in the program.

Proof. First, the algorithm concludes after a finite number of steps by Lemma 2.11.

If when this has happened, the values C are valid sets of contributing dimensions for their corre-
sponding arrays, then Lemmas 2.6, 2.7, 2.8, and 2.9 show that each S is a valid iteration subspace
for its corresponding reference.

Therefore, we only need to prove that for each variable A (which may actually be a τw variable)

C(A) is a valid set of contributing dimensions for A.

If this were not true, then by Lemma 2.16 there would be some array AC(A) in the transformed

program whose definition assigns at least two different values to the same element AC(A)(~a) in the

course of execution of the program. (Note that ~a is a constant vector, not a possibly varying vector

expression.) Say the first value is first assigned at time s, and say the second value is first assigned

at time t; of course, s and t depend on the element being assigned to.

Of all such definitions of array elements, let AC(A)(~a) be that element whose t value is earliest.

For convenience, let us denote the defining statement for AC(A) by

AC(A)(~α) = exprrhs

where ~α is a vector of subscript expressions.

Note that none of the dimensions ik at which s and t differ can be in S
(

A(~α)
)

. For if ik were,

then I(ik) would be a function of the subscripts {σ(κ) : κ ∈ C(A)} at the definition of AC(A) and

therefore the elements of AC(A) defined at s and t would be different, contrary to our assumption.

Now let us look at the right-hand side exprrhs of the definition of A. None of the iteration indices

ik at which s and t differ can be in S(exprrhs), since if ik were, action 4 of the algorithm would as

before have propagated it into S
(

A(~α)
)

.

On the other hand, by assumption, exprrhs has different values at s and t.

Therefore there must be a primary expression X in exprrhs which has different values at s and t.
Order the primary expressions of exprrhs in the order in which they are evaluated in the execution

of the program. (This order may not be unique; any legitimate order will do.) Let X denote the

first of these primary expressions.

X cannot be

• a loop variable corresponding to a dimension in which s and t differ, since this would auto-
matically be incorporated by action 1 of the algorithm into S(exprrhs)

• any other loop variable, since by definition these have the same values at s and t.

• a constant, trivially.

Hence X must be either a pure function or an array reference. Further, any element of S(X) is also

a member of S
(

A(~α)
)

, again by action 4 of the algorithm. So there are two possibilities:

66 CHAPTER 2. WEAK DYNAMIC SINGLE ASSIGNMENT FORM

1: X is a pure function. The only way it can have two different values at s and t is if some
primary expression in some actual argument of X takes on different values at s and t.

2: X is an array reference. There are two ways X can have different values at s and t:

a) Some primary expression in some subscript of X takes on different values at s and t.

b) None of these primary expressions do, but some element of X itself takes on two different
values at points s and t.

Note that X cannot be a variable that is live on entry, because, since P is in array SSA
form, no such variable can be the target of an assignment statement, so for such a variable

C(X) = D(X) and so the rewriting according to C(X) leaves X alone.

Nor can X be any other ordinary variable, because of the way A(a) was chosen (“. . . that

element whose t value is earliest.”). So any such X must be a τw variable.

Each time we arrive at an X in case 1 or 2a, we recurse (looking at primary expressions in its

arguments or subscripts) until one of two things happens:

• We arrive at a situation in which there are no more pure functions or array references (or

scalar references) to look at. The only things remaining can be loop variables, and constants.
As we have already seen, this situation is impossible.

• We arrive at an array reference in case 2b. As we have seen, this must be a τw variable; say

the left-hand side of its definition is τwBC(τwB)(~β).

So if we have not yet arrived at a contradiction, we have found an array element τwBC(τwB)(~b)

(where ~b is a constant, not an expression) which at times s and t takes on two distinct values, and

which is represented on the right-hand side of the definition of AC .

This is not in itself a contradiction—one of the values of τwBC(τwB)(~b) might be ⊥. But it does show

that the assignment to AC(A) must be a φ assignment, since it has a τw variable on its right-hand
side.

Let the definitions of τwBC(τwB)(~b) that reach the uses at times s and t occur at times s′ and t′

respectively. We must have s′ < s < t′ < t. Because of the way that AC(A)(~a) was chosen, s′ must

be the time of program entry, and the value of τwBC(τwB)(~b) at that time is of course ⊥.

Now P (t′) must be a (static) point in the program inside the outermost loop L at which s and t

differ, since s < t′ < t.

There are two possibilities:

1: For some τwB which is an argument to the φ function defining A (this may be any such argu-

ment, not necessarily the τwB arrived at above), there is a source assignment to a member

of web(τwB) inside L that reaches the definition of τwB by a path in the SSA graph that

lies entirely within L. Say that source assignment is to τwBi. Then C(τwBi) includes the
dimension corresponding to the loop L. By Lemma 2.13, this dimension is then propagated
by the algorithm to C(τwB). By Lemma 2.12, this dimension is then propagated to C(A). This

in turn shows that the elements of AC(A)(~k) referenced at times s and t are different, which

contradicts our assumption.

2.5. PROOF OF CORRECTNESS OF THE ALGORITHM 67

2: There is no such source assignment. Because of the requirement (constraint C2 on page 37) that

there be a τw variable for each ordinary variable in the φ assignment, it follows also that for
each ordinary variable B which is an argument to the φ function defining A there is no source

assignment to a member of web(B) inside L that reaches the definition of B by a path in the
SSA graph that lies entirely within L.

It then follows that there is no source assignment to a member of web(A) inside L that reaches

the definition of A by a path in the SSA graph that lies entirely within L. By the way we
have defined admissible programs (see constraint C1 on page 37), this means that the values
assigned to A at times s and t in program P must be identical.

On the other hand, by our construction, program P ′ satisfies the condition of Theorem 2.15 for
time t. Therefore the values assigned in P ′ up through time t are the same as those assigned in

P up through time t. But the values assigned to AC in P ′ at times s and t are by assumption
different, and this is a contradiction.

These contradictions conclude the proof.

Bibliography

Ballance, Robert A., Arthur B. Maccabe, and Karl J. Ottenstein. 1990. The Program Dependence Web: A Repre-

sentation Supporting Control-, Data-, and Demand-Driven Interpretation of Imperative Languages, Proceedings of

the ACM SIGPLAN ’90 Conference on Programming Language Design and Implementation, pp. 257–271.

Cytron, Ron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Com-

puting Static Single Assignment Form and the Control Dependence Graph, Transactions on Programming Languages

and Systems 13, no. 4, 451–490.

Knobe, Kathleen and Vivek Sarkar. 1998. Array SSA form and its use in Parallelization, Proceedings of the 25th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’98).

Knobe, Kathleen B. 1997. The Subspace Model: Shape-Based Compilation for Parallel Systems, Ph.D. Thesis, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts.

Muchnick, Steven S. 1997. Advanced Compiler Design and Implementation, Morgan Kaufmann Publishers, San

Francisco. [QA76.76.C65M8].

68

Index

⊥, 3, 14, 43
admissible program, 36
admissible transformation, 31
Array SSA form, 37

initial, 19
naive, 11

Boolean choice expressions, 14

contributing dimensions, 44
valid set of, 48

control φ, 12
control structure, 3

D, 4
data space, 4
dead code, 30
definition φ, 12
dynamic single assignment form, 41

strong, 41
weak, 42

essential statement, 30
essential value, 30
executed global iteration space, 6

I, 7

[i, . . .], 5, 6

[i, . . .]g , 7

I(ij), 7

iteration space, 4
global, 5
local, 5

iterative similarity, 7

~k, 2

λ (as subscript), 6

M, 45
maximal expansion, 42

naive Array SSA form, 13

ordinary variable, 14

φ iteration coordinates, 18
primary expression, 58

reference
dynamic, 29, 41
static, 41

rewritten program, 47

σ(dj), 4

σ(ij), 19

SSA form, 9
SSA graph, 14, 63

collapsed, 14
SSA variant, 10
structural similarity, 3

tloc, 7
τv, 7, 12
τw, 7, 15

ultimate use, 29

valid iteration subspace, 45

web, 15
wrap-around φ, 11

69

